‘Synthesise, Characterise, Analyse (SCA)’: A muldisciplinary approach to tackling New Psychoacve Substances (NPS)

Gavin McLaughlin, B.Sc., M.Sc., MRSC. PhD Candidate, Athlone Instute of Technology (AIT), Ireland Research Assistant, Trinity College Dublin (TCD), Ireland New Psychoacve Substances (NPS)

• In recent years, there has been an unprecedented increase in the number, types and seizures of chemicals frequently referred to as new psychoacve substances (NPS). • The constant release of NPS onto the recreaonal market connues to create challenges for sciensts in the forensic, clinical and toxicology disciplines.

120 101 100 100 81 80 74

60 49 41 40 Number of Number of NPS Number of 24 NPS detected 20

0 2009 2010 2011 2012 2013 2014 2015 Year Categories New encountered by 5F-MDMB-PINACA 5F-AKB-48 Forensic Science Ireland in 2016 5F-PB-22 Dipentylone (FSI Annual Report 2016) Dibutylone Ethylhexedrone N-ethylpentedrone 3-Fluorophenmetrazine α-PVP Clephedrone MPHP PV8 (α-PHP) PV9 (α-POP) Chloro-PVP 4-chloro-α-PVP

Methyltryptamine Dimethyltryptamine 25I-NBOMe 5-MeO-MiPT

Phenazepam Nitrozolam Fentanyl Ezolam Pentanoyl fentanyl Chlorodiazepam 2-fluorofentanyl Problems

• Main problems: – Absence of chemical and pharmacological informaon – Availability (online) – Availability of scienfic and patent literature • Forensic Science Laboratories tend to struggle when faced with the challenge of idenfying these NPS. • Most laboratories do not have access to the sophiscated analycal techniques, such as NMR and HR-MS, required for the idenficaon of NPS. • Absence of chemical reference standards and searchable drug reference libraries. Current aempts for NPS idenficaon

• Examples: The RESPONSE project & WEDINOS

• These projects provide some important analycal details about NPS.

• However, the aims of these projects are not to provide extensive chemical data or pharmacological data on NPS.

Importance of Organic Synthesis

• Facilitates the unambiguous identification of an unknown sample through targeted synthesis of all possible isomers. • Allows synthesis of compounds, which may not be commerically available. • Allows for the observation of synthesis related impurities or route specific by-products. • Extending the synthesis of a currently emerging psychoactive substance to a range of analogues and derivatives provides important proactive analytical data to the forensic, law enforcement and clinical communities. • Once synthesised, these compounds may be used for studies beyond analytical characterisation, such as exploration of pharmacological, metabolism or toxicological features. Characterisaon

Range of analycal techniques ulised to facilitate the detecon, idenficaon and structural elucidaon of drugs Importance of Pharmacological Evaluaon

• Evaluaon of the molecular mechanism of acon – Technique used: In vitro Monoamine Transporter Assays in rat brain synaptosomes. – Informaon obtained: Informaon on the re-uptake and releasing properes of a selected drug at the transporters, transporters and serotonin transporters as well as its selecvity for and potency at each transporter.

• Evaluaon of the metabolite profile of NPS – Technique used: pooled Human Liver Microsomes and LC-MS/MS – Informaon obtained: Metabolite profile of a selected drug, which aids in the idenficaon of NPS in biological matrices.

Synthesis, characterisaon and monoamine transporter acvity of the New Psychoacve Substance (NPS) Mexedrone and differenaon from its N-methoxy posional isomer, N-methoxymephedrone Background

O O H N α NH2 β

Cathinone

O

N

α−PVP Generic Legislaon O

α NH2 β

Any substance (not being ) structurally derived from 2-amino-1- phenyl-1-propanone by modificaon in any of the following ways: • By substuon in the phenyl ring to any extent with alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylenedioxy, haloalkyl or halo substuents, whether or further in the phenyl ring by one or more other univalent substuents. • By substuon at the 2- or 3- posion of the propanone side chain with alkyl substuents • By substuon at the nitrogen atom with one or more alkyl or dialkyl groups, or by inclusion of nitrogen atom in a cyclic structure Replacement for Mephedrone

A A O O O OO O H H H H N N N NN N O O O O

MephedroneA Mexedrone N-Methoxymephedrone O O O MephedroneH HMexedrone N-Methoxymephedrone N N N O B O O O BBr CH3NHOCHO 3 HCl N O O Br CH3NHOCH3 HCl N Mephedrone Mexedrone N-Methoxymephedrone O DIPEA (a)(b) DIPEA B O (a)(O b) C Br CH NHOCH HCl N O O 3 3 O O NaOMe Br MeNHO H C 2 Br 2 N O DIPEA O O O MeOH (a)(NaOMeCH2Cl2 b) Br2 MeNH2 H Cl NaI O O BrO N (c)(d)(e)(f) MeOH CH2Cl2 C Cl NaI O O O O (c)(O d)(O e)(O f) NaOMe Br MeNH H 2 Br 2 N D O O O MeOH CH2Cl2 H Cl Br NaI2 O MeNH2 O O (c)(d)(Br e)(N f) D CH2Cl2 O O O Cl Cl Cl H (g) (h)(Br2 Br i) MeNH2 N D O CH Cl O O Cl 2 2 Cl H Cl Br MeNH2 (g) 2 Br (h)(N i) CH Cl Cl 2 2 Cl Cl (g) (h)(i) Synthesis of Mexedrone & N- methoxymephedrone

Mexedrone N-methoxymephedrone O O O O

Sodium methoxide Br N N,O-dimethylhydroxylamine. HCl O

Sodium iodide N,N-diisopropylethylamine Cl O

(3-chloro-1-(4-methyphenyl)propan-1-one) (3-Methoxy-1-(4-methylphenyl)propan-1-one) (alpha-bromo-4-methylpropiophenone) (N-Methoxymephedrone)

Br2

O O

H N Methanolic methylamine Br

O O

Mexedrone 2-Bromo-3-methoxy-1-(4-methyphenyl)propan-1-one A 88 280000 Mexedrone EI-MS 240000 6.57 min

200000

160000

120000

80000 56 40000 42 65 119 162 73 105 134 147 175 0 207 40 60 80 100 120 140 160 180 200 m/z B 88 3000000 N-Methoxymephedrone EI-MS 2600000 6.18 min

2200000

1800000

1400000

1000000 Characterisaon: GC-MS 56 600000 42 119 A 88 65 Mexedrone 200000 280000 77 105 133 148 160 174 192 207 EI-MS 40 60 80 100 120 140 160 180 200 m/z 240000 6.57 min C 200000 O O H H H O N 160000 N N N NH Mexedrone 120000 O O 80000 56 m/z 207 m/z 162 m/z 119 m/z 88 m/z 56 m/z 42 40000 M 42 65 119 162 73 105 134 147 175 0 207 40 60 80 100 120 140 160 180 200 m/z B 88 3000000 N-Methoxymephedrone N-Methoxymephedrone EI-MS O O O 2600000 6.18 min N N N N NH O O O 2200000

1800000 m/z 207 m/z 192 m/z 119 m/z 88 m/z 56 m/z 42 1400000 M

1000000 56 600000 42 119 65 200000 77 105 133 148 160 174 192 207 40 60 80 100 120 140 160 180 200 m/z C O O H H H O N N N N NH Mexedrone O O

m/z 207 m/z 162 m/z 119 m/z 88 m/z 56 m/z 42 M

N-Methoxymephedrone O O O N N N N NH O O O

m/z 207 m/z 192 m/z 119 m/z 88 m/z 56 m/z 42 M [%] A LC-ESI-Q-MS 100 158.1 Characterisaon: LC-MS Mexedrone [%] 8.01 min A LC-ESI-Q-MS A O O 110 V 158.1 A H2O H H2 O H 100 Mexedrone N Loss 2of MeOH N 2 80 + N Loss of MeOH + N 8.01 min + + 110 V O 80 176.1 O Observed: 208.13374 Observed: 176.10712 60

119.1 + + 176.1 + C H NO : 208.13321 C H NO : 176.10699 + H 12 18Observed:2 208.13374 11 14 Observed: 176.10712 [M + H] O Δ = 2.58 ppm + Δ = 0.71 ppm + 60 H + C12H18NO2 : 208.13321 C11H14NO : 176.10699 119.1 N H + O Δ = 2.58 ppm Δ = 0.71 ppm 40 [M + H] H

208.1 N 149.1 O + + OH 40 H OH2 208.1 H 190.1 H 149.1 + N + [M + Na] O + N + N 20 117.1 148.2 190.1 + OH OH2 160.2 H [M + Na] O O H O + H

191.1 N 91.1 177.2 141.0 N N 105.0

20 163.1 120.1 195.9 117.1 148.2 84.9 230.2 88.1 160.2 191.1 91.1 177.2

141.0 Observed: 190.12279 105.0 163.1 120.1 195.9 84.9 230.2 88.1 O + 0 OC12H16NO : 190.12264 O 0 60 80 100 120 140 160 180 200 220 240 m/z Δ = 0.77 ppm 60 80 100 120 140 160 180 200 220 240 m/z H Observed: 190.12279 O Loss of H O + MeOHC12H16NO : 190.12264 N Loss of CO 10.63 min Δ = 0.77 ppm 160000 + 10.63 min 160000 OH N O Loss of H 140000 O MeOH N Observed: 119.04903 Loss of CO 140000 C H O+ : 119.04914 8 7 Observed: 158.09650 + Δ = -0.90 ppm C H N+ : 158.09643 120000 O 11 12 N 120000 Δ = 0.45 ppm 8.01 min B 8.01 min H Observed: 119.04903+ B 100000 O B 100000 + O + C8H7O : 119.04914 N Observed: 158.09650 Δ = -0.90 ppm O C H N+ : 158.09643 80000 11 12 80000 Δ = 0.45 ppm B 119.1 LC-ESI-Q-MSLC-ESI-Q-MS 119.1 + H 100100 60000 60000 H + N-MethoxymephedroneN-Methoxymephedrone O Observed: 208.13297O Observed:119.04901 + + + O 10.6310.63 min min N C12H18NO2 : 208.13321 N C8H7O : 119.04914 O = -1.15 ppm = -1.03 ppm 110110 V V 40000 40000 O 8080 20000 O O 20000 H H Loss of MeOH + N N H + O + 60 0 O Observed: 208.13297 Observed:119.04901 60 0 + + N C12H18NO2 : 208.13321 C8H7O : 119.04914 7.5 10 12.5 min O = -1.15 ppm = -1.03 ppm 7.5 10 12.5 min Observed: 176.10689 40 91.1 C H NO+ : 176.10699 91.1 11 14 40 = -0.60ppm + O H O [M + H] H + N Loss of MeOH N [M + H] + O + 20 105.1 140.9

20 208.2 158.1 120.1 149.0 176.0 105.1 140.9 85.0 195.9 208.2 161.1 158.1 120.1 149.0 176.0 85.0 195.9 0 161.1 Observed: 176.10689 60 80 100 120 140 160 180 200 220 240 m/z + 0 C11H14NO : 176.10699 60 80 100 120 140 160 180 200 220 240 m/z = -0.60ppm Monoamine Transporter Acvity

Pharmacology summary: • N-Methoxymephedrone showed a transporter-meditated releasing profile comparable to mephedrone, although much lower in potency.

• By contrast, mexedrone was found to be a weak monoamine transporter uptake blocker and weak serotonin releasing agent – ‘hybrid’ acvity.

• This might explain why this substance received mixed reviews on

A D psychonaut forums. 120 120 DAT 80 Mephedrone 80 Mephedrone N-Methoxymephedrone N-Methoxymephedrone 40

H]DA uptake H]DA 40 Mexedrone

3 Mexedrone release H]MPP+ 3 0 % [ % -Chloromethylmephedrone -Chloromethylmephedrone

0 [ % -9 -7 -5 -3 -9 -7 -5 -3 log [dose] M log [dose] M B E 120 120 NET 80 80 Mephedrone Mephedrone N-Methoxymephedrone 40 N-Methoxymephedrone

H]NE uptake uptake H]NE 40 Mexedrone

3 Mexedrone H]MPP+ release H]MPP+ 3 0 -Chloromethylmephedrone % [ % -Chloromethylmephedrone 0 [ % -9 -7 -5 -3 -9 -7 -5 -3 log [dose] M C log [dose] M F 120 120 SERT 80 80 Mephedrone Mephedrone N-Methoxymephedrone 40 N-Methoxymephedrone

40 release H]5HT Mexedrone H]5HT uptake uptake H]5HT Mexedrone 3 3 -Chloromethylmephedrone 0 -Chloromethylmephedrone % [ % % [ % 0 -9 -7 -5 -3 -9 -7 -5 -3 log [dose] M log [dose] M Effects of Mexedone, N-methoxymephedrone and mephedrone on inhibion of Schemac representaon of the release assay method uptake and smulaon of release at DAT, SERT and NET in rat brain synaptosomes. Mexedrone: Conclusion

• Chemical profile of mexedrone ascertained. • Pharmacological evaluaon of mexedrone concluded it is much less potent than mephedrone. • Vendor sample found to contain mexedrone. • This was the first study on mexedrone, which reiterates the connuous need to remain vigilant on the availability of newly emerging psychoacve substances. Overall Conclusion

• This approach of combining chemistry with pharmacology allows for the generaon of essenal data and is an effecve approach to tackling an increasingly complex area of invesgaon where growing demands are placed on invesgators in the field of NPS. Overall Conclusion

• This ‘SCA’ approach has been used for several other NPS including:

4,4-dimethylaminorex 3’,4’-methylenedioxy-4-methylaminorex 2-Methoxydiphenidine

NH2 NH2

O O N N N N O O O

AB-CHMFUPPYCA 3-Fluorophenmetrazine Mexedrone 4-Fluoromethylphenidate

O O F O H N NH2 F NH NH O O O O N N

F Acknowledgements

• Dr. Noreen Morris (Athlone Instute of Technology) • Dr. Pierce Kavanagh and his colleagues (Trinity College Dublin) • Dr. Simon Brandt (Liverpool John Moores University) • Mr. John Power (Forensic Science Ireland) • Dr. Geraldine Dowling (Dublin Instute of Technology) • Dr. Rachel Chrise (EMCDDA) • Dr. Michael H. Baumann and his colleagues (Naonal Instute of Drug Abuse) • Dr. Volker Aüwarter and his colleagues (University Medical Center Freiburg) Publicaon list

1. Gavin McLaughlin, Noreen Morris, Pierce V. Kavanagh, John D. Power, Geraldine Dowling, Brendan Twamley, John O’Brien, Gary Hessman, Brian Murphy, Donna Walther, John S. Parlla, Michael H. Baumann, Simon D. Brandt. Analycal characterizaon and pharmacological evaluaon of the new psychoacve substance 4-fluoromethylphenidate (4F-MPH) and differenaon between the (±)-threo and (±)-erythro diastereomers. Drug Tesng and Analysis. 2017, 9, 347-357. DOI: 10.1002/dta.2167

2. John D. Power, Pierce V. Kavanagh, Gavin McLaughlin, Michael Barry, Geraldine Dowling, Simon D. Brandt. ‘APAAN in the neck’ – A reflecon on some novel impuries found in seized materials containing in Ireland during forensic analysis. Drug Tesng and Analysis. 2017. DOI: 10.1002/dta.2194

3. Geraldine Dowling, Pierce V. Kavanagh, Brian Talbot, John O’Brien, Gary Hessman, Gavin McLaughlin, Brendan Twamley, Simon D. Brandt. Outsmarted by nootropics? An invesgaon into the thermal degradaon of modafinil, modafinic acid, adrafinil, CRL-40,940 and CRL-40,941 in the GC injector: formaon of 1,1,2,2-tetraphenylethane and its tetra fluoro analog. Drug Tesng and Analysis. 2017, 9, 446-452. DOI: 10.1002/dta.2142

4. Gavin McLaughlin, Noreen Morris, Pierce V. Kavanagh, John D. Power, Geraldine Dowling, Brendan Twamley, John O’Brien, Brian Talbot, Donna Walther, John S. Parlla, Michael H. Baumann, Simon D. Brandt. Synthesis, characterizaon and monoamine transporter acvity of the new psychoacve substance mexedrone and its N-methoxy posional isomer, N-methoxymephedrone. Drug Tesng and Analysis. 2017, 9, 358-368. DOI: 10.1002/dta.2053

5. Florian Franz, Verena Angerer, Simon D. Brandt, Gavin McLaughlin, Pierce V. Kavanagh, Bjoern Moosmann, Volker Auwarter. In vitro metabolism of the synthec cannabinoid 3,5-AB-CHMFUPPYCA and its 5,3-regioisomer and invesgaon of their thermal stability. Drug Tesng and Analysis. 2017, 9, 311-316. DOI: 10.1002/dta.1950.

6. Gavin McLaughlin, Noreen Morris, Pierce V. Kavanagh, Geraldine Dowling, John D. Power, Brendan Twamley, John O'Brien, Brian Talbot, Harald H. Sie, Simon D. Brandt. Test purchase, synthesis and characterizaon of 3- fluorophenmetrazine (3-FPM) and differenaon from its ortho- and para-substuted isomers. Drug Tesng and Analysis. 2017, 9, 369-377. DOI: 10.1002/dta.1945.

Publicaon list

7. John D. Power, Pierce V. Kavanagh, Gavin McLaughlin, Geraldine Dowling, Michael Barry, John O'Brien, Brian Talbot, Brendan Twamley, Simon D. Brandt. Forensic analysis of P2P derived amphetamine synthesis impuries: idenficaon and characterizaon of indene by-products. Drug Tesng and Analysis. 2017, 9, 446-452. DOI: 10.1002/dta.1944.

8. Gavin McLaughlin, Noreen Morris, Pierce V. Kavanagh, John D. Power, Brendan Twamley, John O’Brien, Brian Talbot, Geraldine Dowling, Simon D. Brandt. The synthesis and characterisaon of the ‘research chemical’ N-(1-amino-3-methyl-1- oxobutan-2-yl)-1-(cyclohexylmethyl)-3-(4-fluorophenyl)-1H-pyrazole-5-carboxamide (3,5-AB-CHMFUPPYCA) and differenaon from its 5,3-regioisomer. Drug Tesng and Analysis. 2016, 8, 920-929. DOI: 10.1002/dta.1864.

9. Gavin McLaughlin, Noreen Morris, Pierce V. Kavanagh, John D. Power, John O’Brien, Brian Talbot, Simon P. Ellio, Jason Wallach, Hamilton Morris, Simon D. Brandt. Test purchase, synthesis and characterizaon of 2-methoxydiphenidine (MXP) and differenaon from its meta- and para-substuted isomers. Drug Tesng and Analysis. 2015, 8, 98-109. DOI: 10.1002/dta. 1800.

10. John D. Power, Pierce Kavanagh, Gavin McLaughlin, John O’Brien, Brian Talbot, Michael Barry, Brendan Twamley, Geraldine Dowling, Simon D. Brandt. Idenficaon and characterizaon of an imidazolium by-product formed during the synthesis of 4- methylmethcathinone (mephedrone). Drug Tesng and Analysis. 2015, 7, 894-902. DOI: 10.1002/dta.1789.

11. Gavin McLaughlin, Noreen Morris, Pierce V. Kavanagh, John D. Power, Brendan Twamley, John O’Brien, Brian Talbot, Geraldine Dowling, Olivia Mahony, Simon D. Brandt, Julian Patrick, Roland P. Archer, John S. Parlla, Michael H. Baumann. Synthesis, characterizaon and monoamine transporter acvity of the new psychoacve substance 3’,4’-methylenedioxy-4- methylaminorex (MDMAR). Drug Tesng and Analysis. 2014, 7, 555-564. DOI: 10.1002/dta.1732.

12. Jason Wallach, Pierce V. Kavanagh, Gavin McLaughlin, Noreen Morris, John D. Power, Simon P. Ellio, Marion S. Mercier, David Lodge, Hamilton Morris, Nicola M. Dempster, Simon D. Brandt. Preparaon and characterizaon of the ‘research chemical’ diphenidine, its analogue, and their 2,2-diphenylethyl isomers. Drug Tesng and Analysis. 2014, 7, 358-367. DOI: 10.1002/dta.1689