HEP-QIS Quantised Awards FY2019
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Schrödinger Equation)
Lecture 37 (Schrödinger Equation) Physics 2310-01 Spring 2020 Douglas Fields Reduced Mass • OK, so the Bohr model of the atom gives energy levels: • But, this has one problem – it was developed assuming the acceleration of the electron was given as an object revolving around a fixed point. • In fact, the proton is also free to move. • The acceleration of the electron must then take this into account. • Since we know from Newton’s third law that: • If we want to relate the real acceleration of the electron to the force on the electron, we have to take into account the motion of the proton too. Reduced Mass • So, the relative acceleration of the electron to the proton is just: • Then, the force relation becomes: • And the energy levels become: Reduced Mass • The reduced mass is close to the electron mass, but the 0.0054% difference is measurable in hydrogen and important in the energy levels of muonium (a hydrogen atom with a muon instead of an electron) since the muon mass is 200 times heavier than the electron. • Or, in general: Hydrogen-like atoms • For single electron atoms with more than one proton in the nucleus, we can use the Bohr energy levels with a minor change: e4 → Z2e4. • For instance, for He+ , Uncertainty Revisited • Let’s go back to the wave function for a travelling plane wave: • Notice that we derived an uncertainty relationship between k and x that ended being an uncertainty relation between p and x (since p=ћk): Uncertainty Revisited • Well it turns out that the same relation holds for ω and t, and therefore for E and t: • We see this playing an important role in the lifetime of excited states. -
Uniting the Wave and the Particle in Quantum Mechanics
Uniting the wave and the particle in quantum mechanics Peter Holland1 (final version published in Quantum Stud.: Math. Found., 5th October 2019) Abstract We present a unified field theory of wave and particle in quantum mechanics. This emerges from an investigation of three weaknesses in the de Broglie-Bohm theory: its reliance on the quantum probability formula to justify the particle guidance equation; its insouciance regarding the absence of reciprocal action of the particle on the guiding wavefunction; and its lack of a unified model to represent its inseparable components. Following the author’s previous work, these problems are examined within an analytical framework by requiring that the wave-particle composite exhibits no observable differences with a quantum system. This scheme is implemented by appealing to symmetries (global gauge and spacetime translations) and imposing equality of the corresponding conserved Noether densities (matter, energy and momentum) with their Schrödinger counterparts. In conjunction with the condition of time reversal covariance this implies the de Broglie-Bohm law for the particle where the quantum potential mediates the wave-particle interaction (we also show how the time reversal assumption may be replaced by a statistical condition). The method clarifies the nature of the composite’s mass, and its energy and momentum conservation laws. Our principal result is the unification of the Schrödinger equation and the de Broglie-Bohm law in a single inhomogeneous equation whose solution amalgamates the wavefunction and a singular soliton model of the particle in a unified spacetime field. The wavefunction suffers no reaction from the particle since it is the homogeneous part of the unified field to whose source the particle contributes via the quantum potential. -
Sacred Rhetorical Invention in the String Theory Movement
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Communication Studies Theses, Dissertations, and Student Research Communication Studies, Department of Spring 4-12-2011 Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement Brent Yergensen University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/commstuddiss Part of the Speech and Rhetorical Studies Commons Yergensen, Brent, "Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement" (2011). Communication Studies Theses, Dissertations, and Student Research. 6. https://digitalcommons.unl.edu/commstuddiss/6 This Article is brought to you for free and open access by the Communication Studies, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Communication Studies Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT by Brent Yergensen A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Communication Studies Under the Supervision of Dr. Ronald Lee Lincoln, Nebraska April, 2011 ii SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT Brent Yergensen, Ph.D. University of Nebraska, 2011 Advisor: Ronald Lee String theory is argued by its proponents to be the Theory of Everything. It achieves this status in physics because it provides unification for contradictory laws of physics, namely quantum mechanics and general relativity. While based on advanced theoretical mathematics, its public discourse is growing in prevalence and its rhetorical power is leading to a scientific revolution, even among the public. -
1 the Principle of Wave–Particle Duality: an Overview
3 1 The Principle of Wave–Particle Duality: An Overview 1.1 Introduction In the year 1900, physics entered a period of deep crisis as a number of peculiar phenomena, for which no classical explanation was possible, began to appear one after the other, starting with the famous problem of blackbody radiation. By 1923, when the “dust had settled,” it became apparent that these peculiarities had a common explanation. They revealed a novel fundamental principle of nature that wascompletelyatoddswiththeframeworkofclassicalphysics:thecelebrated principle of wave–particle duality, which can be phrased as follows. The principle of wave–particle duality: All physical entities have a dual character; they are waves and particles at the same time. Everything we used to regard as being exclusively a wave has, at the same time, a corpuscular character, while everything we thought of as strictly a particle behaves also as a wave. The relations between these two classically irreconcilable points of view—particle versus wave—are , h, E = hf p = (1.1) or, equivalently, E h f = ,= . (1.2) h p In expressions (1.1) we start off with what we traditionally considered to be solely a wave—an electromagnetic (EM) wave, for example—and we associate its wave characteristics f and (frequency and wavelength) with the corpuscular charac- teristics E and p (energy and momentum) of the corresponding particle. Conversely, in expressions (1.2), we begin with what we once regarded as purely a particle—say, an electron—and we associate its corpuscular characteristics E and p with the wave characteristics f and of the corresponding wave. -
The Diffusion of New Media Scholarship: Power, Innovation, and Resistance in Academe
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 5-2002 The Diffusion of New Media Scholarship: Power, Innovation, and Resistance in Academe Judith R. Edminster University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Edminster, Judith R., "The Diffusion of New Media Scholarship: Power, Innovation, and Resistance in Academe" (2002). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/1520 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Contents Title Page Abstract Overview Methodology THE DIFFUSION OF NEW MEDIA SCHOLARSHIP: POWER, The Origin and INNOVATION, AND RESISTANCE IN ACADEME Development of the Dissertation Genre ● Current Value by ● Traditional Print ● Genre Theory Current ETD Initiatives JUDITH R. EDMINSTER ● International Initiative ● UMI Role A dissertation submitted in partial fulfillment ● US Innovators of the requirements for the degree of ● Best Practices Doctor of Philosophy ● Graduate Department of English Education College of Arts and Sciences ● Challenges to University of South Florida Diffusion ● Training Issues ● Recommendations May 2002 The Diffusion of ETDs ● Relative Advantages Major Professor: Joseph M. Moxley, Ph.D. ● Compatibility Committee Members: James A. Inman, Ph.D. with Academic Debra Jacobs, Ph.D. Norms Rosann Webb Collins, Ph.D. ● Communication Barry Maid, Ph.D. ● Complexity, Trialability, Observability The University of South Florida ETD Pilot Project Sound Files and Sample ETDs References THE DIFFUSION OF NEW MEDIA SCHOLARSHIP: POWER, INNOVATION, AND RESISTANCE IN ACADEME by JUDITH R. -
Path Integral Quantum Monte Carlo Study of Coupling and Proximity Effects in Superfluid Helium-4
Path Integral Quantum Monte Carlo Study of Coupling and Proximity Effects in Superfluid Helium-4 A Thesis Presented by Max T. Graves to The Faculty of the Graduate College of The University of Vermont In Partial Fullfillment of the Requirements for the Degree of Master of Science Specializing in Materials Science October, 2014 Accepted by the Faculty of the Graduate College, The University of Vermont, in partial fulfillment of the requirements for the degree of Master of Science in Materials Science. Thesis Examination Committee: Advisor Adrian Del Maestro, Ph.D. Valeri Kotov, Ph.D. Frederic Sansoz, Ph.D. Chairperson Chris Danforth, Ph.D. Dean, Graduate College Cynthia J. Forehand, Ph.D. Date: August 29, 2014 Abstract When bulk helium-4 is cooled below T = 2.18 K, it undergoes a phase transition to a su- perfluid, characterized by a complex wave function with a macroscopic phase and exhibits inviscid, quantized flow. The macroscopic phase coherence can be probed in a container filled with helium-4, by reducing one or more of its dimensions until they are smaller than the coherence length, the spatial distance over which order propagates. As this dimensional reduction occurs, enhanced thermal and quantum fluctuations push the transition to the su- perfluid state to lower temperatures. However, this trend can be countered via the proximity effect, where a bulk 3-dimensional (3d) superfluid is coupled to a low (2d) dimensional su- perfluid via a weak link producing superfluid correlations in the film at temperatures above the Kosterlitz-Thouless temperature. Recent experiments probing the coupling between 3d and 2d superfluid helium-4 have uncovered an anomalously large proximity effect, leading to an enhanced superfluid density that cannot be explained using the correlation length alone. -
Matter-Wave Diffraction of Quantum Magical Helium Clusters Oleg Kornilov * and J
s e r u t a e f Matter-wave diffraction of quantum magical helium clusters Oleg Kornilov * and J. Peter Toennies , Max-Planck-Institut für Dynamik und Selbstorganisation, Bunsenstraße 10 • D-37073 Göttingen • Germany. * Present address: Chemical Sciences Division, Lawrence Berkeley National Lab., University of California • Berkeley, CA 94720 • USA. DOI: 10.1051/epn:2007003 ack in 1868 the element helium was discovered in and named Finally, helium clusters are the only clusters which are defi - Bafter the sun (Gr.“helios”), an extremely hot environment with nitely liquid. This property led to the development of a new temperatures of millions of degrees. Ironically today helium has experimental technique of inserting foreign molecules into large become one of the prime objects of condensed matter research at helium clusters, which serve as ultra-cold nano-containers. The temperatures down to 10 -6 Kelvin. With its two very tightly bound virtually unhindered rotations of the trapped molecules as indi - electrons in a 1S shell it is virtually inaccessible to lasers and does cated by their sharp clearly resolved spectral lines in the infrared not have any chemistry. It is the only substance which remains liq - has been shown to be a new microscopic manifestation of super - uid down to 0 Kelvin. Moreover, owing to its light weight and very fluidity [3], thus linking cluster properties back to the bulk weak van der Waals interaction, helium is the only liquid to exhib - behavior of liquid helium. it one of the most striking macroscopic quantum effects: Today one of the aims of modern helium cluster research is to superfluidity. -
Lecture 3: Wave Properties of Matter
3 WAVE PROPERTIES OF MATTER 1 3 Wave properties of matter In Lecture 1 we mapped out some of the principal interactions between photons and matter (elec- trons). At the quantum level, individual photons and electrons are described as particles in the various relationships used to describe phenomena such as the photo{electric effect and Compton scattering. We are building up a map of quantum interactions (Table 1). Under certain circum- particle wave electron Thomson's experiment Photo{electric effect Compton effect low{energy photon photo{electric effect interference diffraction high{energy photon Compton effect Pair production Table 1: A simple map of quantum behaviour. stances, low energy photons can act as particles or as waves. Importantly, such photons never display both wave{like and particle{like properties in the same experiment (Two-slit experiment). The blank spaces in Table 1 provide the directions we must investigate in order to complete our simple quantum map: can high energy photons, X{ and γ{rays, act as waves, and can electrons { classically viewed as matter particles { also act in a wave{like manner? • X{ray diffraction { high energy photons can behave as waves. • De Broglie suggests a relationship between momentum (mass) and wavelength { a wave{like description of matter? • Electron scattering and transmission electron diffraction photography confirm wave phenom- ena in electrons. • A wave mechanics primer. • The uncertainty principle derived using wave physics. • Bohr's complementarity principle and an introduction to the two slit experiment. • The Copenhagen interpretation of quantum theory. • A wave description of a particle in a box leads to quantised energy states. -
Arxiv:1403.4425V1 [Hep-Ex] 18 Mar 2014 and Strong
July 30, 2018 7:30 Brief history for the search and discovery of the Higgs particle – A personal perspective Sau Lan Wu Department of Physics, University of Wisconsin, Madison, WI 53706, USA [email protected] In 1964, a new particle was proposed by several groups to answer the question of where the masses of elementary particles come from; this particle is usually referred to as the Higgs particle or the Higgs boson. In July 2012, this Higgs particle was finally found experimentally, a feat accomplished by the ATLAS Collaboration and the CMS Col- laboration using the Large Hadron Collider at CERN. It is the purpose of this review to give my personal perspective on a brief history of the experimental search for this particle since the ’80s and finally its discovery in 2012. Besides the early searches, those at the LEP collider at CERN, the Tevatron Collider at Fermilab, and the Large Hadron Collider at CERN are described in some detail. This experimental discovery of the Higgs boson is often considered to be the most important advance in particle physics in the last half a century, and some of the possible implications are briefly discussed. This review is partially based on a talk presented by the author at the conference “Higgs Quo Vadis,” Aspen Center for Physics, Aspen, CO, USA, March 10-15, 2013. Keywords: Higgs boson; standard model; Large Hadron Collider; Higgs discovery. PACS Nos.: 14.80.Bn, 13.85.-t, 13.66.Fg, 12.60.-i 1. Introduction 1.1. Fundamental interaction and gauge particles There are four types of interactions in nature: gravitational, weak, electromagnetic arXiv:1403.4425v1 [hep-ex] 18 Mar 2014 and strong. -
High Energy Physics Quantum Information Science Awards Abstracts
High Energy Physics Quantum Information Science Awards Abstracts Towards Directional Detection of WIMP Dark Matter using Spectroscopy of Quantum Defects in Diamond Ronald Walsworth, David Phillips, and Alexander Sushkov Challenges and Opportunities in Noise‐Aware Implementations of Quantum Field Theories on Near‐Term Quantum Computing Hardware Raphael Pooser, Patrick Dreher, and Lex Kemper Quantum Sensors for Wide Band Axion Dark Matter Detection Peter S Barry, Andrew Sonnenschein, Clarence Chang, Jiansong Gao, Steve Kuhlmann, Noah Kurinsky, and Joel Ullom The Dark Matter Radio‐: A Quantum‐Enhanced Dark Matter Search Kent Irwin and Peter Graham Quantum Sensors for Light-field Dark Matter Searches Kent Irwin, Peter Graham, Alexander Sushkov, Dmitry Budke, and Derek Kimball The Geometry and Flow of Quantum Information: From Quantum Gravity to Quantum Technology Raphael Bousso1, Ehud Altman1, Ning Bao1, Patrick Hayden, Christopher Monroe, Yasunori Nomura1, Xiao‐Liang Qi, Monika Schleier‐Smith, Brian Swingle3, Norman Yao1, and Michael Zaletel Algebraic Approach Towards Quantum Information in Quantum Field Theory and Holography Daniel Harlow, Aram Harrow and Hong Liu Interplay of Quantum Information, Thermodynamics, and Gravity in the Early Universe Nishant Agarwal, Adolfo del Campo, Archana Kamal, and Sarah Shandera Quantum Computing for Neutrino‐nucleus Dynamics Joseph Carlson, Rajan Gupta, Andy C.N. Li, Gabriel Perdue, and Alessandro Roggero Quantum‐Enhanced Metrology with Trapped Ions for Fundamental Physics Salman Habib, Kaifeng Cui1, -
Jane Nachtman Curriculum Vitae Education and Professional History
Jane Nachtman 106 Van Allen Hall University of Iowa Department of Physics and Astronomy Iowa City, Iowa 52242 Phone: 319-335-1844 Email: [email protected] Curriculum Vitae Education and Professional History Education • Ph.D in Physics, University of Wisconsin, Madison, Wisconsin Advisor: Sau Lan Wu p Dissertation: \Search for Charginos at s = 161 and 172 GeV with the ALEPH Detector" December, 1997 • M.S. in Physics, University of Wisconsin, Madison, Wisconsin May, 1993 • B.S. in Physics, University of Iowa May, 1991 Professional and Academic Positions • 2007- : Associate Professor, University of Iowa • 2006-2007: Scientist I (Wilson Fellow), Fermilab • 2002-2006: Associate Scientist (Wilson Fellow), Fermilab • 1997-2002: Post-Doctoral Researcher for Professor David Saltzberg, UCLA • 1993-1997: Research Assistant, University of Wisconsin • 1993: Teaching Assistant, University of Wisconsin • Summer, 1991 and 1992: Research Assistant, Brookhaven National Laboratory • 1988-1991: Undergraduate Research Assistant, University of Iowa Scholarship Publications • 415 publications in refereed journals as a member of CMS, CDF and ALEPH Collaborations Selected Publications • Publications for which I am one of the primary authors: { \Searches for Supersymmetry and other New Phenomena at the Highest Energies", to be pub- lished in Reviews of Modern Physics, in preparation. { \Latest Results from the Tevatron" proceedings of the International Conference on Particle Physics, Istanbul, October 2008, in preparation. p { \Search for Exotic States in Exclusive B+ ! J φK+ Decays in pp¯ Collisions at s = 1.96 TeV", to be submitted to Phys. Rev. Lett., in preparation. { \Collider Searches for Physics Beyond the Standard Model,"proceedings of the Physics in Col- lision 2007 conference, to be published in Acta Physica Polonica B . -
KITP Ranks First in Research Impact
Vol. 4, No. 1 • Spring / Summer 2008 KITP Ranks First INSIDE… In Research Impact Special for Science, p. 2 New Permanent Member, p. 2 OW CAN THE PERFORMANCE as “traditionally…one of the highest ranked Brain Design Workshop, p. 3 of the Kavli Institute for Theoretical scientific groups and so serves as a gold HPhysics be measured and assessed? standard.” Presumably that standard also Star Formation, pp. 4-5 Anne Kinney in an article published in applies to the facility with the highest the Nov. 13, 2007, issue of the Proceedings impact-index. Coordinating Housing, p. 7 of the National Academy of Sciences presents Assessing the quality of KITP Rice Endows a new way of assessing “National Scientific programming performance has proved Upcoming, p. 8 Facilities and Their Science Impact on challenging for the institute’s directors Fund to Make Nonbiomedical Research.” Her approach because much of the measurable effect in enables comparison of the impact of research terms of quality research is manifested in fostered in conjunction with a given facility. publications by visiting scientists whose KITP More The KITP with a score of 6.56 registers the primary institutional affiliation is elsewhere. Tom Abel highest impact-index reported. This way in which KITP differs from The KITP is not only the highest other institutions with which it is being Family Friendly comparatively evaluated is underscored in ranked National Science Foundation (NSF) paper because being cited in papers by other an explanatory footnote to the PNAS article: facility, but the highest ranked of all research scientists demonstrates the impact of the FOR TWO DECADES physicists visiting “KITP is a theoretical physics institute that facilities, including (in order from second to cited work on the research of others.