Fiji and Tonga Checklist to Accompany the Dvds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morphology and Histology of the Testicles
MORPHOLOGY AND HISTOLOGY OF THE TESTICLES OF QUEEN ANGELFISH Holacanthus ciliaris Arquivos de Ciências do Mar (LINNAEUS, 1758) (TELEOSTEI: PERCIFORMES: POMACANTHIDAE) Morfologia e histologia dos testículos do peixe-anjo Holacanthus ciliaris (Linnaeus, 1758) (Teleostei: Perciformes: Pomacanthidae) Mara C. Nottingham1 , José Roberto Feitosa Silva2 , Maria Elisabeth de Araújo1, 3 ABSTRACT Aspects of the morphology and histology of the testicles of Holacanthus ciliaris were studied in this research. Monthly collections of living fish, totaling 39 males, were carried out between December, 2000 and November, 2001 on the coast of Ceará State, Brazil. The total length of the fish varied between 63.4 mm and 334 mm, the standard length between 50.9 mm and 270 mm, and the total weight between 6,70 g and 590 g. The testicles were bilobed and ribbon-like in shape, with firm texture and coloration varying between transparent and amber. In the histological study, male gametes were found in all espermatogenesis stages along the months of the year. Key words: Holacanthus ciliaris, Pomacanthidae, reef fish, reproduction. RESUMO Aspectos da morfologia e histologia de testículos de Holacanthus ciliaris foram estudados nesta pesquisa. Coletas mensais de peixes vivos, totalizando 39 machos, foram realizadas entre os meses de dezembro de 2000 e novembro de 2001 na costa do Estado do Ceará. O comprimento total dos peixes variou entre 63,4 e 334mm, o comprimento padrão entre 50,9 e 270mm e o peso total entre 6,70 e 590g. Os testículos apresentavam-se bilobulados, em forma de fita, com textura firme e coloração variando entre transparente e âmbar. No estudo histológico foram encontrados gametas masculinos em todos os estágios da espermatogênese durante os meses do ano. -
Sea Cucumber Abundance, Diversity and Fisheries in Samoa; an Assessment of Lagoon Occurring Sea Cucumbers
2006-05-17 Sea cucumber abundance, diversity and fisheries in Samoa; an assessment of lagoon occurring sea cucumbers Part I: A wide approached survey to assess status of commercial beche-de-mer species in Samoa. & Part II: The subsistence and artisanal sea cucumber fishery, with particular focus on Stichopus horrens, in Samoa. B.G.H. Eriksson Preface This study was performed in Samoa from 2005-09-20 to 2005-12-20 and finalises my university studies at Uppsala University towards an M.Sc in Biology. The work presented in this paper came about after a series of events and I owe greatly to all of those that are mentioned in the acknowledgement section. During 2005 a request was put forward to The Secretariat of the Pacific Community (SPC) from the Samoan Fisheries Division to perform a survey on the coastal resources (including sea cucumber resources) around the country of Samoa in the South Pacific. The coastal component of the Pacific Region Oceanic and Coastal Fisheries (PROCFish/C) section of SPC started up this work in collaboration with the Samoan Fisheries Division in June and August 2005 and covered finfish and invertebrate resources in parts of Upolu and Savaii. The invertebrate surveys included fisheries dependent and fisheries independent data collection. The fisheries independent surveys were in-water assessments of stock and habitat in grounds that was pre-selected because of fishing activities in that area. The data collected was generally density estimates (incl. species composition) across shifting habitats, but also biological data, such as length and weight measurements. Alongside this information fishery dependent data was also collected. -
Centropyge, Pomacanthidae
Galaxea, Journal of Coral Reef Studies 22: 31-36(2020) Note Filling an empty role: first report of cleaning by pygmy angelfishes (Centropyge, Pomacanthidae) Pauline NARVAEZ*1, 2, 3 and Renato A. MORAIS1, 3 1 ARC Centre of Excellence for Coral Reef Studies, 1 James Cook Drive, Townsville, Queensland 4810, Australia 2 Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, 1 James Cook Drive, Townsville, Queensland 4810, Australia 3 College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville, Queensland 4810, Aus tralia * Corresponding author: Pauline Narvaez Email: [email protected] Communicated by Frederic Sinniger (Associate EditorinChief) Abstract Cleaner fishes remove ectoparasites, mucus and search of ectoparasites, mucus, and dead or diseased dead tissues from other ‘client’ organisms. These mutu tissue (Côté 2000; Côté and Soares 2011). Cleaners have alistic interactions provide benefits for the ‘clients’ and, been classified as either dedicated or facultative, depend on a larger scale, maintain healthy reef ecosystems. Here, ing on their degree of reliance on cleaning interactions for we report two species of angelfishes, Centropyge bicolor accessing food (Vaughan et al. 2017). While dedicated and C. tibicen, acting as cleaners of the blue tang cleaners rely almost exclusively on cleaning, facultative Paracanthurus hepatus in an aquarium. This observation ones also exploit other food sources. In total, 208 fish and is the first time that pygmy angelfishes are recorded 51 shrimp species have been reported as either dedicated cleaning in any en vironment. This novel cleaning ob or facultative cleaners (Vaughan et al. 2017). -
From the Caribbean Sea
Cah. Biol. Mar. (2007) 48 : 241-247 Alpheus zimmermani sp. nov., a new colourful snapping shrimp (Crustacea: Decapoda) from the Caribbean Sea Arthur ANKER Instituto Smithsonian de Investigaciones Tropicales, Apartado 0843–03092, Balboa, Ancón, Panamá, República de Panamá / Smithsonian Tropical Research Institute, Naos Unit 0948, APO AA 34002, USA. Email: [email protected] Abstract: A new snapping shrimp, Alpheus zimmermani sp. nov. is described on the basis of a single specimen collected on a coral reef off Guana Island, British Virgin Islands, Caribbean Sea. The new species has some morphological similarities with A. bouvieri A. Milne-Edwards and A. leviusculus Dana, but differs from these taxa by the strong medio- dorsal carina reaching far beyond the mid-length of the carapace, several features on the chelipeds, and by the conspicuous colour pattern. Résumé : Alpheus zimmermani sp. nov., une nouvelle crevette pistolet très colorée (Crustacea : Decapoda) de la Mer Caraïbe. Une nouvelle espèce de crevette-pistolet, Alpheus zimmermani sp. nov., est décrite avec un seul spécimen récolté sur un récif de corail au large de l’île de Guana faisant partie des Îles Vierges Britanniques, dans la Mer Caraïbe. L’espèce nouvelle possède quelques similarités avec A. bouvieri A. Milne-Edwards et A. leviusculus Dana, mais diffère nettement de ces deux espèces par la carène médiodorsale très prononcée et atteignant la moitié postérieure de la carapace, par plusieurs caractères sur les chélipèdes, ainsi que par sa remarquable coloration. Keywords: Alpheidae l Alpheus l Snapping shrimp l New species l Western Atlantic l Coral reef l Colour pattern. Introduction Wicksten & McClure, 2003). -
EU Position the EU Thanks the OIE and in General Supports the Adoption of This Modified User's Guide
Ref. Ares(2018)2526762 - 15/05/2018 Annex 2 Original: English February 2018 REPORT OF THE MEETING OF THE OIE AQUATIC ANIMAL HEALTH STANDARDS COMMISSION EU comment The EU would like to commend the OIE Aquatic Animal Health Standards Commission for its work and for having taken into consideration EU comments on the Aquatic Code and Manual submitted previously. A number of general comments on this report of the February 2018 meeting of the Aquatic Animals Commission as well as the intended positions of the EU on the draft Aquatic Code and Manual chapters proposed for adoption at the 86th OIE General Session are inserted in the text below, while specific comments are inserted in the text of the respective annexes to the report. The EU would like to stress again its continued commitment to participate in the work of the OIE and to offer all technical support needed by the Aquatic Animals Commission and its ad hoc groups for future work on the Aquatic Code and Manual. The OIE Aquatic Animal Health Standards Commission (hereinafter referred to as the Aquatic Animals Commission) met at OIE Headquarters in Paris from 14 to 21 February 2018. The list of participants is attached as Annex 1. The Aquatic Animals Commission thanked the following Member Countries for providing written comments on draft texts for the OIE Aquatic Animal Health Code (hereinafter referred to as the Aquatic Code) and OIE Manual of Diagnostic Tests for Aquatic Animals (hereinafter referred to as the Aquatic Manual) circulated after the Commission’s September 2017 meeting: Argentina, Australia, Canada, Chile, Chinese Taipei, Costa Rica, Fiji, Guatemala, Japan, Mexico, New Caledonia, Norway, Singapore, Switzerland, Thailand, the United States of America (USA) and the Member States of the European Union (EU). -
MARKET FISHES of INDONESIA Market Fishes
MARKET FISHES OF INDONESIA market fishes Market fishes indonesiaof of Indonesia 3 This bilingual, full-colour identification William T. White guide is the result of a joint collaborative 3 Peter R. Last project between Indonesia and Australia 3 Dharmadi and is an essential reference for fish 3 Ria Faizah scientists, fisheries officers, fishers, 3 Umi Chodrijah consumers and enthusiasts. 3 Budi Iskandar Prisantoso This is the first detailed guide to the bony 3 John J. Pogonoski fish species that are caught and marketed 3 Melody Puckridge in Indonesia. The bilingual layout contains information on identifying features, size, 3 Stephen J.M. Blaber distribution and habitat of 873 bony fish species recorded during intensive surveys of fish landing sites and markets. 155 market fishes indonesiaof jenis-jenis ikan indonesiadi 3 William T. White 3 Peter R. Last 3 Dharmadi 3 Ria Faizah 3 Umi Chodrijah 3 Budi Iskandar Prisantoso 3 John J. Pogonoski 3 Melody Puckridge 3 Stephen J.M. Blaber The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. ACIAR operates as part of Australia’s international development cooperation program, with a mission to achieve more productive and sustainable agricultural systems, for the benefit of developing countries and Australia. It commissions collaborative research between Australian and developing-country researchers in areas where Australia has special research competence. It also administers Australia’s contribution to the International Agricultural Research Centres. Where trade names are used, this constitutes neither endorsement of nor discrimination against any product by ACIAR. ACIAR MONOGRAPH SERIES This series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research and development objectives. -
Energetic Costs of Chronic Fish Predation on Reef-Building Corals
ResearchOnline@JCU This file is part of the following reference: Cole, Andrew (2011) Energetic costs of chronic fish predation on reef-building corals. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/37611/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/37611/ The energetic costs of chronic fish predation on reef-building corals Thesis submitted by Andrew Cole BSc (Hons) September 2011 For the degree of Doctor of Philosophy in Marine Biology ARC Centre of Excellence for Coral Reef Studies and the School of Marine and Tropical Biology James Cook University Townsville, Queensland, Australia Statement of Access I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and via the Australian Digital Thesis Network for use elsewhere. I understand that as an unpublished work this thesis has significant protection under the Copyright Act and I do not wish to put any further restrictions upon access to this thesis. 09/09/2011 (signature) (Date) ii Statement of Sources Declaration I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at my university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given. -
Predator Defense Mechanisms in Shallow Water Sea Cucumbers (Holothuroidea)
PREDATOR DEFENSE MECHANISMS IN SHALLOW WATER SEA CUCUMBERS (HOLOTHUROIDEA) JESSICA A. CASTILLO Environmental Science Policy and Management, University of California, Berkeley, California 94720 USA Abstract. The various predator defense mechanisms possessed by shallow water sea cucumbers were surveyed in twelve different species and morphs. While many defense mechanisms such as the presence of Cuverian tubules, toxic secretions, and unpalatability have been identified in holothurians, I hypothesized that the possession of these traits as well as the degree to which they are utilized varies from species to species. The observed defense mechanisms were compared against a previously-derived phylogeny of the sea cucumbers of Moorea. Furthermore, I hypothesized that while the presence of such structures is most likely a result of the species’ placement on a phylogenetic tree, the degree to which they utilize such structures and their physical behavior are influenced by their individual ecologies. The presence of a red liquid secretion was restricted to individuals of the genus Holothuria (Linnaeus 1767) however not all members of the genus exhibited this trait. With the exception of H. leucospilota, which possessed both Cuverian tubules and a red secretion, Cuverian tubules were observed in members of the genus Bohadschia (Ostergren 1896). In accordance with the hypothesis, both the phylogenetics and individual ecology appear to influence predator defense mechanisms. However, even closely related species of similar ecology may differ considerably. Key words: holothurians; defense; toxicity; Cuverian tubules; Moorea, French Polynesia INTRODUCTION (Sakthivel et. Al, 1994). Approximately 20 species in two families and five genera, Sea cucumbers belong to the phylum including Holothuria, Bohadschia, and Thenelota, Echinodermata and the class Holothuroidea. -
<I>Bartholomea Annulata</I>
BULLETIN OF MARINE SCIENCE, 37(3): 893-904,1985 CORAL REEF PAPER TWO MORE SIBLING SPECIES OF ALPHEID SHRIMPS ASSOCIATED WITH THE CARIBBEAN SEA ANEMONES BARTHOLOMEA ANNULATA AND HETERACTIS LUCIDA Nancy Knowlton and Brian D. Keller ABSTRACT We have described two new species of snapping shrimp, Alpheus polystictus and A. ro- quensis. The new species form part of a complex of four sibling species associated with Caribbean sea anemones, the others being the well-known A. armatus Rathbun, 1900 and the recently describedA. immaculatus Knowlton and Keller, 1983. Alpheus roquensis is found with the anemone Heteractis lucida. while the other three shrimps live with Bartholomea annulata. In laboratory choice experiments, each shrimp species prefers the species of an em- one with which it is typically found in the field, although each can shelter under the other species of anemone. All four species are extremely similar morphologically, being distin- guished largely on the basis of color pattern. The validity of the species is confirmed by the total absence of interbreeding; heterospecific male-female pairs are never found in the field, and it is impossible to force pairings between species in the laboratory. Alpheus polystictus is rare in Jamaica and Haiti, while in Venezuela it is sometimes the dominant species to depths of 10 m. In the areas examined, it has always occurred with at least one of the other two Bartholomea associates. The geographic distribution of A. roquensis is more limited, as there are no reports of alpheids associated with Heteractis lucida, and none has been found with this anemone in Jamaica. -
Poisson-Papillon De Bennett
Chaetodon bennetti | ASSOCIATION RIMBA http://rimba-ecoproject.com/les-poissons/espece-5/ POISSON-PAPILLON DE BENNETT Chaetodon bennetti (Cuvier, 1831) Fiche n°5 Date de la 1ère observation : 2016 Lieux d’observation : Ile de Marak - Sumatra Ouest - Indonésie POISSONS NOMS Famille des Chaétodontidés Nom commun international : Bluelashed butterflyfish, (poissons-papillons et Archer Butterflyfish, Bennett's Butterflyfish, Eclipse poissons-cochers) Butterflyfish. Synonymes : Poisson-papillon à deux lignes bleues, Chétodon de Bennett. STATUTS Statut IUCN : Données insuffisantes DISTRIBUTION GEOGRAPHIQUE (2010) CITES : - Indo-Pacifique tropical Information complémentaire : Espèce non réglementée Présent dans tout l'océan Indien et dans la Pacifique tropical jusqu'aux îles Pitcairn à l'est et du sud du Japon aux îles Lord Howe et Rapa. CLASSIFICATION HABITAT Récifs coralliens denses (lagons, pentes externes) de 5 m EMBRANCHEMENT Chordata à 30 m de profondeur. Les juvéniles restent souvent SOUS-EMBRANCHEMENT Vertebrata parmi les coraux branchus et cornes de cerf (Acropora CLASSE Actinopterygii sp). ORDRE Perciformes FAMILLE Chaetodontidae GENRE Chaetodon ESPECE bennetti ASSOCIATION RIMBA | Association Loi 1901 | Siret 788 604 718 00015 | [email protected] 1 Chaetodon bennetti | ASSOCIATION RIMBA http://rimba-ecoproject.com/les-poissons/espece-5/ DESCRIPTION A PROPOS DE CETTE FICHE Statut : Confirmée - photo Taille : 18 cm manquante Clé d'identification : Corps ovale à museau peu pointu. Date de publication : 14/02/2017 Coloration jaune avec deux lignes bleues en forme de Dernière modification : - virgule. Bande verticale noire bordée de bleu sur l'œil. Numéro de référence : 5 Ocelle noir entouré de bleu sur le dos. Lien permanent : http://rimba-ecoproject.com/les-pois sons/espece-5/ ALIMENTATION Se nourrit principalement de polypes de corail, EQUIPE DE REDACTION d'hydraires et d'anthipataires. -
APPENDIX 1 Resources for Training in Reef Monitoring Skills Suggested Training Plan the Entire Training Course Can Actually Be Taught in a WeekS Time
APPENDIX 1 Resources for training in reef monitoring skills Suggested training plan The entire training course can actually be taught in a weeks time. However, it is recommended that the training be spread over the course of 3 years in order to allow the team sufficient time to practice under supervision and to allow the study area to actually change in response to management activities enough to be observed. If a community is being trained by external trainers, at least two visits by them should be planned for each year. The trainees should be encouraged to collect data 2 to 4 times a year (i.e. once per season) together with their local development workers. Year & Scheduled Activities Ongoing Season Activities Year 1. Season 1. Introduce the idea of participatory monitoring & evaluation to (e.g. Nov.-Mar.) key community leaders. Check the site for appropriate biophysical and socioeconomic conditions, logistics, and counterpart arrangements and offer to conduct the training. Year 1. Season 2. Review of basic reef ecology and management. Teach Chapters (e.g. Apr.-May) 1-4 and the data collection and recording steps of Chapters 5- 3-4 days 9. Have trainees practice collecting data while experienced people collect baseline data (on the benthos, reef fishes, and invertebrates). Intro to Monitoring & Evaluation of Coral Reefs (1 hr talk) Observing Corals and Algae [data collection] (1 hr talk/ 1 day fieldwork) Observing Reef Fishes [data collection] (1 hr talk/ 1 day fieldwork) Monitoring Fish Catch [data collection] (1-2 hr talk & planning) Human Activities & Natural Disturbances (1 hr talk) Drawing Up a Monitoring Plan (1-2 hr talk & planning) Year 1. -
Gilbertese and Ellice Islander Names for Fishes and Other Organisms
Gilbertese and Ellice Islander Names for Fishes and Other Organisms PHIL S. LOBEL Museum of Comparative Zoology Har vard University Cambridge. Massachusel/s 02138 Abstract.- A compilation of 254 Gilbertese and 153 Ellice Island~r fish names is given which includes names for species from sixty families of fishes. The Gilbertese names (25) and Ellice Islander names ( 17) are also given for anatomical parts of fishes. Gilbertese names for lizards (3), marine invertebrates (95) and algae (2) are listed. The names were compiled from the literature and from interviews with Gilbertese and Ellice Islander fisherman living on Fanning Island in the Line Islands. Introduction Names used by Pacific Islanders for fishes are well known only for Hawaiians (Titcomb, 1953), Tahitians (Randall, 1973) and Palauans (Helfman and Randall, 1973). Banner and Randall (1952) and Randall (1955) have reported some Gilbertese names for invertebrates and fishes, but these were relatively few. A listing ofGilbertese names for plants and animals was compiled from the literature by Goo and Banner ( 1963), but unfortunately this work was never published. To my knowledge, no lists of Ellice Islander names have yet been published. I have compiled the common names used by the people of Fanning Atoll, Line Islands. The people are of Gilbertese and Ellice Islander descent having been brought to the Atoll within the last 50 years to work for the copra plantation. In addition, I have included previously published names to make this listing as complete as possible. I add about 200 new Gilbertese and 150 Ellice Islander names. I have not included names for terrestrial plants (see Moul 1957 for these).