Areas and Shapes of Planar Irregular Polygons

Total Page:16

File Type:pdf, Size:1020Kb

Areas and Shapes of Planar Irregular Polygons Forum Geometricorum b Volume 18 (2018) 17–36. b b FORUM GEOM ISSN 1534-1178 Areas and Shapes of Planar Irregular Polygons C. E. Garza-Hume, Maricarmen C. Jorge, and Arturo Olvera Abstract. We study analytically and numerically the possible shapes and areas of planar irregular polygons with prescribed side-lengths. We give an algorithm and a computer program to construct the cyclic configuration with its circum- circle and hence the maximum possible area. We study quadrilaterals with a self-intersection and prove that not all area minimizers are cyclic. We classify quadrilaterals into four classes related to the possibility of reversing orientation by deforming continuously. We study the possible shapes of polygons with pre- scribed side-lengths and prescribed area. In this paper we carry out an analytical and numerical study of the possible shapes and areas of general planar irregular polygons with prescribed side-lengths. We explain a way to construct the shape with maximum area, which is known to be the cyclic configuration. We write a transcendental equation whose root is the radius of the circumcircle and give an algorithm to compute the root. We provide an algorithm and a corresponding computer program that actually computes the circumcircle and draws the shape with maximum area, which can then be deformed as needed. We study quadrilaterals with a self-intersection, which are the ones that achieve minimum area and we prove that area minimizers are not necessarily cyclic, as mentioned in the literature ([4]). We also study the possible shapes of polygons with prescribed side-lengths and prescribed area. For areas between the minimum and the maximum, there are two possible configurations for quadrilaterals and an infinite number for polygons with more than four sides. The work was motivated by the study of two Codices, ancient documents from central Mexico written around 1540 by a group called the Acolhua ([9],[10] or online [3]). The codices contain drawings of polygonal fields, with their side- lengths in one section and their areas in another. We had to find out if the proposed areas were correct and to confirm the location of some of the fields. The fields are not drawn to scale and it is not known how the Acolhua com- puted (or measured) areas. There are no angles or diagonals therefore we could not compute the actual areas but one thing we could do was compute maximum and minimum possible areas for the given side-lengths and say the areas in the docu- ments were feasible if they were between those two values. Maxima are easy to Publication Date: January 17, 2018. Communicating Editor: Paul Yiu. We thank Ana Perez´ Arteaga and Ramiro Chavez´ Tovar for computational support, figures and animations. This work was supported by Conacyt Project 133036-F.. 18 C. E. Garza-Hume, M. C. Jorge, and A. Olvera find for quadrilaterals by applying Brahmagupta’s formula ([5], [6]) but we could not find in the literature a formula for the maximum possible area of polygons with more than four sides. There are some results in [8] but not a formula. We could also not find a complete treatment of minima in the literature. The study of the documents also required an analysis of the possible shapes of polygons with prescribed side-lengths and area to try to localize the fields. For polygons with more than four sides there is no easily available, explicit formula for this. We explain the mathematics of the problem, provide an algorithm to find the possible shapes and a computer implementation in javascript of the algorithm. Observe that finding areas of polygons is just an application of calculus if the coordinates of the vertices are known but the problem we are addressing here is, what can be done when only side-lengths are known, not angles, diagonals or co- ordinates. The question is relevant in surveying, architecture, home decorating, gardening and carpentry to name but a few. For some quadrilaterals it is possible to change orientation by deforming con- tinuously and in others it is necessary to perform a reflection. This observation led to a classification of quadrilaterals into four classes. The case of triangles is special because they are the only rigid polygons, that is, the shape and area are determined by the side-lengths. Also, all triangles can be inscribed in a circle whose center is located at the intersection of the perpendicular bisectors. If the side-lengths are called a, b, c the area is given by Heron’s Formula, AH (a, b, c)= s(s − a)(s − b)(s − c) (1) 1 where s = 2 (a + b + c) is the semi-perimeter.p In what follows we will discuss polygons with more than three sides. 1. Computing the shape with maximum area for any polygon In this section we will describe how to compute the maximum possible area of a planar polygon with n sides and how to construct the shape with maximum area given its ordered side-lengths. It is well-known that no side-length can be larger than the sum of the others if they are to form a closed polygon. We will call this the compatibility condition. It was proved in [4] that the configuration with maximum possible area is given by the cyclic polygon, that is, the configuration that can be inscribed in a circle. The problem is that we do not know which circle; we do not know its center or its radius. We will solve this problem in the present section. We will first give an analytical solution for quadrilaterals and then describe an iterative method that works for any polygon and its numerical implementation. Analytic solution for n=4: Circle-Line construction. For n = 4, Bretschneider’s formula gives the (unoriented) area A of a quadrilateral with side-lengths a, b, c, d and opposite angles α and γ as α + γ A = (s − a)(s − b)(s − c)(s − d) − abcd cos2( ), (2) r 2 where s =(a + b + c + d)/2, see Figure 1. Observe that A is always non-negative. Areas and shapes of planar irregular polygons 19 Figure 1. Two examples of a quadrilateral ABCD. The maximum value of this expression is Amax = (s − a)(s − b)(s − c)(s − d), (3) and it is attained when the sump of either pair of opposite angles is π radians, that is, when the quadrilateral es cyclic. But this does not give directly the coordinates of the shape with maximum area. There is a formula for the vertices of the shape with maximum area which is described in [6] SI Appendix p.414, for a quadrilateral with given side-lengths a, b, c, d and prescribed area Ac. We give here the geometric idea. As explained in [6], vertex A is placed at the origin and vertex D at (a, 0); it remains to find the coordinates of vertices B and C. The coordinates of vertex B are (u,v) and of vertex C, (w,z) (see Figure 2). Figure 2. Shape with maximum area of a quadrilateral with side-lengths 4,6,4,7 arbitrary units. After some lengthy computations with analytic geometry which we include in Appendix A, it is shown that vertex B is given by the intersection of a circle C of radius b and center at the origin, and a line L which depends on the side-lengths and on the prescribed area Ac. The maximum area is attained when the line is tangent 20 C. E. Garza-Hume, M. C. Jorge, and A. Olvera to the circle. The coordinates of vertex B are given explicitly and the coordinates of vertex C and found from the lengths of the remaining sides. Figure 2 shows an example of maximum area produced using a program we wrote using routines from JSXGraph which can be found under “Circle-line con- struction” in www.fenomec.unam.mx/ipolygons. The value of the maximum area can be computed from equation (3). In this example, in arbitrary units a = 4, 1 b = 6, c = 4, d = 7 therefore s = 2 (4+6+4+7) = 21/2 and the maximum pos- sible area is approximately 25.8 square units. The program allows the computation of the shape with maximum area. The construction also shows that if Ac > Amax then the line and circle do not intersect and hence no quadrilateral exists with those side-lengths and area. If Amin < Ac < Amax then L intersects C twice giving two possible shapes for the given quadrilateral data. Here Amin represents the minimum possible area. We will say more about it later. We recommend playing with the computer program to understand the construc- tion and its implications. Iterative method for any n ≥ 3 and its numerical implementation. For n > 4 there is no explicit formula for the center or radius r of the circumcircle of the configuration with maximum area. We describe here an iterative method that works for any n ≥ 3 for finding the circumcircle and thus the maximum area of the polygon and the coordinates of its vertices. Observe first that the center of the circumcircle of a cyclic polygon can be in- side, outside or on the boundary of the polygon, as illustrated in Figure 3, and this determines how the circumcircle is computed. Figure 3. Position of the center of the circumcircle. Now consider n side-lengths a1,a2,...,an that satisfy the compatibility condi- tion, placed in clockwise order in the shape of maximum area. Referring to Figure 4, by the cosine rule 2 2 2 aj = 2r − 2r cos θj therefore 2r2 − a2 cos θ = j .
Recommended publications
  • Studies on Kernels of Simple Polygons
    UNLV Theses, Dissertations, Professional Papers, and Capstones 5-1-2020 Studies on Kernels of Simple Polygons Jason Mark Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Computer Sciences Commons Repository Citation Mark, Jason, "Studies on Kernels of Simple Polygons" (2020). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3923. http://dx.doi.org/10.34917/19412121 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. STUDIES ON KERNELS OF SIMPLE POLYGONS By Jason A. Mark Bachelor of Science - Computer Science University of Nevada, Las Vegas 2004 A thesis submitted in partial fulfillment of the requirements for the Master of Science - Computer Science Department of Computer Science Howard R. Hughes College of Engineering The Graduate College University of Nevada, Las Vegas May 2020 © Jason A. Mark, 2020 All Rights Reserved Thesis Approval The Graduate College The University of Nevada, Las Vegas April 2, 2020 This thesis prepared by Jason A.
    [Show full text]
  • CC Geometry H
    CC Geometry H Aim #8: How do we find perimeter and area of polygons in the Cartesian Plane? Do Now: Find the area of the triangle below using decomposition and then using the shoelace formula (also known as Green's theorem). 1) Given rectangle ABCD, a. Identify the vertices. b. Find the exact perimeter. c. Find the area using the area formula. d. List the vertices starting with A moving counterclockwise and apply the shoelace formula. Does the method work for quadrilaterals? 2) Calculate the area using the shoelace formula and then find the perimeter (nearest hundredth). 3) Find the perimeter (to the nearest hundredth) and the area of the quadrilateral with vertices A(-3,4), B(4,6), C(2,-3), and D(-4,-4). 4) A textbook has a picture of a triangle with vertices (3,6) and (5,2). Something happened in printing the book and the coordinates of the third vertex are listed as (-1, ). The answers in the back of the book give the area of the triangle as 6 square units. What is the y-coordinate of this missing vertex? 5) Find the area of the pentagon with vertices A(5,8), B(4,-3), C(-1,-2), D(-2,4), and E(2,6). 6) Show that the shoelace formula used on the trapezoid shown confirms the traditional formula for the area of a trapezoid: 1 (b1 + b2)h 2 D (x3,y) C (x2,y) A B (x ,0) (0,0) 1 7) Find the area and perimeter (exact and nearest hundredth) of the hexagon shown.
    [Show full text]
  • Simple Polygons Scribe: Michael Goldwasser
    CS268: Geometric Algorithms Handout #5 Design and Analysis Original Handout #15 Stanford University Tuesday, 25 February 1992 Original Lecture #6: 28 January 1991 Topics: Triangulating Simple Polygons Scribe: Michael Goldwasser Algorithms for triangulating polygons are important tools throughout computa- tional geometry. Many problems involving polygons are simplified by partitioning the complex polygon into triangles, and then working with the individual triangles. The applications of such algorithms are well documented in papers involving visibility, motion planning, and computer graphics. The following notes give an introduction to triangulations and many related definitions and basic lemmas. Most of the definitions are based on a simple polygon, P, containing n edges, and hence n vertices. However, many of the definitions and results can be extended to a general arrangement of n line segments. 1 Diagonals Definition 1. Given a simple polygon, P, a diagonal is a line segment between two non-adjacent vertices that lies entirely within the interior of the polygon. Lemma 2. Every simple polygon with jPj > 3 contains a diagonal. Proof: Consider some vertex v. If v has a diagonal, it’s party time. If not then the only vertices visible from v are its neighbors. Therefore v must see some single edge beyond its neighbors that entirely spans the sector of visibility, and therefore v must be a convex vertex. Now consider the two neighbors of v. Since jPj > 3, these cannot be neighbors of each other, however they must be visible from each other because of the above situation, and thus the segment connecting them is indeed a diagonal.
    [Show full text]
  • Lesson 11: Perimeters and Areas of Polygonal Regions Defined by Systems of Inequalities
    NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 11 M4 GEOMETRY Lesson 11: Perimeters and Areas of Polygonal Regions Defined by Systems of Inequalities Student Outcomes . Students find the perimeter of a triangle or quadrilateral in the coordinate plane given a description by inequalities. Students find the area of a triangle or quadrilateral in the coordinate plane given a description by inequalities by employing Green’s theorem. Lesson Notes In previous lessons, students found the area of polygons in the plane using the “shoelace” method. In this lesson, we give a name to this method—Green’s theorem. Students will draw polygons described by a system of inequalities, find the perimeter of the polygon, and use Green’s theorem to find the area. Classwork Opening Exercises (5 minutes) The opening exercises are designed to review key concepts of graphing inequalities. The teacher should assign them independently and circulate to assess understanding. Opening Exercises Graph the following: a. b. Lesson 11: Perimeters and Areas of Polygonal Regions Defined by Systems of Inequalities 135 Date: 8/28/14 This work is licensed under a © 2014 Common Core, Inc. Some rights reserved. commoncore.org Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 11 M4 GEOMETRY d. c. Example 1 (10 minutes) Example 1 A parallelogram with base of length and height can be situated in the coordinate plane as shown. Verify that the shoelace formula gives the area of the parallelogram as . What is the area of a parallelogram? Base height . The distance from the -axis to the top left vertex is some number .
    [Show full text]
  • Lesson 10: Perimeter and Area of Polygonal Regions in the Cartesian Plane
    NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 10 M4 GEOMETRY Lesson 10: Perimeter and Area of Polygonal Regions in the Cartesian Plane Student Outcomes . Students find the perimeter of a quadrilateral in the coordinate plane given its vertices and edges. Students find the area of a quadrilateral in the coordinate plane given its vertices and edges by employing Green’s theorem. Classwork Opening Exercise (5 minutes) Scaffolding: . Give students time to The Opening Exercise allows students to practice the shoelace method of finding the area struggle with these of a triangle in preparation for today’s lesson. Have students complete the exercise questions. Add more individually, and then compare their work with a neighbor’s. Pull the class back together questions as necessary to for a final check and discussion. scaffold for struggling If students are struggling with the shoelace method, they can use decomposition. students. Consider providing students with pre-graphed Opening Exercise quadrilaterals with axes on Find the area of the triangle given. Compare your answer and method to your neighbor’s, and grid lines. discuss differences. Go from concrete to abstract by starting with finding the area by decomposition, then translating one vertex to the origin, and then using the shoelace formula. Post the shoelace diagram and formula from Lesson 9. Shoelace Formula Decomposition Coordinates: 푨(−ퟑ, ퟐ), 푩(ퟐ, −ퟏ), 푪(ퟑ, ퟏ) Area of Rectangle: ퟔ units ⋅ ퟑ units = ퟏퟖ square Area Calculation: units ퟏ Area of Left Rectangle: ퟕ. ퟓ square units ((−ퟑ) ∙ (−ퟏ) + ퟐ ∙ ퟏ + ퟑ ∙ ퟐ − ퟐ ∙ ퟐ − (−ퟏ) ∙ ퟑ − ퟏ ∙ (−ퟑ)) ퟐ Area of Bottom Right Triangle: ퟏ square unit Area: ퟔ.
    [Show full text]
  • Maximum-Area Rectangles in a Simple Polygon∗
    Maximum-Area Rectangles in a Simple Polygon∗ Yujin Choiy Seungjun Leez Hee-Kap Ahnz Abstract We study the problem of finding maximum-area rectangles contained in a polygon in the plane. There has been a fair amount of work for this problem when the rectangles have to be axis-aligned or when the polygon is convex. We consider this problem in a simple polygon with n vertices, possibly with holes, and with no restriction on the orientation of the rectangles. We present an algorithm that computes a maximum-area rectangle in O(n3 log n) time using O(kn2) space, where k is the number of reflex vertices of P . Our algorithm can report all maximum-area rectangles in the same time using O(n3) space. We also present a simple algorithm that finds a maximum-area rectangle contained in a convex polygon with n vertices in O(n3) time using O(n) space. 1 Introduction Computing a largest figure of a certain prescribed shape contained in a container is a fundamental and important optimization problem in pattern recognition, computer vision and computational geometry. There has been a fair amount of work for finding rectangles of maximum area contained in a convex polygon P with n vertices in the plane. Amenta showed that an axis-aligned rectangle of maximum area can be found in linear time by phrasing it as a convex programming problem [3]. Assuming that the vertices are given in order along the boundary of P , stored in an array or balanced binary search tree in memory, Fischer and Höffgen gave O(log2 n)-time algorithm for finding an axis-aligned rectangle of maximum area contained in P [9].
    [Show full text]
  • 1 Introduction 2 Problems Without the Formula
    DG Kim Spokane Math Circle The Shoelace Theorem March 3rd 1 Introduction The Shoelace Theorem is a nifty formula for finding the area of a polygon given the coordinates of its vertices. In this lecture, we'll explore the Shoelace Theorem and its applications. 2 Problems without the Formula Find the areas of the following shapes: 1 DG Kim Spokane Math Circle The Shoelace Theorem March 3rd 3 Answers to Exercises 1. 4 × 4 = 16 2. 1=2 × 6 × 2 = 6 3. 6 × 4 − 1=2 × 4 × 4 = 24 − 8 = 16 4. 4 × 6 − 1=2 × 4 × 1 − 1=2 × 4 × 2 = 24 − 2 − 4 = 18 5. 8 × 3 − 1=2 × 8 × 1 = 24 − 4 = 20 4 The Cartesian Plane One quick note that you should know is about the Cartesian Plane. Cartesian Planes are in an (x; y) format. The first number in a Cartesian point is the number of spaces it goes horizontally, and the second number is the number of spaces it goes vertically. You should be able to find the Cartesian coordinates in all the diagrams that were provided earlier. 5 The Shoelace Formula! n−1 n−1 1 X X A = x y + x y − x y − x y 2 i i+1 n 1 i+1 i 1 n i=1 i=1 Okay, so this looks complicated, but now we'll look at why the shoelace formula got its name. 2 DG Kim Spokane Math Circle The Shoelace Theorem March 3rd The reason this formula is called the shoelace formula is because of the method used to find it.
    [Show full text]
  • University of Houston – Math Contest Project Problem, 2012 Simple Equilateral Polygons and Regular Polygonal Wheels School
    University of Houston – Math Contest Project Problem, 2012 Simple Equilateral Polygons and Regular Polygonal Wheels School Name: _____________________________________ Team Members The Project is due at 8:30am (during onsite registration) on the day of the contest. Each project will be judged for precision, presentation, and creativity. Place the team solution in a folder with this page as the cover page, a table of contents, and the solutions. Solve as many of the problems as possible. A polygon is said to be simple if its boundary does not cross itself. A polygon is equilateral if all of its sides have the same length. The sides of a polygon are line segments joining particular vertices of the polygon, and quite often, it is necessary to specify the vertices of a polygon, even if a figure is given. For example, consider the simple polygon shown below. In the absence of additional information, we naturally assume that this simple polygon has 4 vertices and 4 sides. However, it is possible that there are more vertices and sides. Consider the two views below of figures with the same shape, with the vertices showing. The first of these has an additional vertex, and consequently an additional side (it really is possible for 2 sides to be adjacent and collinear). For this reason, whenever referring to a simple polygon, we will either clearly plot the vertices, or list them. We assume the reader understands the difference between the interior and the exterior of a simple polygon, as well as the idea of traversing the boundary of a simple polygon in a counter- clockwise orientation .
    [Show full text]
  • Lesson 10: Perimeter and Area of Polygonal Regions in the Cartesian Plane
    NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 10 M4 GEOMETRY Lesson 10: Perimeter and Area of Polygonal Regions in the Cartesian Plane Student Outcomes . Students find the perimeter of a quadrilateral in the coordinate plane given its vertices and edges. Students find the area of a quadrilateral in the coordinate plane given its vertices and edges by employing Green’s theorem. Classwork Scaffolding: Opening Exercise (5 minutes) . Give students time to The Opening Exercise allows students to practice the shoelace method of finding the area struggle with these of a triangle in preparation for today’s lesson. Have students complete the exercise questions. Add more individually, and then compare their work with a neighbor’s. Pull the class back together questions as necessary to for a final check and discussion. scaffold for struggling If students are struggling with the shoelace method, they can use decomposition. students. Consider providing students with pre-graphed Opening Exercise quadrilaterals with axes on Find the area of the triangle given. Compare your answer and method to your neighbor’s and grid-lines. discuss differences. Go from concrete to abstract by starting with finding the area by decomposition, then translating one vertex to the origin, then using the shoelace formula. Post shoelace diagram and formula from Lesson 9. Shoelace Formula Decomposition Coordinates: Area of Rectangle: square units Area Calculation: Area of Left Rectangle: square units Area of Bottom Right Triangle: square unit ( ) Area of Top Right Triangle: square units Area: square units Area of Shaded Triangle: square units Lesson 10: Perimeter and Area of Polygonal Regions in the Cartesian Plane Date: 124 This work is licensed under a © 2014 Common Core, Inc.
    [Show full text]
  • A Linear Time Algorithm for the Minimum Area Rectangle Enclosing a Convex Polygon
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Purdue E-Pubs Purdue University Purdue e-Pubs Department of Computer Science Technical Reports Department of Computer Science 1983 A Linear Time Algorithm for the Minimum Area Rectangle Enclosing a Convex Polygon Dennis S. Arnon John P. Gieselmann Report Number: 83-463 Arnon, Dennis S. and Gieselmann, John P., "A Linear Time Algorithm for the Minimum Area Rectangle Enclosing a Convex Polygon" (1983). Department of Computer Science Technical Reports. Paper 382. https://docs.lib.purdue.edu/cstech/382 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. 1 A LINEAR TIME ALGORITHM FOR THE MINIMUM AREA RECfANGLE ENCLOSING A CONVEX POLYGON by Dennis S. Amon Computer Science Department Purdue University West Lafayette, Indiana 479Cf7 John P. Gieselmann Computer Science Department Purdue University West Lafayette, Indiana 47907 Technical Report #463 Computer Science Department - Purdue University December 7, 1983 ABSTRACT We give an 0 (n) algorithm for constructing the rectangle of minimum area enclosing an n-vcrtex convex polygon. Keywords: computational geometry, geomelric approximation, minimum area rectangle, enclosing rectangle, convex polygons, space planning. 2 1. introduction. The problem of finding a rectangle of minimal area that encloses a given polygon arises, for example, in algorithms for the cutting stock problem and the template layout problem (see e.g [4} and rID. In a previous paper, Freeman and Shapira [2] show that the minimum area enclosing rectangle ~or an arbitrary (simple) polygon P is the minimum area enclosing rectangle Rp of its convex hull.
    [Show full text]
  • 30 POLYGONS Joseph O’Rourke, Subhash Suri, and Csaba D
    30 POLYGONS Joseph O'Rourke, Subhash Suri, and Csaba D. T´oth INTRODUCTION Polygons are one of the fundamental building blocks in geometric modeling, and they are used to represent a wide variety of shapes and figures in computer graph- ics, vision, pattern recognition, robotics, and other computational fields. By a polygon we mean a region of the plane enclosed by a simple cycle of straight line segments; a simple cycle means that nonadjacent segments do not intersect and two adjacent segments intersect only at their common endpoint. This chapter de- scribes a collection of results on polygons with both combinatorial and algorithmic flavors. After classifying polygons in the opening section, Section 30.2 looks at sim- ple polygonizations, Section 30.3 covers polygon decomposition, and Section 30.4 polygon intersection. Sections 30.5 addresses polygon containment problems and Section 30.6 touches upon a few miscellaneous problems and results. 30.1 POLYGON CLASSIFICATION Polygons can be classified in several different ways depending on their domain of application. In chip-masking applications, for instance, the most commonly used polygons have their sides parallel to the coordinate axes. GLOSSARY Simple polygon: A closed region of the plane enclosed by a simple cycle of straight line segments. Convex polygon: The line segment joining any two points of the polygon lies within the polygon. Monotone polygon: Any line orthogonal to the direction of monotonicity inter- sects the polygon in a single connected piece. Star-shaped polygon: The entire polygon is visible from some point inside the polygon. Orthogonal polygon: A polygon with sides parallel to the (orthogonal) coordi- nate axes.
    [Show full text]
  • Quadrilateral Meshing by Circle Packing
    Quadrilateral Meshing by Circle Packing Marshall Bern 1 David Eppstein 2 Abstract We use circle-packing methods to generate quadrilateral meshes for polygonal domains, with guaranteed bounds both on the quality and the number of elements. We show that these methods can generate meshes of several types: (1) the elements form the cells of a VoronoÈõ diagram, (2) all elements have two opposite 90± angles, (3) all elements are kites, or (4) all angles are at most 120±. In each case the total number of elements is O.n/, where n is the number of input vertices. 1 Introduction We investigate here problems of unstructured quadrilateral mesh generation for polygonal domains, with two con¯icting requirements. First, we require there to be few quadrilaterals, linear in the number of input vertices; this is appropriate for methods in which high order basis functions are used, or in multiblock grid generation in which each quadrilateral is to be further subdivided into a structured mesh. Second, we require some guarantees on the quality of the mesh: either the elements themselves should have shapes restricted to certain classes of quadrilaterals, or the mesh should satisfy some more global quality requirements. Computing a linear-size quadrilateralization, without regard for quality, is quite easy. One can ®nd quadrilateral meshes with few elements, for instance, by triangulating the domain and subdividing each triangle into three quadrilaterals [13]. For convex domains, it is possible to exactly minimize the num- ber of elements [11]. However these methods may produce very poor quality meshes. High-quality quadrilateralization, without rigorous bounds on the number of elements, is an area of active practical interest.
    [Show full text]