Simple Polygons Scribe: Michael Goldwasser
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Studies on Kernels of Simple Polygons
UNLV Theses, Dissertations, Professional Papers, and Capstones 5-1-2020 Studies on Kernels of Simple Polygons Jason Mark Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Computer Sciences Commons Repository Citation Mark, Jason, "Studies on Kernels of Simple Polygons" (2020). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3923. http://dx.doi.org/10.34917/19412121 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. STUDIES ON KERNELS OF SIMPLE POLYGONS By Jason A. Mark Bachelor of Science - Computer Science University of Nevada, Las Vegas 2004 A thesis submitted in partial fulfillment of the requirements for the Master of Science - Computer Science Department of Computer Science Howard R. Hughes College of Engineering The Graduate College University of Nevada, Las Vegas May 2020 © Jason A. Mark, 2020 All Rights Reserved Thesis Approval The Graduate College The University of Nevada, Las Vegas April 2, 2020 This thesis prepared by Jason A. -
Lesson 3: Rectangles Inscribed in Circles
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 3 M5 GEOMETRY Lesson 3: Rectangles Inscribed in Circles Student Outcomes . Inscribe a rectangle in a circle. Understand the symmetries of inscribed rectangles across a diameter. Lesson Notes Have students use a compass and straightedge to locate the center of the circle provided. If necessary, remind students of their work in Module 1 on constructing a perpendicular to a segment and of their work in Lesson 1 in this module on Thales’ theorem. Standards addressed with this lesson are G-C.A.2 and G-C.A.3. Students should be made aware that figures are not drawn to scale. Classwork Scaffolding: Opening Exercise (9 minutes) Display steps to construct a perpendicular line at a point. Students follow the steps provided and use a compass and straightedge to find the center of a circle. This exercise reminds students about constructions previously . Draw a segment through the studied that are needed in this lesson and later in this module. point, and, using a compass, mark a point equidistant on Opening Exercise each side of the point. Using only a compass and straightedge, find the location of the center of the circle below. Label the endpoints of the Follow the steps provided. segment 퐴 and 퐵. Draw chord 푨푩̅̅̅̅. Draw circle 퐴 with center 퐴 . Construct a chord perpendicular to 푨푩̅̅̅̅ at and radius ̅퐴퐵̅̅̅. endpoint 푩. Draw circle 퐵 with center 퐵 . Mark the point of intersection of the perpendicular chord and the circle as point and radius ̅퐵퐴̅̅̅. 푪. Label the points of intersection . -
Properties of N-Sided Regular Polygons
PROPERTIES OF N-SIDED REGULAR POLYGONS When students are first exposed to regular polygons in middle school, they learn their properties by looking at individual examples such as the equilateral triangles(n=3), squares(n=4), and hexagons(n=6). A generalization is usually not given, although it would be straight forward to do so with just a min imum of trigonometry and algebra. It also would help students by showing how one obtains generalization in mathematics. We show here how to carry out such a generalization for regular polynomials of side length s. Our starting point is the following schematic of an n sided polygon- We see from the figure that any regular n sided polygon can be constructed by looking at n isosceles triangles whose base angles are θ=(1-2/n)(π/2) since the vertex angle of the triangle is just ψ=2π/n, when expressed in radians. The area of the grey triangle in the above figure is- 2 2 ATr=sh/2=(s/2) tan(θ)=(s/2) tan[(1-2/n)(π/2)] so that the total area of any n sided regular convex polygon will be nATr, , with s again being the side-length. With this generalized form we can construct the following table for some of the better known regular polygons- Name Number of Base Angle, Non-Dimensional 2 sides, n θ=(π/2)(1-2/n) Area, 4nATr/s =tan(θ) Triangle 3 π/6=30º 1/sqrt(3) Square 4 π/4=45º 1 Pentagon 5 3π/10=54º sqrt(15+20φ) Hexagon 6 π/3=60º sqrt(3) Octagon 8 3π/8=67.5º 1+sqrt(2) Decagon 10 2π/5=72º 10sqrt(3+4φ) Dodecagon 12 5π/12=75º 144[2+sqrt(3)] Icosagon 20 9π/20=81º 20[2φ+sqrt(3+4φ)] Here φ=[1+sqrt(5)]/2=1.618033989… is the well known Golden Ratio. -
The First Treatments of Regular Star Polygons Seem to Date Back to The
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio istituzionale della ricerca - Università di Palermo FROM THE FOURTEENTH CENTURY TO CABRÌ: CONVOLUTED CONSTRUCTIONS OF STAR POLYGONS INTRODUCTION The first treatments of regular star polygons seem to date back to the fourteenth century, but a comprehensive theory on the subject was presented only in the nineteenth century by the mathematician Louis Poinsot. After showing how star polygons are closely linked to the concept of prime numbers, I introduce here some constructions, easily reproducible with geometry software that allow us to investigate and see some nice and hidden property obtained by the scholars of the fourteenth century onwards. Regular star polygons and prime numbers Divide a circumference into n equal parts through n points; if we connect all the points in succession, through chords, we get what we recognize as a regular convex polygon. If we choose to connect the points, starting from any one of them in regular steps, two by two, or three by three or, generally, h by h, we get what is called a regular star polygon. It is evident that we are able to create regular star polygons only for certain values of h. Let us divide the circumference, for example, into 15 parts and let's start by connecting the points two by two. In order to close the figure, we return to the starting point after two full turns on the circumference. The polygon that is formed is like the one in Figure 1: a polygon of “order” 15 and “species” two. -
The Geometry of Diagonal Groups
The geometry of diagonal groups R. A. Baileya, Peter J. Camerona, Cheryl E. Praegerb, Csaba Schneiderc aUniversity of St Andrews, St Andrews, UK bUniversity of Western Australia, Perth, Australia cUniversidade Federal de Minas Gerais, Belo Horizonte, Brazil Abstract Diagonal groups are one of the classes of finite primitive permutation groups occurring in the conclusion of the O'Nan{Scott theorem. Several of the other classes have been described as the automorphism groups of geometric or combi- natorial structures such as affine spaces or Cartesian decompositions, but such structures for diagonal groups have not been studied in general. The main purpose of this paper is to describe and characterise such struct- ures, which we call diagonal semilattices. Unlike the diagonal groups in the O'Nan{Scott theorem, which are defined over finite characteristically simple groups, our construction works over arbitrary groups, finite or infinite. A diagonal semilattice depends on a dimension m and a group T . For m = 2, it is a Latin square, the Cayley table of T , though in fact any Latin square satisfies our combinatorial axioms. However, for m > 3, the group T emerges naturally and uniquely from the axioms. (The situation somewhat resembles projective geometry, where projective planes exist in great profusion but higher- dimensional structures are coordinatised by an algebraic object, a division ring.) A diagonal semilattice is contained in the partition lattice on a set Ω, and we provide an introduction to the calculus of partitions. Many of the concepts and constructions come from experimental design in statistics. We also determine when a diagonal group can be primitive, or quasiprimitive (these conditions turn out to be equivalent for diagonal groups). -
Unit 6 Visualising Solid Shapes(Final)
• 3D shapes/objects are those which do not lie completely in a plane. • 3D objects have different views from different positions. • A solid is a polyhedron if it is made up of only polygonal faces, the faces meet at edges which are line segments and the edges meet at a point called vertex. • Euler’s formula for any polyhedron is, F + V – E = 2 Where F stands for number of faces, V for number of vertices and E for number of edges. • Types of polyhedrons: (a) Convex polyhedron A convex polyhedron is one in which all faces make it convex. e.g. (1) (2) (3) (4) 12/04/18 (1) and (2) are convex polyhedrons whereas (3) and (4) are non convex polyhedron. (b) Regular polyhedra or platonic solids: A polyhedron is regular if its faces are congruent regular polygons and the same number of faces meet at each vertex. For example, a cube is a platonic solid because all six of its faces are congruent squares. There are five such solids– tetrahedron, cube, octahedron, dodecahedron and icosahedron. e.g. • A prism is a polyhedron whose bottom and top faces (known as bases) are congruent polygons and faces known as lateral faces are parallelograms (when the side faces are rectangles, the shape is known as right prism). • A pyramid is a polyhedron whose base is a polygon and lateral faces are triangles. • A map depicts the location of a particular object/place in relation to other objects/places. The front, top and side of a figure are shown. Use centimetre cubes to build the figure. -
Curriculum Burst 31: Coloring a Pentagon by Dr
Curriculum Burst 31: Coloring a Pentagon By Dr. James Tanton, MAA Mathematician in Residence Each vertex of a convex pentagon ABCDE is to be assigned a color. There are 6 colors to choose from, and the ends of each diagonal must have different colors. How many different colorings are possible? SOURCE: This is question # 22 from the 2010 MAA AMC 10a Competition. QUICK STATS: MAA AMC GRADE LEVEL This question is appropriate for the 10th grade level. MATHEMATICAL TOPICS Counting: Permutations and Combinations COMMON CORE STATE STANDARDS S-CP.9: Use permutations and combinations to compute probabilities of compound events and solve problems. MATHEMATICAL PRACTICE STANDARDS MP1 Make sense of problems and persevere in solving them. MP2 Reason abstractly and quantitatively. MP3 Construct viable arguments and critique the reasoning of others. MP7 Look for and make use of structure. PROBLEM SOLVING STRATEGY ESSAY 7: PERSEVERANCE IS KEY 1 THE PROBLEM-SOLVING PROCESS: Three consecutive vertices the same color is not allowed. As always … (It gives a bad diagonal!) How about two pairs of neighboring vertices, one pair one color, the other pair a STEP 1: Read the question, have an second color? The single remaining vertex would have to emotional reaction to it, take a deep be a third color. Call this SCHEME III. breath, and then reread the question. This question seems complicated! We have five points A , B , C , D and E making a (convex) pentagon. A little thought shows these are all the options. (But note, with rotations, there are 5 versions of scheme II and 5 versions of scheme III.) Now we need to count the number Each vertex is to be colored one of six colors, but in a way of possible colorings for each scheme. -
Combinatorial Analysis of Diagonal, Box, and Greater-Than Polynomials As Packing Functions
Appl. Math. Inf. Sci. 9, No. 6, 2757-2766 (2015) 2757 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/090601 Combinatorial Analysis of Diagonal, Box, and Greater-Than Polynomials as Packing Functions 1,2, 3 2 4 Jose Torres-Jimenez ∗, Nelson Rangel-Valdez , Raghu N. Kacker and James F. Lawrence 1 CINVESTAV-Tamaulipas, Information Technology Laboratory, Km. 5.5 Carretera Victoria-Soto La Marina, 87130 Victoria Tamps., Mexico 2 National Institute of Standards and Technology, Gaithersburg, MD 20899, USA 3 Universidad Polit´ecnica de Victoria, Av. Nuevas Tecnolog´ıas 5902, Km. 5.5 Carretera Cd. Victoria-Soto la Marina, 87130, Cd. Victoria Tamps., M´exico 4 George Mason University, Fairfax, VA 22030, USA Received: 2 Feb. 2015, Revised: 2 Apr. 2015, Accepted: 3 Apr. 2015 Published online: 1 Nov. 2015 Abstract: A packing function is a bijection between a subset V Nm and N, where N denotes the set of non negative integers N. Packing functions have several applications, e.g. in partitioning schemes⊆ and in text compression. Two categories of packing functions are Diagonal Polynomials and Box Polynomials. The bijections for diagonal ad box polynomials have mostly been studied for small values of m. In addition to presenting bijections for box and diagonal polynomials for any value of m, we present a bijection using what we call Greater-Than Polynomial between restricted m dimensional vectors over Nm and N. We give details of two interesting applications of packing functions: (a) the application of greater-than− polynomials for the manipulation of Covering Arrays that are used in combinatorial interaction testing; and (b) the relationship between grater-than and diagonal polynomials with a special case of Diophantine equations. -
Diagonal Tuple Space Search in Two Dimensions
Diagonal Tuple Space Search in Two Dimensions Mikko Alutoin and Pertti Raatikainen VTT Information Technology P.O. Box 1202, FIN-02044 Finland {mikkocalutoin, pertti.raatikainen}@vtt.fi Abstract. Due to the evolution of the Internet and its services, the process of forwarding packets in routers is becoming more complex. In order to execute the sophisticated routing logic of modern firewalls, multidimensional packet classification is required. Unfortunately, the multidimensional packet classifi cation algorithms are known to be either time or storage hungry in the general case. It has been anticipated that more feasible algorithms could be obtained for conflict-free classifiers. This paper proposes a novel two-dimensional packet classification algorithrn applicable to the conflict-free classifiers. lt derives from the well-known tuple space paradigm and it has the search cost of O(log w) and storage complexity of O{n2w log w), where w is the width of the proto col fields given in bits and n is the number of rules in the classifier. This is re markable because without the conflict-free constraint the search cost in the two dimensional tup!e space is E>(w). 1 Introduction Traditional packet forwarding in the Internet is based on one-dimensional route Iook ups: destination IP address is used as the key when the Forwarding Information Base (FIB) is searched for matehing routes. The routes are stored in the FIB by using a network prefix as the key. A route matches a packet if its network prefix is a prefix of the packet's destination IP address. In the event that several routes match the packet, the one with the Iongest prefix prevails. -
Length and Circumference Assessment of Body Parts – the Creation of Easy-To-Use Predictions Formulas
49th International Conference on Environmental Systems ICES-2019-170 7-11 July 2019, Boston, Massachusetts Length and Circumference Assessment of Body Parts – The Creation of Easy-To-Use Predictions Formulas Jan P. Weber1 Technische Universität München, 85748 Garching b. München, Germany The Virtual Habitat project (V-HAB) at the Technical University of Munich (TUM) aims to develop a dynamic simulation environment for life support systems (LSS). Within V-HAB a dynamic human model interacts with the LSS by providing relevant metabolic inputs and outputs based on internal, environmental and operational factors. The human model is separated into five sub-models (called layers) representing metabolism, respiration, thermoregulation, water balance and digestion. The Wissler Thermal Model was converted in 2015/16 from Fortran to C#, introducing a more modularized structure and standalone graphical user interface (GUI). While previous effort was conducted in order to make the model in its current accepted version available in V-HAB, present work is focusing on the rework of the passive system. As part of this rework an extensive assessment of human body measurements and their dependency on a low number of influencing parameters was performed using the body measurements of 3982 humans (1774 men and 2208 women) in order to create a set of easy- to-use predictive formulas for the calculation of length and circumference measurements of various body parts. Nomenclature AAC = Axillary Arm Circumference KHM = Knee Height, Midpatella Age = Age of the -
Angles of Polygons
5.3 Angles of Polygons How can you fi nd a formula for the sum of STATES the angle measures of any polygon? STANDARDS MA.8.G.2.3 1 ACTIVITY: The Sum of the Angle Measures of a Polygon Work with a partner. Find the sum of the angle measures of each polygon with n sides. a. Sample: Quadrilateral: n = 4 A Draw a line that divides the quadrilateral into two triangles. B Because the sum of the angle F measures of each triangle is 180°, the sum of the angle measures of the quadrilateral is 360°. C D E (A + B + C ) + (D + E + F ) = 180° + 180° = 360° b. Pentagon: n = 5 c. Hexagon: n = 6 d. Heptagon: n = 7 e. Octagon: n = 8 196 Chapter 5 Angles and Similarity 2 ACTIVITY: The Sum of the Angle Measures of a Polygon Work with a partner. a. Use the table to organize your results from Activity 1. Sides, n 345678 Angle Sum, S b. Plot the points in the table in a S coordinate plane. 1080 900 c. Write a linear equation that relates S to n. 720 d. What is the domain of the function? 540 Explain your reasoning. 360 180 e. Use the function to fi nd the sum of 1 2 3 4 5 6 7 8 n the angle measures of a polygon −180 with 10 sides. −360 3 ACTIVITY: The Sum of the Angle Measures of a Polygon Work with a partner. A polygon is convex if the line segment connecting any two vertices lies entirely inside Convex the polygon. -
Some Polygon Facts Student Understanding the Following Facts Have Been Taken from Websites of Polygons
eachers assume that by the end of primary school, students should know the essentials Tregarding shape. For example, the NSW Mathematics K–6 syllabus states by year six students should be able manipulate, classify and draw two- dimensional shapes and describe side and angle properties. The reality is, that due to the pressure for students to achieve mastery in number, teachers often spend less time teaching about the other aspects of mathematics, especially shape (Becker, 2003; Horne, 2003). Hence, there is a need to modify the focus of mathematics education to incorporate other aspects of JILLIAN SCAHILL mathematics including shape and especially polygons. The purpose of this article is to look at the teaching provides some and learning of polygons in primary classrooms by providing some essential information about polygons teaching ideas and some useful teaching strategies and resources. to increase Some polygon facts student understanding The following facts have been taken from websites of polygons. and so are readily accessible to both teachers and students. “The word ‘polygon’ derives from the Greek word ‘poly’, meaning ‘many’ and ‘gonia’, meaning ‘angle’” (Nation Master, 2004). “A polygon is a closed plane figure with many sides. If all sides and angles of a polygon are equal measures then the polygon is called regular” 30 APMC 11 (1) 2006 Teaching polygons (Weisstein, 1999); “a polygon whose sides and angles that are not of equal measures are called irregular” (Cahir, 1999). “Polygons can be convex, concave or star” (Weisstein, 1999). A star polygon is a figure formed by connecting straight lines at every second point out of regularly spaced points lying on a circumference.