Matematica Raccolta Di Vari Argomenti Matematici
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CC Geometry H
CC Geometry H Aim #8: How do we find perimeter and area of polygons in the Cartesian Plane? Do Now: Find the area of the triangle below using decomposition and then using the shoelace formula (also known as Green's theorem). 1) Given rectangle ABCD, a. Identify the vertices. b. Find the exact perimeter. c. Find the area using the area formula. d. List the vertices starting with A moving counterclockwise and apply the shoelace formula. Does the method work for quadrilaterals? 2) Calculate the area using the shoelace formula and then find the perimeter (nearest hundredth). 3) Find the perimeter (to the nearest hundredth) and the area of the quadrilateral with vertices A(-3,4), B(4,6), C(2,-3), and D(-4,-4). 4) A textbook has a picture of a triangle with vertices (3,6) and (5,2). Something happened in printing the book and the coordinates of the third vertex are listed as (-1, ). The answers in the back of the book give the area of the triangle as 6 square units. What is the y-coordinate of this missing vertex? 5) Find the area of the pentagon with vertices A(5,8), B(4,-3), C(-1,-2), D(-2,4), and E(2,6). 6) Show that the shoelace formula used on the trapezoid shown confirms the traditional formula for the area of a trapezoid: 1 (b1 + b2)h 2 D (x3,y) C (x2,y) A B (x ,0) (0,0) 1 7) Find the area and perimeter (exact and nearest hundredth) of the hexagon shown. -
Estimado Profesor
México, D.F., a 15 de abril de 2016 CURRICULUM VITAE Nombre: RICARDO LÓPEZ BAUTISTA Departamento de Adscripción: CIENCIAS BASICAS, Profesor titular "A", tiempo Completo, definitivo en UAM-Azcapotzalco Correo electrónico: [email protected] Formación Profesional: DOCTOR EN CIENCIAS en la especialidad de Matemáticas por el Centro de Investigación y de Estudios Avanzados del I.P.N. (CINVESTAV) con Mención Honorífica. ESTANCIA POSTDOCTORAL Departamento de Matemáticas de la Ohio StateUniversity (USA). 2000 Líneas de investigación: 1) EVALUACIÓN EN LINEA y GENERACIÓN AUTOMATIZADA DE MILLONES DE REACTIVOS CON RETROALIMENTACION AUTOMATICA, PARA BANCOS DE EXÁMENES EN MATEMÁTICAS. a. Experto en plataforma MOODLE- LCMS (Learning Content Management System) b. Programador en diversos CAS (Computer Algebraic System) Axiom, Mathematica, Maple, Mathlab, Geogebra, Magma, SageMath, Maxima, SymPy, Xcas, Yacas, Pari-GP, Octave, GAP, CoCoA, Algebrator, MathCad 2) TEORIA ALGEBRAICA DE NUMEROS, FACTORIZACION DE ENTEROS, SEGURIDAD ELECTRONICA 3) SISTEMAS ALGEBRAICOS COMPUTACIONALES (CAS). a. INVESTIGACIÓN Y APLICACIONES DE CAS EN TEORÍA DE NÚMEROS. b. INVESTIGACIÓN Y APLICACIONES DE CAS EN MODELOS MIXTOS PARA LA EDUCACIÓN Y EVALUACIÓN EN MATEMÁTICAS 4) TECNOMATEMÁTICA EDUCATIVA EN MODELOS PRESENCIALES, NO PRESENCIALES Y MIXTOS. SISTEMAS ALGEBRAICOS COMPUTACIONALES EN LA EDUCACION Y EVALUACION EN MATEMÁTICAS. a. Portales activos para la comunidad en UAM-A: http://galois.azc.uam.mx http://evaluacionenlinea.azc.uam.mx http://matematicas.azc.uam.mx Proyecto CONACyT: Evaluación del aprendizaje en Matemáticas y propuesta de evaluaciones automáticas en línea. Aprobado en 2012, por concluir. 1 Formación de recursos humanos: Tesis de alumna de maestría: Jurado en examen doctoral. Uam Proyectos Terminales en Maestría en Ciencias de la Iztapalapa. -
Lesson 11: Perimeters and Areas of Polygonal Regions Defined by Systems of Inequalities
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 11 M4 GEOMETRY Lesson 11: Perimeters and Areas of Polygonal Regions Defined by Systems of Inequalities Student Outcomes . Students find the perimeter of a triangle or quadrilateral in the coordinate plane given a description by inequalities. Students find the area of a triangle or quadrilateral in the coordinate plane given a description by inequalities by employing Green’s theorem. Lesson Notes In previous lessons, students found the area of polygons in the plane using the “shoelace” method. In this lesson, we give a name to this method—Green’s theorem. Students will draw polygons described by a system of inequalities, find the perimeter of the polygon, and use Green’s theorem to find the area. Classwork Opening Exercises (5 minutes) The opening exercises are designed to review key concepts of graphing inequalities. The teacher should assign them independently and circulate to assess understanding. Opening Exercises Graph the following: a. b. Lesson 11: Perimeters and Areas of Polygonal Regions Defined by Systems of Inequalities 135 Date: 8/28/14 This work is licensed under a © 2014 Common Core, Inc. Some rights reserved. commoncore.org Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 11 M4 GEOMETRY d. c. Example 1 (10 minutes) Example 1 A parallelogram with base of length and height can be situated in the coordinate plane as shown. Verify that the shoelace formula gives the area of the parallelogram as . What is the area of a parallelogram? Base height . The distance from the -axis to the top left vertex is some number . -
Lesson 10: Perimeter and Area of Polygonal Regions in the Cartesian Plane
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 10 M4 GEOMETRY Lesson 10: Perimeter and Area of Polygonal Regions in the Cartesian Plane Student Outcomes . Students find the perimeter of a quadrilateral in the coordinate plane given its vertices and edges. Students find the area of a quadrilateral in the coordinate plane given its vertices and edges by employing Green’s theorem. Classwork Opening Exercise (5 minutes) Scaffolding: . Give students time to The Opening Exercise allows students to practice the shoelace method of finding the area struggle with these of a triangle in preparation for today’s lesson. Have students complete the exercise questions. Add more individually, and then compare their work with a neighbor’s. Pull the class back together questions as necessary to for a final check and discussion. scaffold for struggling If students are struggling with the shoelace method, they can use decomposition. students. Consider providing students with pre-graphed Opening Exercise quadrilaterals with axes on Find the area of the triangle given. Compare your answer and method to your neighbor’s, and grid lines. discuss differences. Go from concrete to abstract by starting with finding the area by decomposition, then translating one vertex to the origin, and then using the shoelace formula. Post the shoelace diagram and formula from Lesson 9. Shoelace Formula Decomposition Coordinates: 푨(−ퟑ, ퟐ), 푩(ퟐ, −ퟏ), 푪(ퟑ, ퟏ) Area of Rectangle: ퟔ units ⋅ ퟑ units = ퟏퟖ square Area Calculation: units ퟏ Area of Left Rectangle: ퟕ. ퟓ square units ((−ퟑ) ∙ (−ퟏ) + ퟐ ∙ ퟏ + ퟑ ∙ ퟐ − ퟐ ∙ ퟐ − (−ퟏ) ∙ ퟑ − ퟏ ∙ (−ퟑ)) ퟐ Area of Bottom Right Triangle: ퟏ square unit Area: ퟔ. -
1 Introduction 2 Problems Without the Formula
DG Kim Spokane Math Circle The Shoelace Theorem March 3rd 1 Introduction The Shoelace Theorem is a nifty formula for finding the area of a polygon given the coordinates of its vertices. In this lecture, we'll explore the Shoelace Theorem and its applications. 2 Problems without the Formula Find the areas of the following shapes: 1 DG Kim Spokane Math Circle The Shoelace Theorem March 3rd 3 Answers to Exercises 1. 4 × 4 = 16 2. 1=2 × 6 × 2 = 6 3. 6 × 4 − 1=2 × 4 × 4 = 24 − 8 = 16 4. 4 × 6 − 1=2 × 4 × 1 − 1=2 × 4 × 2 = 24 − 2 − 4 = 18 5. 8 × 3 − 1=2 × 8 × 1 = 24 − 4 = 20 4 The Cartesian Plane One quick note that you should know is about the Cartesian Plane. Cartesian Planes are in an (x; y) format. The first number in a Cartesian point is the number of spaces it goes horizontally, and the second number is the number of spaces it goes vertically. You should be able to find the Cartesian coordinates in all the diagrams that were provided earlier. 5 The Shoelace Formula! n−1 n−1 1 X X A = x y + x y − x y − x y 2 i i+1 n 1 i+1 i 1 n i=1 i=1 Okay, so this looks complicated, but now we'll look at why the shoelace formula got its name. 2 DG Kim Spokane Math Circle The Shoelace Theorem March 3rd The reason this formula is called the shoelace formula is because of the method used to find it. -
Constructing a Computer Algebra System Capable of Generating Pedagogical Step-By-Step Solutions
DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2016 Constructing a Computer Algebra System Capable of Generating Pedagogical Step-by-Step Solutions DMITRIJ LIOUBARTSEV KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF COMPUTER SCIENCE AND COMMUNICATION Constructing a Computer Algebra System Capable of Generating Pedagogical Step-by-Step Solutions DMITRIJ LIOUBARTSEV Examenrapport vid NADA Handledare: Mårten Björkman Examinator: Olof Bälter Abstract For the problem of producing pedagogical step-by-step so- lutions to mathematical problems in education, standard methods and algorithms used in construction of computer algebra systems are often not suitable. A method of us- ing rules to manipulate mathematical expressions in small steps is suggested and implemented. The problem of creat- ing a step-by-step solution by choosing which rule to apply and when to do it is redefined as a graph search problem and variations of the A* algorithm are used to solve it. It is all put together into one prototype solver that was evalu- ated in a study. The study was a questionnaire distributed among high school students. The results showed that while the solutions were not as good as human-made ones, they were competent. Further improvements of the method are suggested that would probably lead to better solutions. Referat Konstruktion av ett datoralgebrasystem kapabelt att generera pedagogiska steg-för-steg-lösningar För problemet att producera pedagogiska steg-för-steg lös- ningar till matematiska problem inom utbildning, är vanli- ga metoder och algoritmer som används i konstruktion av datoralgebrasystem ofta inte lämpliga. En metod som an- vänder regler för att manipulera matematiska uttryck i små steg föreslås och implementeras. -
Areas and Shapes of Planar Irregular Polygons
Forum Geometricorum b Volume 18 (2018) 17–36. b b FORUM GEOM ISSN 1534-1178 Areas and Shapes of Planar Irregular Polygons C. E. Garza-Hume, Maricarmen C. Jorge, and Arturo Olvera Abstract. We study analytically and numerically the possible shapes and areas of planar irregular polygons with prescribed side-lengths. We give an algorithm and a computer program to construct the cyclic configuration with its circum- circle and hence the maximum possible area. We study quadrilaterals with a self-intersection and prove that not all area minimizers are cyclic. We classify quadrilaterals into four classes related to the possibility of reversing orientation by deforming continuously. We study the possible shapes of polygons with pre- scribed side-lengths and prescribed area. In this paper we carry out an analytical and numerical study of the possible shapes and areas of general planar irregular polygons with prescribed side-lengths. We explain a way to construct the shape with maximum area, which is known to be the cyclic configuration. We write a transcendental equation whose root is the radius of the circumcircle and give an algorithm to compute the root. We provide an algorithm and a corresponding computer program that actually computes the circumcircle and draws the shape with maximum area, which can then be deformed as needed. We study quadrilaterals with a self-intersection, which are the ones that achieve minimum area and we prove that area minimizers are not necessarily cyclic, as mentioned in the literature ([4]). We also study the possible shapes of polygons with prescribed side-lengths and prescribed area. -
Lesson 10: Perimeter and Area of Polygonal Regions in the Cartesian Plane
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 10 M4 GEOMETRY Lesson 10: Perimeter and Area of Polygonal Regions in the Cartesian Plane Student Outcomes . Students find the perimeter of a quadrilateral in the coordinate plane given its vertices and edges. Students find the area of a quadrilateral in the coordinate plane given its vertices and edges by employing Green’s theorem. Classwork Scaffolding: Opening Exercise (5 minutes) . Give students time to The Opening Exercise allows students to practice the shoelace method of finding the area struggle with these of a triangle in preparation for today’s lesson. Have students complete the exercise questions. Add more individually, and then compare their work with a neighbor’s. Pull the class back together questions as necessary to for a final check and discussion. scaffold for struggling If students are struggling with the shoelace method, they can use decomposition. students. Consider providing students with pre-graphed Opening Exercise quadrilaterals with axes on Find the area of the triangle given. Compare your answer and method to your neighbor’s and grid-lines. discuss differences. Go from concrete to abstract by starting with finding the area by decomposition, then translating one vertex to the origin, then using the shoelace formula. Post shoelace diagram and formula from Lesson 9. Shoelace Formula Decomposition Coordinates: Area of Rectangle: square units Area Calculation: Area of Left Rectangle: square units Area of Bottom Right Triangle: square unit ( ) Area of Top Right Triangle: square units Area: square units Area of Shaded Triangle: square units Lesson 10: Perimeter and Area of Polygonal Regions in the Cartesian Plane Date: 124 This work is licensed under a © 2014 Common Core, Inc. -
A Meta-Analysis of the Past Decade of Mathematics Learning Based on the Computer Algebra System (CAS)
Journal of Physics: Conference Series PAPER • OPEN ACCESS A Meta-Analysis of the Past Decade of Mathematics Learning Based on the Computer Algebra System (CAS) To cite this article: M Tamur et al 2021 J. Phys.: Conf. Ser. 1882 012060 View the article online for updates and enhancements. This content was downloaded from IP address 170.106.33.14 on 23/09/2021 at 10:32 SEA-STEM 2020 IOP Publishing Journal of Physics: Conference Series 1882 (2021) 012060 doi:10.1088/1742-6596/1882/1/012060 A Meta-Analysis of the Past Decade of Mathematics Learning Based on the Computer Algebra System (CAS) M Tamur1,4, Y S Ksumah2, D Juandi2, V S Kurnila1, E Jehadus1 and A O Samura3 1Universitas Katolik Indonesia Santu Paulus Ruteng, Ruteng, Indonesia 2Universitas Pendidikan Indonesia, Bandung, Indonesia 3Institut Agama Islam Negeri Ternate, Ternate, Indonesia E-mail: [email protected] Abstract. Hundreds of studies have been found in the literature on mathematics learning supported by the use of the computer algebra system (CAS). However, there are numerous reports with mixed and even contradictory findings. This has the potential to lead to errors in concluding. This meta-analysis study was conducted to test the overall effect size (ES) of CAS-based mathematics learning. This study also aims to analyze the level of variation in individual studies and consider its implications. The ERIC, SAGE, SpringerLink, and Google Scholar databases were examined to achieve relevant research. The search results found 136 related journal articles published between 2010 and 2020. As per the study protocol, 31 articles were eligible, and 36 ES were analyzed. -
An Approach to Teach Calculus/Mathematical Analysis (For
Sandra Isabel Cardoso Gaspar Martins Mestre em Matemática Aplicada An approach to teach Calculus/Mathematical Analysis (for engineering students) using computers and active learning – its conception, development of materials and evaluation Dissertação para obtenção do Grau de Doutor em Ciências da Educação Orientador: Vitor Duarte Teodoro, Professor Auxiliar, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Co-orientador: Tiago Charters de Azevedo, Professor Adjunto, Instituto Superior de Engenharia de Lisboa do Instituto Politécnico de Lisboa Júri: Presidente: Prof. Doutor Fernando José Pires Santana Arguentes: Prof. Doutor Jorge António de Carvalho Sousa Valadares Prof. Doutor Jaime Maria Monteiro de Carvalho e Silva Vogais: Prof. Doutor Carlos Francisco Mafra Ceia Prof. Doutor Francisco José Brito Peixoto Prof. Doutor António Manuel Dias Domingos Prof. Doutor Vítor Manuel Neves Duarte Teodoro Prof. Doutor Tiago Gorjão Clara Charters de Azevedo Janeiro 2013 ii Título: An approach to teach Calculus/Mathematical Analysis (for engineering students) using computers and active learning – its conception, development of materials and evaluation 2012, Sandra Gaspar Martins (Autora), Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa e Universidade Nova de Lisboa A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa tem o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. -
And Generalization of Shoelace Algorithm Usage in Convex Polygon
A new approach (extra vertex) and generalization of Shoelace Algorithm usage in convex polygon (Point-in-Polygon) Rakhmanov Ochilbek Department of Computer Science Nile University of Nigeria Abuja, Nigeria [email protected] Abstract- In this paper we aim to bring new approach into Of course, the shape of polygon is also important in usage of Shoelace Algorithm for area calculation in convex application of those methods. Some will show high polygons on Cartesian coordinate system, with concentration efficiency only for convex polygons, but may not do same on point in polygon concept. Generalization of usage of the for concave polygons. While others can deal with concave concept will be proposed for line segment and polygons. polygons, but time complexity may increase. Testing of new method will be done using Python language. Results of tests show that the new approach is more effective This paper aims to bring a new approach to “Sum of than the current one. area” method in a way of calculation and coding. Generalization of usage of this method will be proposed as Keywords— Shoelace Algorithm, Point in polygon, Area of well. Python will be used as a medium for tests. polygon, Python The well-known shoelace algorithm (shoelace formula) is used to calculate the area related problems in polygons. The I. INTRODUCTION algorithm is called so, since it looks like a shoelace during Point-in-polygon (PiP) is one of the fundamental cross product calculation of matrix. It was proposed by operations of Geographic Information Systems. Yet, Gauss, in 1795 [2]. The basic idea be-hind the algorithm is to nowadays this concept is also getting big attention in divide the polygon into triangles and calculate sum of area of graphical programming, mobile game programming, and all formed triangles. -
Lesson 11: Perimeters and Areas of Polygonal Regions Defined by Systems of Inequalities
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 11 M4 GEOMETRY Lesson 11: Perimeters and Areas of Polygonal Regions Defined by Systems of Inequalities Student Outcomes . Students find the perimeter of a triangle or quadrilateral in the coordinate plane given a description by inequalities. Students find the area of a triangle or quadrilateral in the coordinate plane given a description by inequalities by employing Green’s theorem. Lesson Notes In previous lessons, students found the area of polygons in the plane using the “shoelace” method. In this lesson, the method is given a name—Green’s theorem. Students draw polygons described by a system of inequalities, find the perimeter of the polygon, and use Green’s theorem to find the area. Classwork Opening Exercise (5 minutes) The opening exercises are designed to review key concepts of graphing inequalities. The teacher should assign them independently and circulate to assess understanding. Opening Exercise Graph the following: a. 풚 ≤ ퟕ b. 풙 > −ퟑ Lesson 11: Perimeters and Areas of Polygonal Regions Defined by Systems of Inequalities 135 This work is licensed under a This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. This file derived from GEO-M4-TE-1.3.0 -09.2015 NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 11 M4 GEOMETRY ퟏ ퟐ 풚 < 풙 − ퟒ d. 풚 ≥ − 풙 + ퟓ c. ퟐ ퟑ Example 1 (10 minutes) Example 1 A parallelogram with base of length 풃 and height 풉 can be situated in the coordinate plane, as shown.