Improvement Effects of Apigenin in Temporal Lobe Epilepsy

Total Page:16

File Type:pdf, Size:1020Kb

Improvement Effects of Apigenin in Temporal Lobe Epilepsy Iranian Journal of Basic Medical Sciences ijbms.mums.ac.ir Evaluation of the neuroprotective, anticonvulsant, and cognition- improvement effects of apigenin in temporal lobe epilepsy: Involvement of the mitochondrial apoptotic pathway Paria Hashemi 1, Javad Fahanik Babaei 2, Somaye Vazifekhah 1, Farnaz Nikbakht 3* 1 Department of Physiology, School of Medicine and Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran 2 Physiology Research Centre, Iran University of Medical Sciences, Tehran, Iran 3 Cellular and Molecular Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran A R T I C L E I N F O A B S T R A C T Article type: Objective(s): Original article the use of antiepileptic drugs includes their side effects on learning and memory. Herbal medicine Article history: Cognitive deficit is a common problem in epilepsy. A major concern emergent from Received: Aug 3, 2018 Accepted: Jan 22, 2019 iscognition considered in epilepsy. a complementary and alternative therapy in epilepsy. Apigenin is a safe flavone with Materialsantioxidant and properties. Methods: ForHowever, evaluating there the is anticonvulsant little information effect about of apigenin the beneficial in the kainite effect temporal of apigenin epilepsy on Keywords: model, apigenin was orally administered at 50 mg/kg for six days. Reference and working memory were examined via the Morris water maze and Y-maze task spontaneously. Results: P<0.01) and restored ApigeninCognition P AnticonvulsantCytochrome c number ofResults living showedneurons that in the apigenin hilus (P had<0.001). significant Immunohistochemical anticonvulsant activity analysis ( showed that apigenin Neuroprotection <0.01), suggesting an inhibitory role in the intrinsic apoptotic Temporal lobe epilepsy the memory-deficit induced by kainic acidP ( <0.05). Furthermore, apigenin significantly increased the pathway. Conclusion:reduced the Theserelease results of cytochrome suggest that c ( apigenin restores memory impairment via anticonvulsant and neuroprotective activity. ►Please cite this article as: Hashemi P, Fahanik Babaei J, Vazifekhah S, Nikbakht F. Evaluation of the neuroprotective, anticonvulsant, and cognition-improvement effects of apigenin in temporal lobe epilepsy: Involvement of the mitochondrial apoptotic pathway. Iran J Basic Med Sci 2019; 22:752-758. doi: 10.22038/ ijbms.2019.33892.8064 Introduction neurodegeneration, almost all available antiepileptic Epilepsy is one of the most common and chronic neurological diseases. It manifests itself by recurring, drugsbeen unsuccessful (AEDs) worsen in controlling memory andimpairment reducing epileptic(9, 10). Recentseizures studies in drug-resistant have shown patients that AEDs but have have also not led only to unprovokedepilepsy, is recognizedseizures that as havethe mostno clear frequent prognosis form (1). of Temporal lobe epilepsy (TLE), Partial a type evidence of partial indicates or focal need to replace these with other alternatives. Recently, that memory impairment is one of the main complaints undesirablescholars have side focused effects (9).on Therefore,medical herbs,there is especiallyan urgent acquired epilepsy in adults (2). of patients with TLE; it is caused by hippocampal flavonoids,many fruits onand neurodegenerative vegetables, with chamomile disorders, and including celery sclerosis (3). Hippocampal sclerosis is characterizedSome studies epilepsy (11). Apigenin, a natural flavone, is abundant in byhave the suggested loss of neurons, that there specifically is a clear ininteraction the CA1/CA3 between and particular interest because of its anxiolytic, sedative, thememory hilus lossareas and of theneurodegeneration hippocampus (4). in the temporal beingneuroprotective, the highest anticonvulsive,sources (12). Apigenin and antidepressant has received prolonged seizures lead to progressive hippocampal cortex,neuronal amygdala, death, whichand hippocampus is accompanied (5, 6). by Apparently, memory propertiescancer properties (13). Apigenin of apigenin can arealso due ameliorate to the induction memory dysfunction linked to Alzheimer’s disease (14). The anti- Mitochondrial dysfunction after prolonged seizure 17). However, in pathological conditions, apigenin acts dysfunctionis the other (7). cause of neuronal cell death. One of the of apoptosis through different apoptotic pathways (15- mitochondrial dysfunction manifestations during suggesting the protective role of apigenin in cognition epilepsy is opening of the mitochondrial permeability asimprovement an anti-apoptotic through agent amelioration (18, 19). There of mitochondria are no data transition pore and release of cytochrome c into the cytosol. Cytochrome c is the key protein that can trigger to investigate the protective role of apigenin in cognition dysfunctionand memory in impairments TLE. Therefore, induced this studyby kainic was aciddesigned with emphasis on the possible involvement of mitochondrial mitochondrial cell death (8). Apart from seizures per se and vast hippocampal *Corresponding author: Farnaz Nikbakht. Cellular and Molecular Research Center, School of Medicine, Iran University of Medical Sciences, Tehra, Iran. Tel: +98-21- 86704546; Email: [email protected] Protective effects of apigenin in temporal lobe epilepsy Hashemi et al. Seizure intensity was measured according to a cell death pathway. Additionally, we examined the Stage 0: immobility; stage 1: rigid posture, eye Materialsanticonvulsant and effect Methods of apigenin in the rat model of TLE. modifiedblinking, Racine’sand /or scale mild values: facial clonus; stage 2: head Animals bobbing and multiple facial clonus; stage 3: myoclonic from the Experimental Studies Centre, Iran University forelimbs with rearing; and stage 5: generalized tonic- of MaleMedical Wistar Sciences, rats (200–250 Tehran, g)Iran. were The obtained animals (n=44) were jerksclonic in convulsions. the forelimbs; stage 4: clonic convulsions in the kept under the following standard conditions: 12 hr Training in the spatial version of the Morris water maze task light/dark50% with free cycle availability (lights on of from food 7:00and waterAM to throughout 7:00 PM), commonly accepted behavioral tests for assessing the environmental temperature 22±2 °C, and humidity 40– spatialMorris learning water and maze memory (MWM) capabilities is one ofof rodents.the most In were compiled according to Guidelines for the Care and the study. All experimental protocols and procedures MWM was a circular black tank the present study, MWM was conducted five days after Useapproved of Laboratory by the Ethics Animals and as Research stipulated Committee by the National of Iran induction of TLE in rats. Institute of Health (NIH). In addition, this study was (100 cm in diameter and 75 cm in height). It was placed in a dim room with visual cues. Theconstantly tank was filledlocated to ExperimentalUniversity of Medical procedure Sciences (Tehran, Iran) in 2016. a1.5 depth cm beneathof 40 cm the with water water surface (21±1 °C).in one A hidden of the blackpool The rats were randomly divided into 4 groups as platformquadrants. (10 The cm task in consisted diameter) of 2was stages: the acquisition follows: control-vehicle group, apigenin-treated sham phase for spatial learning assessment, and the probe group, kainic acid group, and apigenin-treated kainic test and retention retrieval of memory. The acquisition in which the rats were given four trials per session acid group. For induction of TLE in rats, they were phaseper day was with performed the platform during in a constantfive subsequent place. In days,each first anesthetized by the intraperitoneal (IP) injection session and between each trial, an interval of 20 sec was of ketamine (100 mg/kg) and xylazine (20 mg/kg). observed. If the platform was not found within 60 sec, Animalsincision inwere the scalp,then positioned the left lateral and ventriclefixed on wasa stereotaxic targeted the rat was forced into the platform and placed on it for apparatusat the anteroposterior (Stoelting, USA).position, After in aaccordance midline sagittalto the an additional 20 sec. During each trial session, the total platform was recorded using a video camera-based stereotaxic atlas, as follows: 1 mm; lateral; –1.5 mm from time (latency time) and movement to find the hidden bregma, and 3.5 mm ventral from the dura. An amount hours after the acquisition phase, the probe trial session of 1.8 μl of sterile normal saline solution containing 0.5 EthoVisionwas performed System in (Noldus,which the Netherlands). platform was Twenty-four removed μg of kainic acid was microinjected unilaterally into the from the pool and the rat was allowed to swim for 60 leftin lateraldistilled ventricle. water, Aftercontaining 5 min, the 5% needle sodium-carboxyl was removed sec to search for it. the target to minimize the drug withdrawn. Apigenin was dissolved quadrant, time spent in the target quadrant, and the total number of crossingsThe latency into theof first target entry quadrant to were methylcellulose (CMC-Na) and was administered orally recorded. at a dose of 50 mg/kg/day once a day five days before Behavioralsurgery till one testing day afterward (Figure 1). Y-maze spontaneous alternation performance Anticonvulsant activity of apigenin against kainite- This test was conducted 2 days after the MWM task. induced seizures To evaluate spatial working memory, we recorded In kainite-induced convulsion, the intensity of the spontaneous alternation behavior
Recommended publications
  • The Effect of Rosmarinic Acid on Apoptosis and Nnos Immunoreactivity Following Intrahippocampal Kainic Acid Injections in Rats
    Basic and Clinical January, February 2020, Volume 11, Number 1 Research Paper: The Effect of Rosmarinic Acid on Apoptosis and nNOS Immunoreactivity Following Intrahippocampal Kainic Acid Injections in Rats Safoura Khamse1* , Seyed Shahabeddin Sadr1,2 , Mehrdad Roghani3* , Mina Rashvand1 , Maryam Mohammadian4 , Narges Mare- fati1 , Elham Harati1 , Fatemeh Ebrahimi1 1. Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. 2. Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran. 3. Neurophysiology Research Center, Shahed University, Tehran, Iran. 4. Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. Use your device to scan and read the article online Citation: Khamse, S., Sadr, Sh., Roghani, M., Rashvand, M., Mohammadian, M., & Marefati, N., et al. The Effect of Ros- marinic Acid on Apoptosis and nNOS Immunoreactivity Following Intrahippocampal Kainic Acid Injections in Rats Basic and Clinical Neuroscience, 11(1), 41-48. http://dx.doi.org/10.32598/bcn.9.10.340 http://dx.doi.org/10.32598/bcn.9.10.340 A B S T R A C T Introduction: Kainic Acid (KA) is an ionotropic glutamate receptor agonist. KA can induce neuronal overactivity and excitotoxicity. Rosmarinic Acid (RA) is a natural polyphenolic Article info: compound with antioxidant, anti-apoptotic, anti-neurodegenerative, and anti-inflammatory Received: 12 Apr 2018 properties. This study aimed to assess the effect of RA on apoptosis, nNOS-positive neurons First Revision: 10 May 2018 number, as well as Mitogen-Activated Protein Kinase (MAPK) and Cyclooxygenase-2 (COX- Accepted: 27 Oct 2018 2) immunoreactivity, following intrahippocampal Kainic acid injection in rats.
    [Show full text]
  • Kainic Acid-Induced Neurotoxicity: Targeting Glial Responses and Glia-Derived Cytokines
    388 Current Neuropharmacology, 2011, 9, 388-398 Kainic Acid-Induced Neurotoxicity: Targeting Glial Responses and Glia-Derived Cytokines Xing-Mei Zhang1 and Jie Zhu1,2, 1Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden; 2Department of Neurology, The First Hospital of Jilin University, Changchun, China Abstract: Glutamate excitotoxicity contributes to a variety of disorders in the central nervous system, which is triggered primarily by excessive Ca2+ influx arising from overstimulation of glutamate receptors, followed by disintegration of the endoplasmic reticulum (ER) membrane and ER stress, the generation and detoxification of reactive oxygen species as well as mitochondrial dysfunction, leading to neuronal apoptosis and necrosis. Kainic acid (KA), a potent agonist to the -amino- 3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate class of glutamate receptors, is 30-fold more potent in neuro- toxicity than glutamate. In rodents, KA injection resulted in recurrent seizures, behavioral changes and subsequent degeneration of selective populations of neurons in the brain, which has been widely used as a model to study the mechanisms of neurode- generative pathways induced by excitatory neurotransmitter. Microglial activation and astrocytes proliferation are the other characteristics of KA-induced neurodegeneration. The cytokines and other inflammatory molecules secreted by activated glia cells can modify the outcome of disease progression. Thus, anti-oxidant and anti-inflammatory treatment could attenuate or prevent KA-induced neurodegeneration. In this review, we summarized updated experimental data with regard to the KA-induced neurotoxicity in the brain and emphasized glial responses and glia-oriented cytokines, tumor necrosis factor-, interleukin (IL)-1, IL-12 and IL-18.
    [Show full text]
  • Electrophysiological Mechanisms of Kainic Acid- Induced Epileptiform Activity in the Rat Hippocampal Slice’
    0270-6474/84/0405-1312$02,00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 4, No. 5, pp. 1312-1323 Printed in U.S.A. May 1984 ELECTROPHYSIOLOGICAL MECHANISMS OF KAINIC ACID- INDUCED EPILEPTIFORM ACTIVITY IN THE RAT HIPPOCAMPAL SLICE’ ROBERT S. FISHER’ AND BRADLEY E. ALGER Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201 Received August 29, 1983; Revised December 28, 1983; Accepted January 4, 1984 Abstract Depression of GABA-mediated IPSPs has been proposed to be a crucial factor in the onset of epileptiform activity in most models of epilepsy. To test this idea, we studied epileptiform activity induced by bath application of the excitatory neurotoxin kainic acid (KA) in the rat hippocampal slice. Repetitive field potential firing, spontaneous or evoked, occurred during exposure to KA. Intracellular records from 52 CA1 pyramidal cells during changes from control saline to saline containing i PM KA indicated that KA depolarized cells an average of about 5 mV and caused a 15% decrease in input resistance. Action potentials and current-induced burst afterhyperpolariza- tions did not change significantly. In several cells the tonic effects of KA were preceded by a transient phase of sporadic, spontaneous depolarizations of 2 to 10 mV and 50 to 200 msec duration. These phasic depolarizations were blocked by hyperpolarization. The major effect of 1 PM KA was a depression of synaptic potentials. Initially, KA depressed fast GABA-mediated IPSPs and slow, non-GABA-mediated late hyperpolarizing potentials to 23% and 40% of control values, respectively. IPSP depression correlated closely with onset of burst potential firing in response to synaptic stimulation.
    [Show full text]
  • NMDA Agonists Using ALZET Osmotic Pumps
    ALZET® Bibliography References on the Administration of NMDA Agonists Using ALZET Osmotic Pumps Aspartic Acid P7453: M. Domercq, et al. Excitotoxic oligodendrocyte death and axonal damage induced by glutamate transporter inhibition. Glia 2005;52(1):36-46 ALZET Comments: Oligonucleotide, antisense; oligonucleotide sense; kainate, dihydro-; aspartic acid, DL-threo-B-benzyloxy-; Saline, sterile; CSF/CNS (optic nerve); Rabbit; 1003D; 3 days; Controls received mp w/ vehicle, or contralateral nerves; antisense (glutamate transporters GLAST + GLT-1); animal info (adult, male, white New Zealand). P6888: J. Darman, et al. Viral-induced spinal motor neuron death is non-cell-autonomous and involves glutamate excitotoxicity. Journal of Neuroscience 2004;24(34):7566-7575 ALZET Comments: Aspartic acid, dl-threo-B-hydroxy; spermine, 1-naphthyl acetyl; CSF/CNS (intrathecal, subarachnoid space); Rat; 1007D; 7 days; Controls received mp w/ saline; enzyme inhibitors (GLT-1, GluR2). P3908: A. Hirata, et al. AMPA receptor-mediated slow neuronal death in the rat spinal cord induced by long-term blockade of glutamate transporters with THA. Brain Research 1997;771(37-44 ALZET Comments: Aspartic acid, dl-threo-B-hydroxy; Glutamate, l-; CSF, artificial;; CSF/CNS (subarachnoid space, intrathecal); Rat; 2ML1; no duration posted; dose-response; cannula position verified. P0289: R. M. Mangano, et al. Chronic infusion of endogenous excitatory amino acids into rat striatum and hippocampus. Brain Res. Bull 1983;10(47-51 ALZET Comments: Aminobutyric acid, Y-; Aspartic acid, dl-threo-B-hydroxy; Aspartic acid, l-; Cysteine sulfinic acid; Glutamic acid, l-; Radio-isotopes; 3H tracer; Acetate; Saline; CSF/CNS (corpus striatum); CSF/CNS (hippocampus); Rat; 2002; 2 weeks; comparison of injec.
    [Show full text]
  • Subconvulsive Dose of Kainic Acid Transiently Increases the Locomotor Activity of Adult Wistar Rats
    Physiol. Res. 64: 263-267, 2015 https://doi.org/10.33549/physiolres.932793 SHORT COMMUNICATION Subconvulsive Dose of Kainic Acid Transiently Increases the Locomotor Activity of Adult Wistar Rats V. RILJAK1, D. MAREŠOVÁ1, J. POKORNÝ1, K. JANDOVÁ1 1Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic Received March 28, 2014 Accepted September 1, 2014 On-line October 15, 2014 Summary Kainic acid (KA) is agonist for kainate subtype Kainic acid (KA) is a potent neurotoxic substance valuable in receptors of excitatory amino acids (Monaghan and research of temporal lobe epilepsy. We tested how subconvulsive Cotman 1982) and its administration was revealed as a dose of KA influences spontaneous behavior of adult Wistar rats. good strategy to model the clinical and neuropathological Animals were treated with 5 mg/kg of KA and tested in Laboras features of temporal lobe epilepsy (Olney et al. 1974). open field test for one hour in order to evaluate various Most commonly, a systemic administration of KA in behavioral parameters. Week after the KA treatment animals convulsive dose (10 mg/kg) is used to induce status were tested again in Laboras open field test. Finally, rat’s brains epilepticus leading to massive excitotoxic damage of were sliced and stained with Fluoro-Jade B to detect possible neuronal tissue (Doble 1999, Riljak et al. 2007). The KA neuronal degeneration. Treatment with KA increased the time induced status epilepticus is followed by latent period and spent by locomotion (p<0.01), exploratory rearing (p<0.05) and occurrence of spontaneous recurrent seizures (Albala et animals traveled longer distance (p<0.01).
    [Show full text]
  • Neuroprotective Effect of Citicoline on Retinal Cell Damage Induced by Kainic Acid in Rats
    Neuroprotective Effect of Citicoline on Retinal Cell Damage Induced by Kainic Acid in Rats Yong Seop Han, MD, In Young Chung, MD, Jong Moon Park, MD, PhD, Ji Myeong Yu, MD, PhD Department of Ophthalmology, College of Medicine, Gyeongsang National University, Jinju, Korea Purpose: To examine whether citicoline has a neuroprotective effect on kainic acid (KA)-induced retinal damage. Methods: KA (6 nmol) was injected into the vitreous of rat eyes. Citicoline (500mg/kg, i.p.) was administered to the rats once before and twice a day after KA-injection for 3- and 7-day intervals. The neuroprotective effects of citicoline were estimated by measuring the thickness of the various retinal layers using hematoxylin-eosin (H&E) staining. In addition, immunohistochemistry was conducted to elucidate the expression of endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS). Results: Morphometric analysis of retinal damage in KA-injected eyes showed significant cell loss in the inner nuclear layer (INL) and inner plexiform layer (IPL) of the retinas at 3 and 7 days after KA injection, but not in the outer nuclear layer (ONL). At 3 days after citicoline treatment, no significant changes were detected in the retinal thickness and immunoreactivities of eNOS and nNOS. The immunoreactivities of eNOS and nNOS increased in the retina at 7 days after the KA injection. However, prolonged treatment for 7 days significantly attenuated the immunoreactivities and the reduction of thickness. Conclusions: The results indicate that citicoline
    [Show full text]
  • L-Theanine Research Page 1 Updated: April 2008
    L-theanine Research Page 1 Updated: April 2008 Bryan, J. Psychological effects of dietary components of tea: caffeine and L-theanine. Nutr Rev, Vol 66, 2, pp 82-90. Feb 2008 Bukowski, J. L-theanine intervention enhances human gamma delta T lymphocyte function. Nutr Rev, Vol 66, 2, pp 96-102. Feb 2008. Haskell, C.F The effects of L-theanine, caffeine and their combination on cognition and mood. Biol Psychol, Vol 77, 2, pp 113-22, Feb 2008. Egashira, N. L-theanine prevents memory impairment induced by repeated cerebral ischemia in rats. Phytother Res, Vol 22, 1, pp 65-8, Jan 2008. Percival, S. Bioactive food components that enhance γδT Cell function may play a role in cancer prevention. Journal of Nutrition, Vol 138, 1, pp 1- 4, 2008 Rogers, P.J. Time for tea: mood, blood pressure and cognitive performance effects of caffeine and theanine administered alone and together. Psychopharmacology, Vol 195, 4, pp 569-577, Jan 2008. Yokogoshi, H. Effect of unique amino acid in green tea, L-theanine, on an enhancement of dopamine release and inhibitory neurotransmitters. Yakugaku Zashi, Vol 127, 4, pp 46-48, 2007 (Japanese). Kurihara, S. Enhancement of antigen-specific immunoglobulin G production in mice by co-administration of L-cystine and L-theanine. Journal of Veterinary Medical Science, Vol 69, 12, pp 1263. 2007. Yamada, T. L-theanine, r-glutamylethylamide, increases neurotransmission concentrations and neurotrophin mRNA levels in the brain during lactation. Life Sciences. Vol 81, 16, pp 1247-1255. 2007. Dimpfel, W. Theogallin and L-theanine as active ingredients in decaffeinated green tea extract, characterization in the freely moving rat by means of quantitative field potential analysis.
    [Show full text]
  • (Citicoline): Evidence for a Neuroprotective Role in Glaucoma
    nutrients Review 0 Cytidine 5 -Diphosphocholine (Citicoline): Evidence for a Neuroprotective Role in Glaucoma Stefano Gandolfi 1, Giorgio Marchini 2, Aldo Caporossi 3, Gianluca Scuderi 4 , Livia Tomasso 5 and Andrea Brunoro 5,* 1 Ophthalmology Unit, Department of Biological, Biotechnological and Translational Sciences, University of Parma, Via Gramsci, 14, 43126 Parma, Italy; stefano.gandolfi@unipr.it 2 Ophthalmology Unit, Department of Neurosciences, Biomedicine and Movement, University of Verona, P. le L. A. Scuro, 10, 37134 Verona, Italy; [email protected] 3 Ophthalmology Unit, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy., Largo F. Vito 1, 00168 Rome, Italy; [email protected] 4 Ophthalmology Unit, St. Andrea Hospital, NESMOS Department, University of Rome “Sapienza”, Via di Grottarossa 1035/1039, 00189 Rome, Italy; [email protected] 5 Bausch & Lomb IOM spa Viale Martesana 12, 20090 Vimodrone (MI), Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-02-27407331 Received: 6 February 2020; Accepted: 16 March 2020; Published: 18 March 2020 Abstract: Glaucoma, a heterogeneous set of progressively degenerative optic neuropathies characterized by a loss of retinal ganglion cells (RGCs) and typical visual field deficits that can progress to blindness, is a neurodegenerative disease involving both ocular and visual brain structures. Although elevated intraocular pressure (IOP) remains the most important modifiable risk factor of primary open-angle glaucoma (POAG) and is the main therapeutic target in treating glaucoma, other factors that influence the disease course are involved and reaching the optimal IOP target does not stop the progression of glaucoma, as the visual field continues to narrow.
    [Show full text]
  • Kainic Acid Binding in Goldfish Brain
    Brain Research, 571 (1992) 73-78 73 © 1992 Elsevier Science Publishers B.V. All rights reserved. 0006-8993/92/$05.00 BRES 17354 Glutamic acid-insensitive [3H]kainic acid binding in goldfish brain Roger E. Davis, George R. Wilmot and Jang-Ho J. Cha Mental Health Research Institute and Neuroscience Program, The University of Michigan, Ann Arbor, MI 48104-1687 (U.S.A.) (Accepted 29 August 1991) Key words: [3H]Kainic acid binding site; Autoradiography; Goldfish brain; Cerebellum; Cerebellar crest; Glutamic acid; a-Amino-3o hydroxy-5-methylisoxazolepropionicacid; Domoic acid Kainic acid is supposed to be a specific agonist for a subclass of excitatory glutamate receptors in the vertebrate CNS. An investigation of (2 nM) [3H]kainic acid binding sites in goldfish brain, using quantitative autoradiography, has revealed evidence for two types of kainic acid receptors which differ in sensitivity to glutamic acid. L-Glutamic acid (0.1-1 raM) displaced over 95% of specific [3H]kainic acid binding elsewhere in the brain but only 10-50% in the cerebellum and cerebellar crest. These structures apparently contain [3H]kainic acid binding sites that are extremely insensitive to glutamic acid. The glutamic acid-insensitive [3H]kainic acid binding was not displaced by quisqualic acid, kynurenic acid, a-amino-3-hydroxy-5-methylisoxazolepropionicacid (AMPA), or N-methyl-a-aspartatic acid, but was completely displaced by the kainic acid analogue domoic acid. The data indicate that two types of high affinity binding sites for [3H]kainic acid exist in the goldfish brain: glutamic acid-sensitive and glutamic acid-insensitive. High affinity [3H]kainic acid binding may therefore not always represent binding to subsets of glutamic acid receptors.
    [Show full text]
  • Neuroinflammation and the Kynurenine Pathway in CNS
    cells Review Neuroinflammation and the Kynurenine Pathway in CNS Disease: Molecular Mechanisms and Therapeutic Implications Mustafa N. Mithaiwala 1,2 , Danielle Santana-Coelho 1,2, Grace A. Porter 1,2 and Jason C. O’Connor 1,2,3,* 1 Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; [email protected] (M.N.M.); [email protected] (D.S.-C.); [email protected] (G.A.P.) 2 Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA 3 Department of Research, Audie L. Murphy VA Hospital, South Texas Veterans Heath System, San Antonio, TX 78229, USA * Correspondence: [email protected]; Tel.: +1-(210)-567-4232 Abstract: Diseases of the central nervous system (CNS) remain a significant health, social and eco- nomic problem around the globe. The development of therapeutic strategies for CNS conditions has suffered due to a poor understanding of the underlying pathologies that manifest them. Un- derstanding common etiological origins at the cellular and molecular level is essential to enhance the development of efficacious and targeted treatment options. Over the years, neuroinflammation has been posited as a common link between multiple neurological, neurodegenerative and neu- ropsychiatric disorders. Processes that precipitate neuroinflammatory conditions including genetics, infections, physical injury and psychosocial factors, like stress and trauma, closely link dysregulation Citation: Mithaiwala, M.N.; in kynurenine pathway (KP) of tryptophan metabolism as a possible pathophysiological factor that Santana-Coelho, D.; Porter, G.A.; ‘fuel the fire’ in CNS diseases. In this study, we aim to review emerging evidence that provide O’Connor, J.C.
    [Show full text]
  • Involvement of the Thalamic Parafascicular Nucleus in Mesial Temporal Lobe Epilepsy
    The Journal of Neuroscience, December 8, 2010 • 30(49):16523–16535 • 16523 Neurobiology of Disease Involvement of the Thalamic Parafascicular Nucleus in Mesial Temporal Lobe Epilepsy Me´lanie Langlois,1 Pierre-Olivier Polack,3 He´le`ne Bernard,1 Olivier David,2 Ste´phane Charpier,3 Antoine Depaulis,1 and Colin Deransart1 1Equipe 9, Dynamique des Re´seaux Synchrones Epileptiques, and 2Equipe 5, Neuroimagerie Fonctionnelle et Me´tabolique, Grenoble Institut des Neurosciences, Institut National de la Sante´ et de la Recherche Me´dicale U 836-Université Joseph Fourier-Commisariat à l’Energie Atomique Centre Hospitalier Universitaire, 38700 La Tronche, France, and 3Centre de Recherche de l’Institut du Cerveau et de la Moelle Épinie`re, Universite´ Pierre et Marie Curie/Institut National de la Sante´ et de la Recherche Me´dicale, Unite´ Mixte de Recherche-S 975, Centre National de la Recherche Scientifique Unite´ Mixte de Recherche 7225, Hoˆpital Pitie´-Salpeˆtrie`re, 75013 Paris, France Mesial temporal lobe epilepsy (MTLE) is characterized by focal seizures, associated with hippocampal sclerosis, and often resistance to antiepileptic drugs. The parafascicular nucleus (PF) of the thalamus is involved in the generation of physiological oscillatory rhythms. It receives excitatory inputs from the cortex and inhibitory inputs from the basal ganglia, a system implicated in the control of epileptic seizures. The aim of this study was to examine the involvement of the PF in the occurrence of hippocampal paroxysmal discharges (HPDs) in a chronic animal model of MTLE in male mice. We recorded the local field potential (LFP) and the extracellular and intracellular activity of hippocampal and PF neurons during spontaneous HPDs in vivo.
    [Show full text]
  • Epileptic Brain Fluorescent Imaging Reveals Apigenin Can Relieve the Myeloperoxidase-Mediated Oxidative Stress and Inhibit Ferroptosis
    Epileptic brain fluorescent imaging reveals apigenin can relieve the myeloperoxidase-mediated oxidative stress and inhibit ferroptosis Chenwen Shaoa,b,1, Jiwen Yuanb,1, Yani Liub, Yajuan Qinc, Xueao Wangb, Jin Gub, Guiquan Chend, Bing Zhange, Hong-Ke Liua, Jing Zhaob,2, Hai-Liang Zhub,2, and Yong Qiana,b,2 aSchool of Chemistry and Materials Science, Nanjing Normal University, 210046 Nanjing, China; bState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023 Nanjing, China; cSchool of Pharmacy, Nanjing Medical University, 211166 Nanjing, China; dState Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, 210061 Nanjing, China; and eDepartment of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008 Nanjing, China Edited by Gregory A. Petsko, Brigham and Women’s Hospital, Boston, MA, and approved March 18, 2020 (received for review October 16, 2019) Myeloperoxidase (MPO)-mediated oxidative stress has been sug- efficient lead compounds for epilepsy treatment remain highly gested to play an important role in the pathological dysfunction of desirable but challenging. epileptic brains. However, there is currently no robust brain- Because of the unique advantages of fluorescent imaging, in- imaging tool to detect real-time endogenous hypochlorite (HClO) cluding high sensitivity and selectivity, simplicity, excellent spa- generation by MPO or a fluorescent probe for rapid high- tiotemporal resolution, and noninvasive visualization, activity- throughput screening of antiepileptic agents that control the based sensing probes have been considered as desirable and MPO-mediated chlorination stress. Herein, we report an efficient indispensable tools for mapping reactive oxygen species in living two-photon fluorescence probe (named HCP) for the real-time de- biosystems (12–20).
    [Show full text]