Scattering Theory

Total Page:16

File Type:pdf, Size:1020Kb

Scattering Theory Scattering Theory Erik Koelink [email protected] Spring 2008, minor corrections 2018 ii Contents 1 Introduction 1 1.1 Scattering theory . 1 1.2 Inverse scattering method . 2 1.3 Overview . 3 2 Schr¨odingeroperators and their spectrum 5 d2 2.1 The operator − dx2 ................................. 5 d2 2.2 The Schr¨odingeroperator − dx2 + q ........................ 8 2.3 The essential spectrum of Schr¨odingeroperators . 12 2.4 Bound states and discrete spectrum . 16 2.5 Explicit examples of potentials . 18 2.5.1 Indicator functions as potential . 18 2.5.2 cosh−2-potential . 20 2.5.3 Exponential potential . 24 3 Scattering and wave operators 27 3.1 Time-dependent Schr¨odingerequation . 27 3.2 Scattering and wave operators . 28 3.3 Domains of the wave operators for the Schr¨odingeroperator . 35 3.4 Completeness . 38 4 Schr¨odingeroperators and scattering data 47 4.1 Jost solutions . 47 4.2 Scattering data: transmission and reflection coefficients . 58 4.3 Fourier transform properties of the Jost solutions . 66 4.4 Gelfand-Levitan-Marchenko integral equation . 71 4.5 Reflectionless potentials . 78 5 Inverse scattering method and the Korteweg-de Vries equation 83 5.1 The Korteweg-de Vries equation and some solutions . 83 5.2 The KdV equation related to the Schr¨odingeroperator . 89 5.3 Lax pairs . 91 5.4 Time evolution of the spectral data . 96 iii iv 5.5 Pure soliton solutions to the KdV-equation . 98 6 Preliminaries and results from functional analysis 103 6.1 Hilbert spaces . 103 6.2 Operators . 106 6.3 Fourier transform and Sobolev spaces . 110 6.4 Spectral theorem . 113 6.5 Spectrum and essential spectrum for self-adjoint operators . 115 6.6 Absolutely continuous and singular spectrum . 120 Bibliography 123 Index 125 Chapter 1 Introduction According to Reed and Simon [9], scattering theory is the study of an interacting system on a time and/or distance scale which is large compared to the scale of the actual interaction. This is a natural phenomenon occuring in several branches of physics; optics (think of the blue sky), acoustics, x-ray, sonar, particle physics,. In this course we focus on the mathematical aspects of scattering theory, and on an important application in non-linear partial differential equations. 1.1 Scattering theory As an example motivating the first chapters we consider the following situation occuring in quantum mechanics. Consider a particle of mass m moving in three-dimensional space R3 according to a potential V (x; t), x 2 R3 the spatial coordinate and time t 2 R. In quantum mechanics this is modelled by a wave function (x; t) satisfying R j (x; t)j2 dx = 1 for all R3 time t, and the wave function is interpreted as a probability distribution for each time t. This means that for each time t, the probability that the particle is in the set A ⊂ R3 is given by R 2 A j (x; t)j dx. Similarly, the probability distribution of the momentum for this particle is given by j ^(p; t)j2, where 1 Z ^(p; t) = e−ip·x (x; t) dx p 3 2π R3 is the Fourier transform of the wave function with respect to spatial variable x. (Here we have scaled Planck's constant ~ to 1.) Using the fact that the Fourier transform interchanges differentiation and multiplication the expected value for the momentum can be expressed in terms of a differential operator. The kinetic energy, corresponding to jpj2=2m, at time t of −1 the particle can be expressed as 2m h∆ ; i, where we take the inner product corresponding to the Hilbert space L2(R3) and ∆ is the three-dimensional Laplacian (i.e. with respect to the spatial coordinate x). 1 2 Chapter 1: Introduction The potential energy at time t of the particle is described by hV ; i, so that (total) energy of the particle at time t can be written as −1 E = hH ; i;H = ∆ + V; 2m where we have suppressed the time-dependence. The operator H is known as the energy operator, or as Hamiltonian, or as Schr¨odingeroperator. In case the potential V is independent of time and suitably localised in the spatial coordinate, we can view H as a perturbation of −1 the corresponding free operator H0 = 2m ∆. This can be interpreted that we have a `free' particle scattered by the (time-independent) potential V . The free operator H0 is a well- known operator, and we can ask how its properties transfer to the perturbed operator H. Of course, this will depend on the conditions imposed on the potential V . In Chapter 2 we study this situation in greater detail for the case the spatial dimension is 1, but the general perturbation techniques apply in more general situations as well. In general the potentials for which these results apply are called short-range potentials. In quantum mechanics the time evolution of the wave function is determined by the time- dependent Schr¨odingerequation @ i (x; t) = H (x; t): (1.1.1) @t We want to consider solutions that behave as solutions to the corresponding free time- dependent Schr¨odingerequation, i.e. (1.1.1) with H replaced by H0, for time to 1 or −∞. In case of the spatial dimension being 1 and for a time-independent potential V , we study this situation more closely in Chapter 3. We do this for more general (possibly unbounded) self-adjoint operators acting a Hilbert space. 1 Let us assume that m = 2 , then we can write the solution to the free time-dependent Schr¨odingerequation as Z ip·x −ijpj2t (x; t) = F (p) e e dp; R3 where F (p) denotes the distribution of the momenta at time t = 0 (up to a constant). This ip·x follows easily since the exponentials e are eigenfunctions of H0 = −∆ for the eigenvalue jpj2. For the general case the solution is given by Z −ijpj2t (x; t) = F (p) p(x) e dp; R3 2 ip·x where H p = jpj p and where we can expect p(x) ∼ e if the potential V is sufficiently `nice'. We study this situation more closely in Chapter 4 in case the spatial dimension is one. 1.2 Inverse scattering method As indicated in Section 4.2 we give an explicit relation between the potential q in the Schr¨o- d2 dinger operator − dx2 + q and its scattering data consisting of the reflection and transition Chapter 1: Introduction 3 coefficient R and T . To be specific, in Section 4.2 we discuss the transition q 7! fR; T g, which is called the direct problem, and in Section 4.4 we discuss the transition fR; T g 7! q, the inverse problem. In case we take a time-dependent potential q(x; t), the scattering data also becomes time-dependent. It has been shown that certain non-linear partial differential equations (with respect to t and x) for q imply that the corresponding time evolution of the scattering data R and T is linear! Or, scattering can be used to linearise some non-linear partial differential equations. The basic, and most famous, example is the Korteweg-de Vries equation, KdV-equation for short, qt(x; t) − 6 q(x; t) qx(x; t) + qxxx(x; t) = 0; which was introduced in 1894 in order to model the solitary waves encountered by James Scott Russell in 1834 while riding on horseback along the canal from Edinburgh to Glasgow. Although the Korteweg-de Vries paper \On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves", Philosophical Magazine, 39 (1895), 422{443, is now probably the most cited paper by Dutch mathematicians, the KdV-equation lay dormant for a long time until it was rediscovered by Kruskal and Zabusky in 1965 for the Fermi-Pasta-Ulam problem on finite heat conductivity in solids. Kruskal and Zabusky performed numerical experiments, and found numerical evidence for the solitary waves as observed by Scott Russell, which were named \solitons" by Kruskal and Zabusky. The fundamental discovery made by Gardner, Greene, Kruskal and Miura in 1967 is that if q is a solution to the KdV-equation, then the spectrum of the Schr¨odingerwith time-dependent potential q is independent of time, and moreover, the time evolution for the scattering data, i.e. the reflection and transmission coefficient, is a simple linear differential equation. We discuss this method in Chapter 5. In particular, we discuss some of the soliton solutions. This gave way to a solution method, nowadays called the inverse scattering method, or inverse spectral method, for classes of non-linear partial differential equations. Amongst others, similar methods work for well-known partial differential equations such as the modified 2 KdV-equation qt − 6q qx + qxxx = 0, the sine-Gordon equation qxt = sin q, the non-linear 2 Schr¨odingerequation qt = qxx + jqj q, and many others. Nowadays, there are many families of partial differential equations that can be solved using similar ideas by realising them as conditions for isospectrality of certain linear problem. For the isospectrality we use the method of Lax pairs in Section 5.3. There have been several approaches and extensions to the KdV-equations, notably as integrable systems with infinitely many conserved Poisson-commuting quantities. We refer to [1], [8]. 1.3 Overview The contents of these lecture notes are as follows. In Chapter 6 we collect some results from functional analysis, especially on unbounded self-adjoint operators and the spectral theorem, Fourier analysis, especially related to Sobolev and Hardy spaces.
Recommended publications
  • Discrete-Continuous and Classical-Quantum
    Under consideration for publication in Math. Struct. in Comp. Science Discrete-continuous and classical-quantum T. Paul C.N.R.S., D.M.A., Ecole Normale Sup´erieure Received 21 November 2006 Abstract A discussion concerning the opposition between discretness and continuum in quantum mechanics is presented. In particular this duality is shown to be present not only in the early days of the theory, but remains actual, featuring different aspects of discretization. In particular discreteness of quantum mechanics is a key-stone for quantum information and quantum computation. A conclusion involving a concept of completeness linking dis- creteness and continuum is proposed. 1. Discrete-continuous in the old quantum theory Discretness is obviously a fundamental aspect of Quantum Mechanics. When you send white light, that is a continuous spectrum of colors, on a mono-atomic gas, you get back precise line spectra and only Quantum Mechanics can explain this phenomenon. In fact the birth of quantum physics involves more discretization than discretness : in the famous Max Planck’s paper of 1900, and even more explicitly in the 1905 paper by Einstein about the photo-electric effect, what is really done is what a computer does: an integral is replaced by a discrete sum. And the discretization length is given by the Planck’s constant. This idea will be later on applied by Niels Bohr during the years 1910’s to the atomic model. Already one has to notice that during that time another form of discretization had appeared : the atomic model. It is astonishing to notice how long it took to accept the atomic hypothesis (Perrin 1905).
    [Show full text]
  • Solving the Quantum Scattering Problem for Systems of Two and Three Charged Particles
    Solving the quantum scattering problem for systems of two and three charged particles Solving the quantum scattering problem for systems of two and three charged particles Mikhail Volkov c Mikhail Volkov, Stockholm 2011 ISBN 978-91-7447-213-4 Printed in Sweden by Universitetsservice US-AB, Stockholm 2011 Distributor: Department of Physics, Stockholm University In memory of Professor Valentin Ostrovsky Abstract A rigorous formalism for solving the Coulomb scattering problem is presented in this thesis. The approach is based on splitting the interaction potential into a finite-range part and a long-range tail part. In this representation the scattering problem can be reformulated to one which is suitable for applying exterior complex scaling. The scaled problem has zero boundary conditions at infinity and can be implemented numerically for finding scattering amplitudes. The systems under consideration may consist of two or three charged particles. The technique presented in this thesis is first developed for the case of a two body single channel Coulomb scattering problem. The method is mathe- matically validated for the partial wave formulation of the scattering problem. Integral and local representations for the partial wave scattering amplitudes have been derived. The partial wave results are summed up to obtain the scat- tering amplitude for the three dimensional scattering problem. The approach is generalized to allow the two body multichannel scattering problem to be solved. The theoretical results are illustrated with numerical calculations for a number of models. Finally, the potential splitting technique is further developed and validated for the three body Coulomb scattering problem. It is shown that only a part of the total interaction potential should be split to obtain the inhomogeneous equation required such that the method of exterior complex scaling can be applied.
    [Show full text]
  • A 2-Ghz Discrete-Spectrum Waveband-Division Microscopic Imaging System
    Optics Communications 338 (2015) 22–26 Contents lists available at ScienceDirect Optics Communications journal homepage: www.elsevier.com/locate/optcom A 2-GHz discrete-spectrum waveband-division microscopic imaging system Fangjian Xing, Hongwei Chen n, Cheng Lei, Minghua Chen, Sigang Yang, Shizhong Xie Tsinghua National Laboratory for Information Science and Technology (TNList), Department of Electronic Engineering, Tsinghua University, Beijing 100084, P.R. China article info abstract Article history: Limited by dispersion-induced pulse overlap, the frame rate of serial time-encoded amplified microscopy Received 26 June 2014 is confined to the megahertz range. Replacing the ultra-short mode-locked pulse laser by a multi-wa- Received in revised form velength source, based on waveband-division technique, a serial time stretch microscopic imaging sys- 1 September 2014 tem with a line scan rate of in the gigahertz range is proposed and experimentally demonstrated. In this Accepted 4 September 2014 study, we present a surface scanning imaging system with a record line scan rate of 2 GHz and 15 pixels. Available online 22 October 2014 Using a rectangular spectrum and a sufficiently large wavelength spacing for waveband-division, the Keywords: resulting 2D image is achieved with good quality. Such a superfast imaging system increases the single- Real-time imaging shot temporal resolution towards the sub-nanosecond regime. Ultrafast & 2014 Elsevier B.V. All rights reserved. Discrete spectrum Wavelength-to-space-to-time mapping GHz imaging 1. Introduction elements with a broadband mode-locked laser to achieve ultrafast single pixel imaging. An important feature of STEAM is the spec- Most of the current research in optical microscopic imaging trum of the broadband laser source.
    [Show full text]
  • Zero-Point Energy of Ultracold Atoms
    Zero-point energy of ultracold atoms Luca Salasnich1,2 and Flavio Toigo1 1Dipartimento di Fisica e Astronomia “Galileo Galilei” and CNISM, Universit`adi Padova, via Marzolo 8, 35131 Padova, Italy 2CNR-INO, via Nello Carrara, 1 - 50019 Sesto Fiorentino, Italy Abstract We analyze the divergent zero-point energy of a dilute and ultracold gas of atoms in D spatial dimensions. For bosonic atoms we explicitly show how to regularize this divergent contribution, which appears in the Gaussian fluctuations of the functional integration, by using three different regular- ization approaches: dimensional regularization, momentum-cutoff regular- ization and convergence-factor regularization. In the case of the ideal Bose gas the divergent zero-point fluctuations are completely removed, while in the case of the interacting Bose gas these zero-point fluctuations give rise to a finite correction to the equation of state. The final convergent equa- tion of state is independent of the regularization procedure but depends on the dimensionality of the system and the two-dimensional case is highly nontrivial. We also discuss very recent theoretical results on the divergent zero-point energy of the D-dimensional superfluid Fermi gas in the BCS- BEC crossover. In this case the zero-point energy is due to both fermionic single-particle excitations and bosonic collective excitations, and its regu- larization gives remarkable analytical results in the BEC regime of compos- ite bosons. We compare the beyond-mean-field equations of state of both bosons and fermions with relevant experimental data on dilute and ultra- cold atoms quantitatively confirming the contribution of zero-point-energy quantum fluctuations to the thermodynamics of ultracold atoms at very low temperatures.
    [Show full text]
  • Discrete Variable Representations and Sudden Models in Quantum
    Volume 89. number 6 CHLMICAL PHYSICS LEITERS 9 July 1981 DISCRETEVARlABLE REPRESENTATIONS AND SUDDEN MODELS IN QUANTUM SCATTERING THEORY * J.V. LILL, G.A. PARKER * and J.C. LIGHT l7re JarrresFranc/t insrihrre and The Depwrmcnr ofC7temtsrry. Tire llm~crsrry of Chrcago. Otrcago. l7lrrrors60637. USA Received 26 September 1981;m fin11 form 29 May 1982 An c\act fOrmhSm In which rhe scarrcnng problem may be descnbcd by smsor coupled cqumons hbclcd CIIIW bb bans iuncltons or quadrature pomts ISpresented USCof each frame and the srnrplyculuatcd unitary wmsformatlon which connects them resulis III an cfliclcnt procedure ror pcrrormrnpqu~nrum scxrcrrn~ ca~cubr~ons TWO ~ppro~mac~~~ arc compxcd wrh ihe IOS. 1. Introduction “ergenvalue-like” expressions, rcspcctnely. In each case the potential is represented by the potcntud Quantum-mechamcal scattering calculations are function Itself evahrated at a set of pomts. most often performed in the close-coupled representa- Whjle these models have been shown to be cffcc- tion (CCR) in which the internal degrees of freedom tive III many problems,there are numerousambiguities are expanded in an appropnate set of basis functions in their apphcation,especially wtth regardto the resulting in a set of coupled diiierentral equations UI choice of constants. Further, some models possess the scattering distance R [ 1,2] _The method is exact formal difficulties such as loss of time reversal sym- IO w&in a truncation error and convergence is ob- metry, non-physical coupling, and non-conservation tained by increasing the size of the basis and hence the of energy and momentum [ 1S-191. In fact, it has number of coupled equations (NJ While considerable never been demonstrated that sudden models fit into progress has been madein the developmentof efficient any exactframework for solutionof the scattering algonthmsfor the solunonof theseequations [3-71, problem.
    [Show full text]
  • The S-Matrix Formulation of Quantum Statistical Mechanics, with Application to Cold Quantum Gas
    THE S-MATRIX FORMULATION OF QUANTUM STATISTICAL MECHANICS, WITH APPLICATION TO COLD QUANTUM GAS A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Pye Ton How August 2011 c 2011 Pye Ton How ALL RIGHTS RESERVED THE S-MATRIX FORMULATION OF QUANTUM STATISTICAL MECHANICS, WITH APPLICATION TO COLD QUANTUM GAS Pye Ton How, Ph.D. Cornell University 2011 A novel formalism of quantum statistical mechanics, based on the zero-temperature S-matrix of the quantum system, is presented in this thesis. In our new formalism, the lowest order approximation (“two-body approximation”) corresponds to the ex- act resummation of all binary collision terms, and can be expressed as an integral equation reminiscent of the thermodynamic Bethe Ansatz (TBA). Two applica- tions of this formalism are explored: the critical point of a weakly-interacting Bose gas in two dimensions, and the scaling behavior of quantum gases at the unitary limit in two and three spatial dimensions. We found that a weakly-interacting 2D Bose gas undergoes a superfluid transition at T 2πn/[m log(2π/mg)], where n c ≈ is the number density, m the mass of a particle, and g the coupling. In the unitary limit where the coupling g diverges, the two-body kernel of our integral equation has simple forms in both two and three spatial dimensions, and we were able to solve the integral equation numerically. Various scaling functions in the unitary limit are defined (as functions of µ/T ) and computed from the numerical solutions.
    [Show full text]
  • (2021) Transmon in a Semi-Infinite High-Impedance Transmission Line
    PHYSICAL REVIEW RESEARCH 3, 023003 (2021) Transmon in a semi-infinite high-impedance transmission line: Appearance of cavity modes and Rabi oscillations E. Wiegand ,1,* B. Rousseaux ,2 and G. Johansson 1 1Applied Quantum Physics Laboratory, Department of Microtechnology and Nanoscience-MC2, Chalmers University of Technology, 412 96 Göteborg, Sweden 2Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France (Received 8 December 2020; accepted 11 March 2021; published 1 April 2021) In this paper, we investigate the dynamics of a single superconducting artificial atom capacitively coupled to a transmission line with a characteristic impedance comparable to or larger than the quantum resistance. In this regime, microwaves are reflected from the atom also at frequencies far from the atom’s transition frequency. Adding a single mirror in the transmission line then creates cavity modes between the atom and the mirror. Investigating the spontaneous emission from the atom, we then find Rabi oscillations, where the energy oscillates between the atom and one of the cavity modes. DOI: 10.1103/PhysRevResearch.3.023003 I. INTRODUCTION [43]. Furthermore, high-impedance resonators make it pos- sible for light-matter interaction to reach strong-coupling In the past two decades, circuit quantum electrodynamics regimes due to strong coupling to vacuum fluctuations [44]. (circuit QED) has become a field of growing interest for quan- In this article, we investigate the spontaneous emission tum information processing and also to realize new regimes of a transmon [45] capacitively coupled to a 1D TL that is in quantum optics [1–11].
    [Show full text]
  • 3 Scattering Theory
    3 Scattering theory In order to find the cross sections for reactions in terms of the interactions between the reacting nuclei, we have to solve the Schr¨odinger equation for the wave function of quantum mechanics. Scattering theory tells us how to find these wave functions for the positive (scattering) energies that are needed. We start with the simplest case of finite spherical real potentials between two interacting nuclei in section 3.1, and use a partial wave anal- ysis to derive expressions for the elastic scattering cross sections. We then progressively generalise the analysis to allow for long-ranged Coulomb po- tentials, and also complex-valued optical potentials. Section 3.2 presents the quantum mechanical methods to handle multiple kinds of reaction outcomes, each outcome being described by its own set of partial-wave channels, and section 3.3 then describes how multi-channel methods may be reformulated using integral expressions instead of sets of coupled differential equations. We end the chapter by showing in section 3.4 how the Pauli Principle re- quires us to describe sets identical particles, and by showing in section 3.5 how Maxwell’s equations for electromagnetic field may, in the one-photon approximation, be combined with the Schr¨odinger equation for the nucle- ons. Then we can describe photo-nuclear reactions such as photo-capture and disintegration in a uniform framework. 3.1 Elastic scattering from spherical potentials When the potential between two interacting nuclei does not depend on their relative orientiation, we say that this potential is spherical. In that case, the only reaction that can occur is elastic scattering, which we now proceed to calculate using the method of expansion in partial waves.
    [Show full text]
  • Improving Frequency Resolution of Discrete Spectra
    AGH University of Science and Technology, Kraków, Poland Faculty of Electrical Engineering, Automatics, Computer Science and Electronics Marek GĄSIOR Improving Frequency Resolution of Discrete Spectra A doctoral dissertation done under guidance of Professor Mariusz ZIÓŁKO Kraków 2006 - II - Marek Gąsior, Improving frequency resolution of discrete spectra Akademia Górniczo-Hutnicza w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Marek GĄSIOR Poprawa rozdzielczości częstotliwościowej widm dyskretnych Rozprawa doktorska wykonana pod kierunkiem prof. dra hab. inż. Mariusza ZIÓŁKO Kraków 2006 Marek Gąsior, Improving frequency resolution of discrete spectra - III - - IV - Marek Gąsior, Improving frequency resolution of discrete spectra To my Parents Moim Rodzicom Acknowledgements I would like to thank all those who influenced this work. They were in particular the Promotor, Professor Mariusz Ziółko, who also triggered my interest in digital signal processing already during mastership studies; my CERN colleagues, especially Jeroen Belleman and José Luis González, from whose experience I profited so much. I am also indebted to Jean Pierre Potier, Uli Raich and Rhodri Jones for supporting these studies. Separately I would like to thank my wife Agata for her patience, understanding and sacrifice without which this work would never have been done, as well as my parents, Krystyna and Jan, for my education. To them I dedicate this doctoral dissertation. Podziękowania Pragnę podziękować wszystkim, którzy mieli wpływ na kształt niniejszej pracy. W szczególności byli to Promotor, Pan profesor Mariusz Ziółko, który także zaszczepił u mnie zainteresowanie cyfrowym przetwarzaniem sygnałów jeszcze w czasie studiów magisterskich; moi koledzy z CERNu, przede wszystkim Jeroen Belleman i José Luis González, z których doświadczenia skorzystałem tak wiele.
    [Show full text]
  • Path Integral in Quantum Field Theory Alexander Belyaev (Course Based on Lectures by Steven King) Contents
    Path Integral in Quantum Field Theory Alexander Belyaev (course based on Lectures by Steven King) Contents 1 Preliminaries 5 1.1 Review of Classical Mechanics of Finite System . 5 1.2 Review of Non-Relativistic Quantum Mechanics . 7 1.3 Relativistic Quantum Mechanics . 14 1.3.1 Relativistic Conventions and Notation . 14 1.3.2 TheKlein-GordonEquation . 15 1.4 ProblemsSet1 ........................... 18 2 The Klein-Gordon Field 19 2.1 Introduction............................. 19 2.2 ClassicalScalarFieldTheory . 20 2.3 QuantumScalarFieldTheory . 28 2.4 ProblemsSet2 ........................... 35 3 Interacting Klein-Gordon Fields 37 3.1 Introduction............................. 37 3.2 PerturbationandScatteringTheory. 37 3.3 TheInteractionHamiltonian. 43 3.4 Example: K π+π− ....................... 45 S → 3.5 Wick’s Theorem, Feynman Propagator, Feynman Diagrams . .. 47 3.6 TheLSZReductionFormula. 52 3.7 ProblemsSet3 ........................... 58 4 Transition Rates and Cross-Sections 61 4.1 TransitionRates .......................... 61 4.2 TheNumberofFinalStates . 63 4.3 Lorentz Invariant Phase Space (LIPS) . 63 4.4 CrossSections............................ 64 4.5 Two-bodyScattering . 65 4.6 DecayRates............................. 66 4.7 OpticalTheorem .......................... 66 4.8 ProblemsSet4 ........................... 68 1 2 CONTENTS 5 Path Integrals in Quantum Mechanics 69 5.1 Introduction............................. 69 5.2 The Point to Point Transition Amplitude . 70 5.3 ImaginaryTime........................... 74 5.4 Transition Amplitudes With an External Driving Force . ... 77 5.5 Expectation Values of Heisenberg Position Operators . .... 81 5.6 Appendix .............................. 83 5.6.1 GaussianIntegration . 83 5.6.2 Functionals ......................... 85 5.7 ProblemsSet5 ........................... 87 6 Path Integral Quantisation of the Klein-Gordon Field 89 6.1 Introduction............................. 89 6.2 TheFeynmanPropagator(again) . 91 6.3 Green’s Functions in Free Field Theory .
    [Show full text]
  • Path-Integral Formulation of Scattering Theory
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Paul Finkler Papers Research Papers in Physics and Astronomy 10-15-1975 Path-integral formulation of scattering theory Paul Finkler University of Nebraska-Lincoln, [email protected] C. Edward Jones University of Nebraska-Lincoln M. Misheloff University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/physicsfinkler Part of the Physics Commons Finkler, Paul; Jones, C. Edward; and Misheloff, M., "Path-integral formulation of scattering theory" (1975). Paul Finkler Papers. 11. https://digitalcommons.unl.edu/physicsfinkler/11 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Paul Finkler Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. PHYSIC AL REVIE% D VOLUME 12, NUMBER 8 15 OCTOBER 1975 Path-integral formulation of scattering theory W. B. Campbell~~ Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 P. Finkler, C. E. Jones, ~ and M. N. Misheloff Behlen Laboratory of Physics, University of Nebraska, Lincoln, Nebraska 68508 (Received 14 July 1975} A new formulation of nonrelativistic scattering theory is developed which expresses the S matrix as a path integral. This formulation appears to have at least two advantages: (1) A closed formula is obtained for the 8 matrix in terms of the potential, not involving a series expansion; (2) the energy-conserving 8 function can be explicitly extracted using a technique analogous to that of Faddeev and Popov, thereby yielding a closed path- integral expression for the T matrix.
    [Show full text]
  • Relativistic Dynamics for Spin-Zero and Spin-Half Particles
    Pramana- J. Phys., Vol. 27, No. 6, December 1986, pp. 731-745. © Printed in India. Relativistic dynamics for spin-zero and spin-half particles J THAKUR Department of Physics, Patna University, Patna 800005, India MS received 17 May 1986; revised 28 August 1986 Abstract. The classical and quantum mechanics of a system o f directly interacting relativistic particles is discussed. We first discuss the spin-zero case, where we basically follow Rohrlich in introducing a set of covariant centre of mass (CM) and relative variables. The relation of these to the classic formulation of Bakamjian and Thomas is also discussed. We also discuss the important case of relativistic potentials which may depend on total four-momentum squared. We then consider the quantum mechanical case of spin-half particles. The negative energy difficulty is solved by introducing a number of first class constraints which fix the spinor structure of physical solutions and ensure the existence of proper CM and relative variables. We derive the form of interactions consistent with Lorentz invariance, space inversion, time reversal and charge conjugation and with the above mentioned first class constraints and find that it is analogous to that for the non-relativistic case. Finally the relationship of the present work with some previous work is briefly discussed. Keywords. Direct interactions; spin zero; spin half; covariant centre of mass; first class constraints. PACS Nos 03-20;, 03-65; 11-30 1. Introduction There has been considerable progress recently in formulating a Hamiltonian theory of directly interacting relativistic particles. By direct interaction we mean an interaction between particles which does not require, for its description, the aid of an intervening field.
    [Show full text]