E ALICE Silicon Pixel Detector System

Total Page:16

File Type:pdf, Size:1020Kb

E ALICE Silicon Pixel Detector System COMENIUS UNIVERSITY, BRATISLAVA, SLOVAKIA Faculty of Mathematics, Physics and Informatics e ALICE Silicon Pixel Detector System Svetozár Kapusta Under the supervision of Peter Choula CERN 2009 I declare that I have elaborated this thesis independently, citing all information sources that Iused. CERN, Svetozár Kapusta “e observer, when he seems to himself to be observing a stone, is really, if physics is to be believed, observing the effects of the stone upon himself.” Bertrand Russell For my parents Contents List of Abbreviations ix 1Introduction 1 1.1 eQuark-GluonPlasma................................ 3 2 e Large Hadron Collider and its Experiments 7 2.1 eLargeHadronCollider................................ 7 2.2 Acceleratorphysics.................................... 7 2.3 eLargeHadronColliderdesignparameters.................... 9 2.4 eLHCExperiments................................... 13 2.4.1 eATLASDetector............................... 14 2.4.2 eCMSDetector................................ 14 2.4.3 eALICEDetector............................... 15 2.4.4 eLHCbDetector................................ 15 2.4.5 eTOTEMDetector............................... 16 2.4.6 eLHCFDetector................................ 17 2.5 eLHCStartupandcurrentstatus........................... 17 3 A Large Ion Collider Experiment (ALICE) 21 3.1 eALICECentralBarrel................................. 22 3.1.1 InnerTraingSystem.............................. 23 i ii CONTENTS 3.1.2 TimeProjectionChamber........................... 24 3.1.3 ACORDE..................................... 24 3.1.4 TimeOfFlightdetector............................. 25 3.1.5 HighMomentumParticleIdentificationDetector.............. 25 3.1.6 TransitionRadiationDetector......................... 25 3.1.7 PhotonSpectrometer.............................. 25 3.1.8 ElectromagneticCalorimeter.......................... 26 3.2 ForwardDetectors..................................... 26 3.3 eForwardMuonSpectrometer............................ 26 3.4 OnlineSystems....................................... 27 3.4.1 ExperimentalControlSystem......................... 27 3.4.2 Trigger....................................... 27 3.4.3 DataAcquisition................................. 27 3.4.4 High-LevelTrigger................................ 28 3.4.5 DetectorControlSystem............................ 28 4 e ALICE Silicon Pixel Detector 29 4.1 SPDLayout......................................... 30 4.2 e ALICE1LHCb Chip.................................. 34 5 e Silicon Pixel Detector Testbeams and Commissioning 39 5.1 Assemblytestbeam.................................... 40 5.1.1 ExperimentalSetup............................... 40 5.1.2 X-Ytable..................................... 41 5.1.3 Results....................................... 41 5.2 Laddertestbeam...................................... 44 5.2.1 Experimentalsetup............................... 44 CONTENTS iii 5.2.2 Results....................................... 45 5.3 Highmultiplicitytestbeam................................ 49 5.3.1 ExperimentalSetup............................... 49 5.3.2 PCI-2002 . ....................... 51 5.3.3 Results....................................... 51 5.4 JointITStestbeam..................................... 57 5.4.1 ExperimentalSetup............................... 57 5.4.2 DataAcquisitionandDetectorControlSystem............... 59 5.4.3 Trigger....................................... 60 5.4.4 ResultsandOfflineAnalysis.......................... 60 5.5 SimulationoftheSiliconPixelDetector........................ 61 5.6 SPD Commissioning and Cosmic runs in 2007-2009 . 63 5.6.1 Calibrationandalignment........................... 65 6 e ALICE Detector Control System 69 6.1 IntroductiontoControlSystems............................ 69 6.1.1 JCOP........................................ 70 6.2 PVSS............................................. 72 6.3 ALICEDCS.......................................... 76 6.4 Systemlayout........................................ 77 6.4.1 Fieldlayer..................................... 78 6.4.2 Controllayer................................... 78 6.4.3 Supervisorylayer................................. 79 6.5 eFiniteStateMaines................................ 79 6.6 Partitioning......................................... 80 6.7 eUserInterface..................................... 81 iv CONTENTS 6.8 eJCOPFRAMEWORK.................................. 84 6.9 Dataflow.......................................... 85 6.9.1 eSynronizationDataFlowinALICEDCS................ 87 6.9.2 eControlsDataFlowinALICEDCS..................... 88 6.10ALICEDCSdatabase.................................... 92 6.10.1Configurationdatabase............................. 94 6.10.2ArivalDatabase................................ 98 6.10.3PVSSAriving.................................. 99 6.10.4PVSS-OracleAriving............................. 100 6.10.5PVSS-OracleArivingPerformance..................... 103 6.10.6ALICEDCSdatabaseoperationandmaintenance...............105 6.11AMANDA......................................... 110 6.12Systemcommissioningandfirstoperationexperience................ 113 7 Conclusions 115 Bibliography 118 List of Figures 128 List of Tables 137 List of Publications 138 Anowledgments 142 Názov práce: Kremíkové pixlové detektory pre experiment ALICE. Autor: Svetozár Kapusta Školitel: Peter Choula Klučove slová: testbeam,SPD,ALICE,DCS Veľký hadrónový zrážač (LHC) sa momentálne blíži svojmu opätovnému spusteniu v Európskom Centre pre Jadrový Výskum (CERN). LHC bol po prvý krát spustený 10-teho Septembra 2008. Spustenie bolo obrovským úspeom, pretože už v rámci jednej hodiny od vpustenia zväzkov do LHC sa podarilo previesť prvý zväzok celým urýľovačom v jednom smere a ešte v ten istý deň v opačnom smere. Počiatočná eufória bola však prerušená elektriou nehodou 19-teho Septembra počas zvyšovania nominálneho prúdu v dipóle v Sektore 34 zo 7 kA na 9,3 kA (čo zodpovedá zväzku s energiou 5,5 TeV). Táto nehoda spôsobila meanié škody, únik hélia a značné oneskorenie očakávaný kolízií na LHC. Experiment ALICE bude využívať zrážky urýlený častíc vytváraný na LHC za účelom študovania správania sa silne interagujúcej hmoty v extrémny hustotá a vysoký teplotá. Kremíkový pixlový detektor (SPD) tvorí dve najvnútornejšie vrstvy vnútorného dráhovacieho systému (ITS) detektora ALICE. Dve vrsty cylindriého tvaru sa naádzajú 3,9 cm a 7,6 cm od bodu interakcií (IP). Jednou z hlavný úloh detektora SPD je poskytovať čo najpresnejšiu polohu elektriy nabitý častíc, ktoré ním preleteli. Táto informácia je mimoriadne dôležitá pre analýzu ťažký kvarkov rozpadajúci sa slabou interakciou, pretože typiým znakom týto rozpadov sú sekundárne vertexy vzdialené len niekolko stoviek mikrometrov od primárny vertexov. Pri zrážka ťažký iónov olova môže hustota častíc dosiahnuť až 80 dráh na cm2 vo vnútornej vrstve SPD. SPD dosahuje polohové rozlíšenie okolo ≈12 μm v smere rϕ aokolo≈70 μm v smere z. Obsadenosť kanálov detektora SPD sa očakáva v rozmedzí od 0,4% do 1,5% čo umožnuje detektoru SPD byť výnikajúcim detektorom na meranie násobnosti nabitý častíc v oblasti pseudorapidity |η| < 2. Ďaľšou jedinečnou vlastnosťou detektora SPD je, že skombinovaním všetkýjehozrekonštruovanýdráhmôžemezískaťhrubýodhadpolohyprimárnehovertexu. JednouzvelkývýzievjeajvysokéobmedzenienapoužitémateriályzktorýjeSPDpostavený (<1% z radiačnej dĺžky na jednu vrstvu) za účelom čo najmenšieho ovplyvňovania traverzujúci častíc. Kremíkový senzor a jeho vyčítavajúci čip majú spolu celkovú hrúbku iba 350 μm a spojenia pre signály medzi nimi a riadiacou a vyčítavacou elektronikou sú z hliníka. V tejto dizertačnej práci prezentujem môj prínos k projektu ALICE SPD, zhrniem fázy vývoja, zhotovovania a testov projektu ALICE SPD. Môj prínos k projektu ALICE DCS je ťiež predstavený. V uplynulý roko kolaborácia ALICE SPD uskutočnila štyri testy so zväzkami urýlený častíc. Hlavným cieľom týto testov bola kontrola funkčnosti čipov a príslušnej elektroniky, kremíkový senzorov, vyčítavajúcej elektroniky a takisto aj systémov online - DAQ, Trigger a DCS spolu aj s i programovým vybavením a taktiež aj systémov offline. Prototypy vyčítavajúci pixlový čipov a kremíkový senzorov boli testované počas odlišný podmienok (určovanie prahu detekcie, rôzne naklonenia vzhľadom na zväzok, meranie detekčnej účinnosti v závislosti od veľkosti záverného napätia, atď.). Okrem vyčítavajúci pixlový čipov a kremíkový sen- zorov s veľkou hrúbkou boli takisto testované detektory s malou hrúbkou a taktiež aj 5-čipové detektory (tzv. ladder) tak, ako boli navrhnuté pre experiment ALICE. Počas a najmä po testo so zväzkami urýlený častíc som vyvíjal programové vybavenia na overenie kvality zberaný dát, na zlúčenie dvo dátový tokov z dvo rôzny vrstiev a typov detektora SPD, na hľa- danie a možné odstránenie pixlov s nadmiernym šumom, na koreláciu priestorový koordinát z rôzny vrstiev detektora SPD, na komplexnú offline analýzu nameraný dát, obsahujúcu zobrazenie zásahov detektorov SPD, integrálne zobrazenie zásahov detektorov SPD, analýzu event po evente, určenie detekčnej účinnosti, násobnosti častíc, veľkosti klastrov, atď. Prototyp finálnej vyčítavajúcej elektroniky a dvo finálny 5-čipový detektorov bol tiež otestovaný za overenia funkčnosti programového vybavenia online systémov DAQ, Trigger a DCS a systému offline. Konfigurácia, vyčítavanie a ovládanie detektora SPD vykonávané pomocou Ovládacieho sys- tému detektora (DCS). Ako člen tímu pre Koordináciu ovládacieho systému experimentu ALICE (ACC) som mal možnosť podieľať sa na koncepcii, vývoji, uvedení do
Recommended publications
  • Very Forward Photon Production in Proton-Proton Collisions Measured by the Lhcf Experiment at the Large Hadron Collider
    Very forward photon production in proton-proton collisions measured by the LHCf experiment at the Large Hadron Collider Author: Alessio Tiberio Supervisor: Lorenzo Bonechi The LHC-forward (LHCf) experiment, situated at the LHC accelerator, has measured neutral particles production in a very forward region (pseudo-rapidity η > 8:4) in proton-proton and proton- lead collisions. The main purpose of the LHCf experiment is to test hadronic interaction models used in ground based cosmic rays experiments to simulate cosmic rays induced air-showers in the Earth's atmosphere. Highest energy cosmic rays can only be detected from secondary particles which are produced by the interaction of the primary particle with nuclei of the atmosphere. Studying the development of air showers, it is possible to reconstruct the type and kinematic parameters of primary particle. For this reason, Monte Carlo (MC) simulations with accurate hadronic interaction models are needed to reproduce the development of air-showers. Since the energy flow of secondary particles is concentrated in the forward direction, measurements of particle production at high pseudo-rapidity (i.e. small angles) are very important. Furthermore, soft QCD interactions (non perturbative regime) dominates in the very forward region and MC simulations of air showers are based on phenomenological model, so inputs from experimental data are crucial. The experiment is composed by two independent detectors (Arm1 and Arm2 ) located at 140 m from the ATLAS's interaction point (IP1) on opposite sides [1]. Detectors are placed inside the Target Neutral Absorber (TAN), where the beam pipe from IP1 turns into two separates tubes: the position between the two beam pipes allows to measure particles produced at zero degrees.
    [Show full text]
  • Detection of Cosmic Rays at the LHC Detection of Cosmic Rays at the LHC
    Particle and Astroparticle Physics at the Large Hadron Collider --Hadronic Interactions-- Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA NTU, Singapore November 15th 2019 Outline • Introduction on the LHC and LHC physics program • LHC results for Astroparticle physics • Measurements of event characteristics at 13 TeV • Forward measurements • Cosmic ray measurements • LHC and light ions? • Summary The LHC Machine and Experiments MoEDAL LHCf FASER totem CM energy → Run-1: (2010-2012) 7/8 TeV Run-2: (2015-2018) 13 TeV -> Now 8 experiments Run-2 starts proton-proton Run-2 finished 24/10/18 6:00am 2018 2010-2012: Run-1 at 7/8 TeV CM energy Collected ~ 27 fb-1 2015-2018: Run-2 at 13 TeV CM Energy Collected ~ 140 fb-1 2021-2023/24 : Run-3 Expect ⇨ 14 TeV CM Energy and ~ 200/300 fb-1 The LHC is also a Heavy Ion Collider ALICE Data taking during the HI run • All experiments take AA or pA data (except TOTEM) Expected for Run-3: in addition short pO and OO runs ⇨ pO certainly of interest for Cosmic Ray Physics Community! 4 10 years of LHC Operation • LHC: 7 TeV in March 2010 ->The highest energy in the lab! • LHC @ 13 TeV from 2015 onwards March 30 2010 …waiting.. • Most important highlight so far: …since 4:00 am The discovery of a Higgs boson • Many results on Standard Model process measurements, QCD and particle production, top-physics, b-physics, heavy ion physics, searches, Higgs physics • Waiting for the next discovery… -> Searches beyond the Standard Model 12:58 7 TeV collisions!!! New Physics Hunters
    [Show full text]
  • NASA Process for Limiting Orbital Debris
    NASA-HANDBOOK NASA HANDBOOK 8719.14 National Aeronautics and Space Administration Approved: 2008-07-30 Washington, DC 20546 Expiration Date: 2013-07-30 HANDBOOK FOR LIMITING ORBITAL DEBRIS Measurement System Identification: Metric APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED NASA-Handbook 8719.14 This page intentionally left blank. Page 2 of 174 NASA-Handbook 8719.14 DOCUMENT HISTORY LOG Status Document Approval Date Description Revision Baseline 2008-07-30 Initial Release Page 3 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 4 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 6 of 174 NASA-Handbook 8719.14 TABLE OF CONTENTS 1 SCOPE...........................................................................................................................13 1.1 Purpose................................................................................................................................ 13 1.2 Applicability ....................................................................................................................... 13 2 APPLICABLE AND REFERENCE DOCUMENTS................................................14 3 ACRONYMS AND DEFINITIONS ...........................................................................15 3.1 Acronyms............................................................................................................................ 15 3.2 Definitions .........................................................................................................................
    [Show full text]
  • Event Recorded by ATLAS When the LHC's Beam 2 Reached Closed
    A ‘beam splash’ event recorded by ATLAS when the LHC’s beam 2 reached closed collimators near the detector on 20 November. 12 | CERN “The imminent start-up of the LHC is an event that excites everyone who has an interest in the fundamental physics of the Universe.” Kaname Ikeda, ITER Director-General, CERN Bulletin, 19 October 2009. Physics and Experiments The moment that particle physicists around the world had been The EMCal is an upgrade for ALICE, having received full waiting for finally arrived on 20 November 2009 when protons approval and construction funds only in early 2008. It will detect circulated again round the LHC. Over the following days, the high-energy photons and neutral pions, as well as the neutral machine passed a number of milestones, from the first collisions component of ‘jets’ of particles as they emerge from quark� at 450 GeV per beam to collisions at a total energy of 2.36 TeV gluon plasma formed in collisions between heavy ions; most — a world record. At the same time, the LHC experiments importantly, it will provide the means to select these events on began to collect data, allowing the collaborations to calibrate line. The EMCal is basically a matrix of scintillator and lead, detectors and assess their performance prior to the real attack which is contained in ‘supermodules’ that weigh about eight tonnes. It will consist of ten full supermodules and two partial on high-energy physics in 2010. supermodules. The repairs to the LHC and subsequent consolidation work For the ATLAS Collaboration, crucial repair work included following the incident in September 2008 took approximately modifications to the cooling system for the inner detector.
    [Show full text]
  • Sub Atomic Particles and Phy 009 Sub Atomic Particles and Developments in Cern Developments in Cern
    1) Mahantesh L Chikkadesai 2) Ramakrishna R Pujari [email protected] [email protected] Mobile no: +919480780580 Mobile no: +917411812551 Phy 009 Sub atomic particles and Phy 009 Sub atomic particles and developments in cern developments in cern Electrical and Electronics Electrical and Electronics KLS’s Vishwanathrao deshpande rural KLS’s Vishwanathrao deshpande rural institute of technology institute of technology Haliyal, Uttar Kannada Haliyal, Uttar Kannada SUB ATOMIC PARTICLES AND DEVELOPMENTS IN CERN Abstract-This paper reviews past and present cosmic rays. Anderson discovered their existence; developments of sub atomic particles in CERN. It High-energy subato mic particles in the form gives the information of sub atomic particles and of cosmic rays continually rain down on the Earth’s deals with basic concepts of particle physics, atmosphere from outer space. classification and characteristics of them. Sub atomic More-unusual subatomic particles —such as particles also called elementary particle, any of various self-contained units of matter or energy that the positron, the antimatter counterpart of the are the fundamental constituents of all matter. All of electron—have been detected and characterized the known matter in the universe today is made up of in cosmic-ray interactions in the Earth’s elementary particles (quarks and leptons), held atmosphere. together by fundamental forces which are Quarks and electrons are some of the elementary represente d by the exchange of particles known as particles we study at CERN and in other gauge bosons. Standard model is the theory that laboratories. But physicists have found more of describes the role of these fundamental particles and these elementary particles in various experiments.
    [Show full text]
  • Comparative Visualization of Protein Sequences
    Masaryk University Faculty of Informatics Comparative Visualization of Protein Sequences Master’s Thesis Pavol Ulbrich Brno, Spring 2018 Masaryk University Faculty of Informatics Comparative Visualization of Protein Sequences Master’s Thesis Pavol Ulbrich Brno, Spring 2018 This is where a copy of the official signed thesis assignment and a copy ofthe Statement of an Author is located in the printed version of the document. Declaration Hereby I declare that this paper is my original authorial work, which I have worked out on my own. All sources, references, and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Pavol Ulbrich Advisor: doc. RNDr. Barbora Kozlíková, Ph.D. i Acknowledgements I would like to thank my supervisor, Bára Kozlíková, for an excellent mentoring and guidance through the last stages of my master studies. Then my thanks go to two of my colleagues, Víťa Matela and Vojta Frodl, for countless nights in sixth floor of the faculty building. Writing our theses. iii Abstract To better understand the constitution and spatial arrangement of protein sequences, L. Kocincová et al. [1] proposed a novel method of comparative visualization, which combines traditionally used 1D and 3D representations. Its main contribution is the ability to observe the spatial differences between the proteins without any occlusion problems, commonly present in 3D view. However, the practical im- plementation of the innovative method has remained unfinished. This thesis aims to create a web application for comparative visualization of protein secondary structures, which will benefit from the qualities of the method proposed by Kocincová et al.
    [Show full text]
  • Lexical Innovation on the Internet - Neologisms in Blogs
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2009 Lexical innovation on the internet - neologisms in blogs Smyk-Bhattacharjee, Dorota Abstract: Studien im Bereich des Sprachwandels beschreiben traditionellerweise diachronische Verän- derungen in den Kernsubsystemen der Sprache und versuchen, diese zu erklären. Obwohl ein Grossteil der Sprachwissenschaftler sich darüber einig ist, dass die aktuellen Entwicklungen in einer Sprache am klarsten im Wortschatz reflektiert werden, lassen die lexikographischen und morphologischen Zugänge zur Beobachtung des lexikalischen Wandels wichtige Fragen offen. So beschäftigen sich letztere typischer- weise mit Veränderungen, die schon stattgefunden haben, statt sich dem sich zum aktuellen Zeitpunkt vollziehenden Wandel zu widmen. Die vorliegende Dissertation bietet eine innovative Lösung zur Un- tersuchung des sich vollziehenden lexikalischen Wandels sowohl in Bezug auf die Datenquelle als auch bzgl. der verwendeten Methodologie. In den vergangenen 20 Jahren hat das Internet unsere Art zu leben, zu arbeiten und zu kommunizieren drastisch beeinflusst. Das Internet bietet aber auch eine Masse an frei zugänglichen Sprachdaten und damit neue Möglichkeiten für die Sprachforschung. Die in dieser Arbeit verwendeten Daten stammen aus einem Korpus englischsprachiger Blogs, eine Art Computer gestützte Kommunikation (computer-mediated communication, CMC). Blogs bieten eine neue, beispiel- lose Möglichkeit, Wörtern nachzuspüren zum Zeitpunkt, in der sie Eingang in die Sprache finden. Um die Untersuchung des Korpus zu vereinfachen, wurde eine Software mit dem Namen Indiana entwickelt. Dieses Instrument verbindet den Korpus basierten Zugang mit einer lexikographischen Analyse. Indiana verwendet eine Kombination von HTML-to-text converter, eine kumulative Datenbank und verschiede Filter, um potentielle Neologismen im Korpus identifizieren zu können.
    [Show full text]
  • Particle Accelerators and Experiments Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA NTU, Singapore
    Particle Accelerators and Experiments Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA NTU, Singapore March 30th- April 2nd Muscat 1 Part I Accelerators 2 Different types of Methodology tools and equipment are needed to observe different sizes of object Only particle accelerators can explore the tiniest objects in the 5 Universe 5 Accelerators are Powerful Microscopes Planck constant They make high energy particle beams h = momentum that allow us to see small things. wavelength p ~ energy seen by low energy seen by high energy beam of particles beam of particles (poorer resolution) (better resolution) High Energy Physics Experiments Rutherford experiment (1909) Centre of mass energy squared s=E1m2 Centre of mass energy squared s=4E1E2 Detectors techniques have followed these developments Accelerators for Charged Particles 9 Recent High Energy Colliders Highest energies can be reached with proton colliders Machine Year Beams Energy (s) Luminosity SPPS (CERN) 1981 pp 630-900 GeV 6.1030cm-2s-1 Tevatron (FNAL) 1987 pp 1800-2000 GeV 1031-1032cm-2s-1 SLC (SLAC) 1989 e+e- 90 GeV 1030cm-2s-1 LEP (CERN) 1989 e+e- 90-200 GeV 1031-1032cm-2s-1 HERA (DESY) 1992 ep 300 GeV 1031-1032cm-2s-1 RHIC (BNL) 2000 pp /AA 200-500 GeV 1032cm-2s-1 LHC (CERN) 2009 pp (AA) 7-14 TeV 1033-1034cm-2s-1 Luminosity = number of events/cross section/sec • Limits on circular machines – Proton colliders: Dipole magnet strength superconducting magnets – Electron colliders: Synchrotron10 radiation/RF power: loss ~E4/R2 How Many Accelerators Worldwide? a) 1-10 b) 10-100 c) 100-1,000 d) 1,000-10,000 e) > 10,000 11 Accelerators Worldwide > 25,000 accelerators in use 12 Accelerators Worldwide 44% Radio- therapy 13 Accelerators Worldwide 44% 40% Radio- Ion therapy implant.
    [Show full text]
  • Femtoscopy of Proton-Proton Collisions in the ALICE Experiment
    Femtoscopy of proton-proton collisions in the ALICE experiment DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Nicolas Bock, B.Sc. B.Eng., M.Sc. Graduate Program in Physics The Ohio State University 2011 Dissertation Committee: Professor Thomas J. Humanic, Advisor Professor Michael Lisa #1 Professor Klaus Honscheid #2 Professor Richard Furnstahl #3 c Copyright by Nicolas Bock 2011 Abstract The Large Ion Collider Experiment (ALICE) at CERN has been designed to study matter at extreme conditions of temperature and pressure, with the long term goal of observing deconfined matter (free quarks and gluons), study its properties and learn more details about the phase diagram of nuclear matter. The ALICE experiment provides excellent particle tracking capabilities in high multiplicity proton-proton and heavy ion collisions, allowing to carry out detailed research of nuclear matter. This dissertation presents the study of the space time structure of the particle emission region, also known as femtoscopy, in proton- proton collisions at 0.9, 2.76 and 7.0 TeV. The emission region can be characterized by taking advantage of the Bose-Einstein effect for identical particles, which causes an enhancement of produced identical pairs at low relative momentum. The geometry of the emission region is related to the relative momentum distribution of all pairs by the Fourier transform of the source function, therefore the measurement of the final relative momentum distribution allows to extract the initial space-time characteristics. Results show that there is a clear dependence of the femtoscopic radii on event multiplicity as well as transverse momentum, a signature of the transition of nuclear matter into its fundamental components and also of strong interaction among these.
    [Show full text]
  • Prices May Be Changed at Any Time Without Further Notice. 1
    2021 Prices may be changed at any time without further notice. 1 2 Prices may be changed at any time without further notice. Prices may be changed at any time without further notice. 3 TABLE OF CONTENTS PORTABLES ................................. .8-15 TUNE 660 NC ..................................... 31 GO 3 ................................................. 8 TUNE 510 BT ...................................... .32 CLIP 4 ................................................ 9 ENDURANCE PEAK II ........................... .33 CHARGE 5 ......................................... 10 REFLECT MINI NC ............................... .34 XTREME 3 ........................................... 11 PARTYBOX ON-THE-GO ........................ 12 AFTERMARKET AUDIO ............... 38-55 PARTYBOX 310 ................................... 13 ARENA X .......................................... 38 PBM 100 ............................................ 14 ARENA ............................................ .39 WIRELESS MICROPHONE ...................... 15 STADIUM SPEAKERS ............................ .40 STADIUM SUBWOOFERS ....................... 41 HOME AUDIO ............................. .18-21 STAGE SUBWOOFERS .......................... .42 BAR 5.0 MULTIBEAM ............................. 18 STAGE 1200D. .43 CITATION AMP 250 .............................. 19 BASSPRO 8 ....................................... .44 ONYX STUDIO 7 ................................. 20 JBL BASSHUB ..................................... .45 BASSPROGO ..................................... 46 HEADPHONES
    [Show full text]
  • The Muon Puzzle in Cosmic-Ray Induced Air Showers and Its Connection to the Large Hadron Collider
    The Muon Puzzle in cosmic-ray induced air showers and its connection to the Large Hadron Collider 1 2 Johannes Albrecht • Lorenzo Cazon • 1,? 3 Hans Dembinski • Anatoli Fedynitch • 4 5 Karl-Heinz Kampert • Tanguy Pierog • 1 6 Wolfgang Rhode • Dennis Soldin • 1 5 5 Bernhard Spaan • Ralf Ulrich • Michael Unger Abstract High-energy cosmic rays are observed indi- Hadron Collider. An effect that can potentially explain rectly by detecting the extensive air showers initiated the puzzle has been discovered at the LHC, but needs to in Earth's atmosphere. The interpretation of these be confirmed for forward produced hadrons with LHCb, observations relies on accurate models of air shower and with future data on oxygen beams. physics, which is a challenge and an opportunity to test QCD under extreme conditions. Air showers are Keywords cosmic rays, air showers, particle physics, hadronic cascades, which eventually decay into muons. strangeness enhancement, cosmic rays, mass composi- The muon number is a key observable to infer the tion mass composition of cosmic rays. Air shower simula- tions with state-of-the-art QCD models show a signif- icant muon deficit with respect to measurements; this 1 Introduction is called the Muon Puzzle. The origin of this discrep- ancy has been traced to the composition of secondary Cosmic rays are fully-ionised nuclei with relativistic particles in hadronic interactions. The muon discrep- kinetic energies that arrive at Earth. The elements ancy starts at the TeV scale, which suggests that this range from proton to iron, with a negligible fraction change in hadron composition is observable at the Large of heavier nuclei.
    [Show full text]
  • Results from Lhcf Experiment
    EPJ Web of Conferences 28, 02003 (2012) DOI: 10.1051/epjconf/ 20122802003 C Owned by the authors, published by EDP Sciences, 2012 Results from LHCf Experiment Alessia Tricomi on behalf of the LHCf Collaboration University of Catania and INFN Catania, Italy √ Abstract.√ The LHCf experiment has taken data in 2009 and 2010 p-p collisions at LHC at s = 0.9 TeV and s = 7 TeV. The measurement of the forward neutral particle spectra produced in proton-proton collisions at LHC up to an energy of 14 TeV in the center of mass system are of fundamental importance to calibrate the Monte Carlo models widely used in the high energy cosmic ray (HECR) field, up to an equivalent laboratory energy of the order of 1017 eV. In this paper the first results on the inclusive photon spectrum measured by LHCf is reported. Comparison of this spectrum with the model expectations show significant discrepancies, mainly in the high energy region. In addition, perspectives for future analyses as well as the program for the next data taking period, in particular the possibility to take data in p-Pb collisions, will be discussed. 1 Introduction Each calorimeter (ARM1 and ARM2) has a double tower structure, with the smaller tower located at zero degree col- The LHCf experiment at LHC has been designed to cali- lision angle, approximately covering the region with pseudo- brate the hadron interaction models used in High Energy rapidity η > 10 and the larger one, approximately cover- Cosmic Ray (HECR) Physics through the measurement of ing the region with 8.4 < η < 10.
    [Show full text]