High Energy Astrophysics Division & Historical Astronomy Division

Total Page:16

File Type:pdf, Size:1020Kb

High Energy Astrophysics Division & Historical Astronomy Division IN CONJUNCTION WITH: High Energy Astrophysics Division & Historical Astronomy Division 225th Meeting of the American Astronomical Society with High Energy Astrophysics Division (HEAD) and Historical Astronomy Division (HAD) 4-8 January 2015 | Seattle, WA OFFICERS AND MEMBERS ........ 2 SPONSORS ............................... 3 Session Numbering Key EXHIBITORS .............................. 6 100s Monday 200s Tuesday FLOOR PLANS ......................... 10 300s Wednesday ATTENDEE SERVICES ............... 14 400s Thursday SCHEDULE AT-A-GLANCE ........ 22 Sessions are numbered in the Program Book by day and SATURDAY .............................. 34 time. Posters will be on display SUNDAY ................................. 37 Monday - Thursday MONDAY ................................ 48 Changes after 5 December are included only in the online TUESDAY .............................. 118 program materials. WEDNESDAY ........................ 193 Follow us on Twitter THURSDAY............................ 270 @aas_office @aas_meetings AUTHORS INDEX .................. 315 #aas225 1 AAS OFFICERS & CoUNCILORS Officers President (2014-2016) C. Megan Urry, Yale University Past President (2014-2015) David Helfand, Quest University Canada Senior Vice-President (2012-2015) Paula Szkody, University of Washington Second Vice-President (2013-2016) Chryssa Kouveliotou, NASA Marshall Space Flight Center Third Vice-President (2014-2017) Jack Burns, University of Colorado at Boulder Treasurer (2014-2017) Nancy D. Morrison, University of Toledo Secretary (2010-2017) G. Fritz Benedict, University of Texas, Austin Publications Board Chair (2012-2015) Anne P. Cowley, Arizona State University Education Officer (2012-2015) Edward E. Prather, University of Arizona Executive Officer (2006-Present) Kevin B. Marvel, American Astronomical Society Councilors 2012-2015 Nancy S. Brickhouse, Harvard-Smithsonian Center for Astrophysics Todd J. Henry, Georgia State University Steven D. Kawaler, Iowa State University 2013-2016 Geoffrey Clayton, Louisiana State University Dawn M. Gelino, Exoplanet Science Institute Dara J. Norman, National Optical Astronomy Observatory 2014-2017 Kelly Holley-Bockelmann, Vanderbilt University Buell T. Jannuzi, Steward Observatory Stephen Unwin, Jet Propulsion Laboratory 2 SPONSORS platinum SponSor Gold SponSorS Silver SponSorS bronze SponSorS contributorS 3 We would like to thank our aPLATINUM & GOLD SPONSORS for the generous support of the 225th AAS Meeting. Northrop Grumman Since the dawn of the space age, Northrop Grumman has put good ideas into orbit and beyond. From systems engineering, spacecraft manufacturing, precision sensors, space instrument design, ground stations development and orbiting space platforms, Northrop Grumman’s space capabilities have transformed lofty concepts into high-flying realities for a wide variety of missions. Apogee Imaging Systems Apogee has been manufacturing and supplying cooled CCD cameras to astronomers around the world since it was founded in 1993. Apogee’s Alta camera series is designed to offer a broad range of sensor options attractive to the Astronomy community. The new Aspen and Ascent cameras further extends the Apogee portfolio providing higher performance and better affordability. In 2013 Apogee was acquired by Andor Technology, adding further expertise in camera development, manufacturing and customer support. USRA Universities Space Research Association, an independent, nonprofit research corporation that combines efforts of in-house talent and university-based expertise to advance space science & technology. USRA was founded in 1969, near the beginning of the Space Age, driven by the vision of two individuals, James Webb (NASA Administrator 1961-1968) and Frederick Seitz (National Academy of Sciences President 1962-1969). Together, they worked to create USRA to satisfy not only the ongoing need for innovation in space, but also the need to involve society more broadly so the benefits of space activities would be realized. Today, USRA works across a wide spectrum of disciplines stemming from the range of challenges originally posed by the space program. From biomedicine to astrophysics, from basic research to facility management and operations, USRA is helping enable the study of the Universe from ground, airborne, and orbiting observatories, the study of Earth from space-based platforms, and more. 4 SPONSORED ACTIVITIES Mobile App Student Education and Public Universities Space Research Outreach Event Association (USRA) Associated Universities, Inc. Program Booklet Hack Day Apogee Imaging Systems LSST Corporation and Northrop Grumman Mobile Device Charging Station Northrop Grumman Badge Holders & Lanyards Ball Aerospace Cybercafe & Wireless Northrop Grumman LCD Display Board PlaneWave Instruments Career Networking and Job Fair Microsoft Plenary Talks Royal Society Publishing, USRA and Career Center Space Science Institute Microsoft UNDERGRADUATE ORIENTATION SPONSORS AIP, Society of Physics Students Texas Christian University Arizona State University Texas Tech University Astrobites University of Alberta Boston University University of Arizona / Steward Brigham Young University Observatory California Institute of Technology University of California, Santa Barbara Columbia University University of Colorado Committee on the Status of Minorities in University of Denver Astronomy University of Illinois Dartmouth College University of Kansas Fisk-Vanderbilt Masters to PhD Program University of Maryland Florida State University University of Michigan Georgia State University University of New Mexico Harvard University University of North Carolina Indiana University University of Oklahoma Johns Hopkins University University of Pennsylvania Louisiana State University University of Texas at Austin Maria Mitchell Observatory University of Toledo NANOGrav University of Utah New Mexico State University University of Virginia Northwestern University University of Washington NRAO University of Wisconsin, Madison The Pennsylvania State University University of Wisconsin, Milwaukee Princeton University Wesleyan University Rutgers University Yale University Texas A&M University 5 EXHIBITORS (ALPHABETICALLY) AAS Journals 113 American Astronomical Society, Historical Astronomy Division, High Energy Astrophysics Division 101 American Institute of Physics 203 Apogee Imaging Systems 301 Arecibo Observatory 408 Associated Universities, Inc. - AUI 407 Astro Haven Enterprises 207 Astrobites and AstroBetter 115 ASTRON 230 Association of Universities for Research in Astronomy - AURA 512 Ball Aerospace & Technologies Corp. 307 Cambridge University Press 212 Chandra X-ray Center 316 CSIRO Astronomy and Space Science 219 Digitalis Education Solutions, Inc. 225 e2v 320 Eureka Scientific 213 Fermi / NuStar / Swift 431 Field Tested Systems 221 Finger Lakes Instrumentation 414 Gemini Observatory/AURA 516 Genesis Engineering Solutions, Inc. 415 Giant Magellan Telescope 317 Hubble 25th Anniversary Exhibit Level 6 Foyer IAU XXIX General Assembly 217 Instituto de Astrofísica de Canarias 201 International Year of Light Travelling Exhibit Level 4 Foyer IOP Publishing 109 Infrared Processing and Analysis Center - IPAC 517 Las Cumbres Observatory Global Telescope Network - LCOGT 224 Laser Interferometer Gravitational-wave Observatory - LIGO 319 Lowell Observatory 312 Large Synoptic Survey Telescope - LSST 506 Microsoft 509 NASA Astrophysics Data System - ADS 416 6 EXHIBITORS (ALPHABETICALLy) continued NASA Exoplanet Exploration 535 NASA Science Mission Directorate 325 NASA Stratospheric Observatory for Infrared Astronomy - SOFIA 412 National Radio Astronomy Observatory 401 Northrop Grumman 400 Oxford University Press 420 PlaneWave Instruments 308 Princeton University Press 413 Royal Society Publishing 305 Sapling Learning 501 SBIG Astronomical Instruments 507 SCHOTT 231 Sierra Remote Observatories 306 SIMBAD 418 Square Kilometre Array Telescope 119 Sloan Digital Sky Survey 330 Southwest Research Institute 214 Space Science Institute 409 Space Telescope Science Institute 425 Spectral Instruments 300 SPIE - The International Society for Optics and Photonics 314 Springer 313 Submillimeter Array 321 Sunpower Cryotel Cryocoolers 505 Teledyne Imaging Sensors 303 The National Academies 215 The National Optical Astronomy Observatory 417 The National Science Foundation 421 The University of Arizona Press Shared Book Exhibit - 100 TMT International Observatory 515 Turner Publishing Shared Book Exhibit - 100 University of Hawaii Institute for Astronomy Pan-STARRS 503 Universities Space Research Association - USRA 406 W. W. Norton and Company 302 7 EXHIBITORS (BY BOOTH NUMBER) 101 American Astronomical Society, Historical Astronomy Division, High Energy Astrophysics Division 109 IOP Publishing 113 AAS Journals 115 Astrobites and AstroBetter 119 SKA Telescope 201 Instituto de Astrofísica de Canarias 203 American Institute of Physics 207 Astro Haven Enterprises 212 Cambridge University Press 213 Eureka Scientific 215 The National Academies 217 IAU XXIX General Assembly 219 CSIRO Astronomy and Space Science 221 Field Tested Systems 214 Southwest Research Institute 225 Digitalis Education Solutions, Inc. 230 ASTRON 231 SCHOTT 224 Las Cumbres Observatory Global Telescope Network - LCOGT 300 Spectral Instruments 301 Apogee Imaging Systems 302 W. W. Norton and Company 303 Teledyne Imaging Sensors 305 Royal Society Publishing 306 Sierra Remote Observatories 307 Ball Aerospace & Technologies Corp. 308 PlaneWave Instruments 312 Lowell Observatory
Recommended publications
  • Clusters of Galaxies…
    Budapest University, MTA-Eötvös François Mernier …and the surprisesoftheir spectacularhotatmospheres Clusters ofgalaxies… K complex ) ⇤ Fe ) α [email protected] - Wallon Super - Wallon [email protected] Fe XXVI (Ly (/ Fe XXIV) L complex ) ) (incl. Ne) α α ) Fe ) ) α ) α α ) ) ) ) α ⇥ ) ) ) α α α α α α Si XIV (Ly Mg XII (Ly Ni XXVII / XXVIII Fe XXV (He S XVI (Ly O VIII (Ly Si XIII (He S XV (He Ca XIX (He Ca XX (Ly Fe XXV (He Cr XXIII (He Ar XVII (He Ar XVIII (Ly Mn XXIV (He Ca XIX / XX Yo u are h ere ! 1 km = 103 m Yo u are h ere ! (somewhere behind…) 107 m Yo u are h ere ! (and this is the Moon) 109 m ≃3.3 light seconds Yo u are h ere ! 1012 m ≃55.5 light minutes 1013 m 1014 m Yo u are h ere ! ≃4 light days 1013 m Yo u are h ere ! 1014 m 1017 m ≃10.6 light years 1021 m Yo u are h ere ! ≃106 000 light years 1 million ly Yo u are h ere ! The Local Group Andromeda (M31) 1 million ly Yo u are h ere ! The Local Group Triangulum (M33) 1 million ly Yo u are h ere ! The Local Group 10 millions ly The Virgo Supercluster Virgo cluster 10 millions ly The Virgo Supercluster M87 Virgo cluster 10 millions ly The Virgo Supercluster 2dFGRS Survey The large scale structure of the universe Abell 2199 (429 000 000 light years) Abell 2029 (1.1 billion light years) Abell 2029 (1.1 billion light years) Abell 1689 Abell 1689 (2.2 billion light years) Les amas de galaxies 53 Light emits at optical “colors”… …but also in infrared, radio, …and X-ray! Light emits at optical “colors”… …but also in infrared, radio, …and X-ray! Light emits at optical “colors”…
    [Show full text]
  • XMM–Newton Observations of NGC 3268 in the Antlia Galaxy Cluster: Characterization of a Hidden Group of Galaxies at Z ≈ 0.41
    MNRAS 00, 1 (2018) doi:10.1093/mnras/sty1401 Advance Access publication 2018 May 28 XMM–Newton observations of NGC 3268 in the Antlia Galaxy Cluster: characterization of a hidden group of galaxies at z ≈ 0.41 I. D. Gargiulo,1,4‹ F. Garc´ıa,2,3,4,5 J. A. Combi,2,3,4 J. P. Caso1,2,4 and L. P. Bassino1,2,4 1Instituto de Astrof´ısica de La Plata (CCT La Plata, CONICET, UNLP), Paseo del Bosque s/n, B1900FWA La Plata, Argentina 2Facultad de Ciencias Astronomicas´ y Geof´ısicas, Universidad Nacional de La Plata, Paseo del Bosque, B1900FWA La Plata, Argentina 3Instituto Argentino de Radioastronom´ıa (CCT-La Plata, CONICET; CICPBA), C.C. No. 5, 1894 Villa Elisa, Argentina 4Consejo Nacional de Investigaciones Cient´ıficas y Tecnicas,´ Rivadavia 1917, Ciudad Autonoma´ de Buenos Aires, C1033AAJ Buenos Aires, Argentina 5Laboratoire AIM (UMR 7158 CEA/DRF-CNRS-Universite´ Paris Diderot), Irfu/Departament´ d’Astrophysique, Centre de Saclay, F-91191 Gif-sur-Yvette, France Accepted 2018 May 25. Received 2018 May 25; in original form 2016 December 1 ABSTRACT We report on a detailed X-ray study of the extended emission of the intracluster medium (ICM) around NGC 3268 in the Antlia Cluster of galaxies, together with a characterization of an extended source in the field, namely a background cluster of galaxies at z ≈ 0.41, which was previously accounted as an X-ray point source. The spectral properties of the extended emission of the gas present in Antlia were studied using data from the XMM–Newton satellite, complemented with optical images of Cerro Tololo Inter-American Observatory (CTIO) Blanco telescope, to attain for associations of the optical sources with the X-ray emission.
    [Show full text]
  • L RES~ARCH Coljncll ·
    NA~IOf\i'At ACADEMIES OF SCIENCE AND ENGiNEERING 7 ·.· ·.·. : NATIONAL RES~ARCH ColJNCll · of the UNITED STATES OF AMERICA UNITED• STATES NATIONAL COMMITTEEI . International Union of Radio Sden<:e Nationa.1 Radio Science Meeting 13-15 January 1982 · f l··.. ·· Sponsored by USNC/URSI in cooperation with r Institute of Electrical and Electronics Engineers University of· Colorado Boulder, Colorado U.S.A. ~· 1' National Radio Science Meeting 13-15 January 19 82 Condensed Technical Program TUESDAY, 12 JANUARY 0900 CCIR U.S. Study Group 5 OT 8-8 CCIR U.S. Study ,Gr.oup 6 Radio Building 2000-2400 USNC/URSI Meeting Broker Inn WEDNESDAY, 13 JANUARY 0900-1200 A-1 Time Domai~ 1-ieasurements CRl-42 B-1 Scattering CR2-28 B-2 Electromagnetic Theory CR2-28 C-1 Topics in Information Theory CR0-30 F-1 Propagation Theory and Models CR2-26 J-1 Millimeter-Wave Astronomy UMC Ballroom 1330-1700 A-2 Microwave/Millimeter Wave Measurements CRl-42 B-3 Antenna Theory and Practice CR2-28 B-4 Inverse Scattering CR2-6 C-2 Digital HF: Equaltz ation and Reiated CR0-30 Techniques E-1 EM Noise in the Sea CRl-40 F-2 Ground-Based Remote Sensing CR2-26 H-1 VLF-ELF Wave Injection Into the CRl-46 Magnetosphere J-2 Very Long Baseline Interferometry UMC 157 1700 Commission A Business Meeting CRl-42 Commission C Business Meeting CR0-30 Commission E Business Meeting CRl-40 Commission F Business Meeting CR2-26 Commission H Business Meeting CRl-46 1800-2000 Reception Engineering Center 2000-2200 IEEE Wave Propagation Standards Committee CRl-46 TH.URSDAY, 14 JANUARY 0830-1200 A-3
    [Show full text]
  • The Puzzling Nature of Dwarf-Sized Gas Poor Disk Galaxies
    Dissertation submitted to the Department of Physics Combined Faculties of the Astronomy Division Natural Sciences and Mathematics University of Oulu Ruperto-Carola-University Oulu, Finland Heidelberg, Germany for the degree of Doctor of Natural Sciences Put forward by Joachim Janz born in: Heidelberg, Germany Public defense: January 25, 2013 in Oulu, Finland THE PUZZLING NATURE OF DWARF-SIZED GAS POOR DISK GALAXIES Preliminary examiners: Pekka Heinämäki Helmut Jerjen Opponent: Laura Ferrarese Joachim Janz: The puzzling nature of dwarf-sized gas poor disk galaxies, c 2012 advisors: Dr. Eija Laurikainen Dr. Thorsten Lisker Prof. Heikki Salo Oulu, 2012 ABSTRACT Early-type dwarf galaxies were originally described as elliptical feature-less galax- ies. However, later disk signatures were revealed in some of them. In fact, it is still disputed whether they follow photometric scaling relations similar to giant elliptical galaxies or whether they are rather formed in transformations of late- type galaxies induced by the galaxy cluster environment. The early-type dwarf galaxies are the most abundant galaxy type in clusters, and their low-mass make them susceptible to processes that let galaxies evolve. Therefore, they are well- suited as probes of galaxy evolution. In this thesis we explore possible relationships and evolutionary links of early- type dwarfs to other galaxy types. We observed a sample of 121 galaxies and obtained deep near-infrared images. For analyzing the morphology of these galaxies, we apply two-dimensional multicomponent fitting to the data. This is done for the first time for a large sample of early-type dwarfs. A large fraction of the galaxies is shown to have complex multicomponent structures.
    [Show full text]
  • Guide Du Ciel Profond
    Guide du ciel profond Olivier PETIT 8 mai 2004 2 Introduction hjjdfhgf ghjfghfd fg hdfjgdf gfdhfdk dfkgfd fghfkg fdkg fhdkg fkg kfghfhk Table des mati`eres I Objets par constellation 21 1 Androm`ede (And) Andromeda 23 1.1 Messier 31 (La grande Galaxie d'Androm`ede) . 25 1.2 Messier 32 . 27 1.3 Messier 110 . 29 1.4 NGC 404 . 31 1.5 NGC 752 . 33 1.6 NGC 891 . 35 1.7 NGC 7640 . 37 1.8 NGC 7662 (La boule de neige bleue) . 39 2 La Machine pneumatique (Ant) Antlia 41 2.1 NGC 2997 . 43 3 le Verseau (Aqr) Aquarius 45 3.1 Messier 2 . 47 3.2 Messier 72 . 49 3.3 Messier 73 . 51 3.4 NGC 7009 (La n¶ebuleuse Saturne) . 53 3.5 NGC 7293 (La n¶ebuleuse de l'h¶elice) . 56 3.6 NGC 7492 . 58 3.7 NGC 7606 . 60 3.8 Cederblad 211 (N¶ebuleuse de R Aquarii) . 62 4 l'Aigle (Aql) Aquila 63 4.1 NGC 6709 . 65 4.2 NGC 6741 . 67 4.3 NGC 6751 (La n¶ebuleuse de l’œil flou) . 69 4.4 NGC 6760 . 71 4.5 NGC 6781 (Le nid de l'Aigle ) . 73 TABLE DES MATIERES` 5 4.6 NGC 6790 . 75 4.7 NGC 6804 . 77 4.8 Barnard 142-143 (La tani`ere noire) . 79 5 le B¶elier (Ari) Aries 81 5.1 NGC 772 . 83 6 le Cocher (Aur) Auriga 85 6.1 Messier 36 . 87 6.2 Messier 37 . 89 6.3 Messier 38 .
    [Show full text]
  • Collisional Modelling of the AU Microscopii Debris Disc
    A&A 581, A97 (2015) Astronomy DOI: 10.1051/0004-6361/201525664 & c ESO 2015 Astrophysics Collisional modelling of the AU Microscopii debris disc Ch. Schüppler1, T. Löhne1, A. V. Krivov1, S. Ertel2, J. P. Marshall3;4, S. Wolf5, M. C. Wyatt6, J.-C. Augereau7;8, and S. A. Metchev9 1 Astrophysikalisches Institut und Universitätssternwarte, Friedrich-Schiller-Universität Jena, Schillergäßchen 2–3, 07745 Jena, Germany e-mail: [email protected] 2 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago, Chile 3 School of Physics, University of New South Wales, NSW 2052 Sydney, Australia 4 Australian Centre for Astrobiology, University of New South Wales, NSW 2052 Sydney, Australia 5 Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany 6 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 7 Université Grenoble Alpes, IPAG, 38000 Grenoble, France 8 CNRS, IPAG, 38000 Grenoble, France 9 University of Western Ontario, Department of Physics and Astronomy, 1151 Richmond Avenue, London, ON N6A 3K7, Canada Received 14 January 2015 / Accepted 12 June 2015 ABSTRACT AU Microscopii’s debris disc is one of the most famous and best-studied debris discs and one of only two resolved debris discs around M stars. We perform in-depth collisional modelling of the AU Mic disc including stellar radiative and corpuscular forces (stellar winds), aiming at a comprehensive understanding of the dust production and the dust and planetesimal dynamics in the system. Our models are compared to a suite of observational data for thermal and scattered light emission, ranging from the ALMA radial surface brightness profile at 1.3 mm to spatially resolved polarisation measurements in the visible.
    [Show full text]
  • The Constellation Microscopium, the Microscope Microscopium Is A
    The Constellation Microscopium, the Microscope Microscopium is a small constellation in the southern sky, defined in the 18th century by Nicolas Louis de Lacaille in 1751–52 . Its name is Latin for microscope; it was invented by Lacaille to commemorate the compound microscope, i.e. one that uses more than one lens. The first microscope was invented by the two brothers, Hans and Zacharius Jensen, Dutch spectacle makers of Holland in 1590, who were also involved in the invention of the telescope (see below). Lacaille first showed it on his map of 1756 under the name le Microscope but Latinized this to Microscopium on the second edition published in 1763. He described it as consisting of "a tube above a square box". It contains sixty-nine stars, varying in magnitude from 4.8 to 7, the lucida being Gamma Microscopii of apparent magnitude 4.68. Two star systems have been found to have planets, while another has a debris disk. The stars that now comprise Microscopium may formerly have belonged to the hind feet of Sagittarius. However, this is uncertain as, while its stars seem to be referred to by Al-Sufi as having been seen by Ptolemy, Al-Sufi does not specify their exact positions. Microscopium is bordered Capricornus to the north, Piscis Austrinus and Grus to the west, Sagittarius to the east, Indus to the south, and touching on Telescopium to the southeast. The recommended three-letter abbreviation for the constellation, as adopted Seen in the 1824 star chart set Urania's Mirror (lower left) by the International Astronomical Union in 1922, is 'Mic'.
    [Show full text]
  • The Rings and Inner Moons of Uranus and Neptune: Recent Advances and Open Questions
    Workshop on the Study of the Ice Giant Planets (2014) 2031.pdf THE RINGS AND INNER MOONS OF URANUS AND NEPTUNE: RECENT ADVANCES AND OPEN QUESTIONS. Mark R. Showalter1, 1SETI Institute (189 Bernardo Avenue, Mountain View, CA 94043, mshowal- [email protected]! ). The legacy of the Voyager mission still dominates patterns or “modes” seem to require ongoing perturba- our knowledge of the Uranus and Neptune ring-moon tions. It has long been hypothesized that numerous systems. That legacy includes the first clear images of small, unseen ring-moons are responsible, just as the nine narrow, dense Uranian rings and of the ring- Ophelia and Cordelia “shepherd” ring ε. However, arcs of Neptune. Voyager’s cameras also first revealed none of the missing moons were seen by Voyager, sug- eleven small, inner moons at Uranus and six at Nep- gesting that they must be quite small. Furthermore, the tune. The interplay between these rings and moons absence of moons in most of the gaps of Saturn’s rings, continues to raise fundamental dynamical questions; after a decade-long search by Cassini’s cameras, sug- each moon and each ring contributes a piece of the gests that confinement mechanisms other than shep- story of how these systems formed and evolved. herding might be viable. However, the details of these Nevertheless, Earth-based observations have pro- processes are unknown. vided and continue to provide invaluable new insights The outermost µ ring of Uranus shares its orbit into the behavior of these systems. Our most detailed with the tiny moon Mab. Keck and Hubble images knowledge of the rings’ geometry has come from spanning the visual and near-infrared reveal that this Earth-based stellar occultations; one fortuitous stellar ring is distinctly blue, unlike any other ring in the solar alignment revealed the moon Larissa well before Voy- system except one—Saturn’s E ring.
    [Show full text]
  • Steven D. Vance –
    Steven D. Vance Research Focus My research focuses on using geophysical and geochemical methods to understand ocean worlds: how oceans couple to the thermal evolution and composition, and what this might mean for life. I am also interested in the global geochemical fluxes in ocean worlds, by analogy to biogeochemical fluxes in the Earth system. My experimental research involves collecting thermodynamic equations of state for fluids and ices. I have applied these equations of state to evaluating oceanic heat transport and double diffusive convection in Europa, and to the geophysical constraints imposed by ocean composition on the radial structures of Europa, Ganymede, Callisto, Enceladus, and Titan. In recent years I have used these models to explore the parameter space of possible geophysical signals—seismic, magnetic, and gravitational—in the interest of improving the fidelity of returned science from investigations of ocean composition and habitability. Education 2001–2007 Ph.D., University of Washington, Seattle, Geophysics and Astrobiology. 1996–2000 B.S., University of California, Santa Cruz, Physics (with honors). Ph.D. Thesis title Thesis title: High Pressure and Low Temperature Equations of State for Aqueous Sulfate Solutions: Applications to the Search for Life in Extraterrestrial Oceans, with Particular Reference to Europa advisor Prof. J. Michael Brown Bachelor Thesis title The Role of Methanol Frost in Particle Sticking and the Formation of Planets in the Early Solar Nebula advisor Prof. Frank G. Bridges Current Appointments Research
    [Show full text]
  • Variable Star Classification and Light Curves Manual
    Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme.
    [Show full text]
  • Martian Ice How One Neutrino Changed Astrophysics Remembering Two Former League Presidents
    Published by the Astronomical League Vol. 71, No. 3 June 2019 MARTIAN ICE HOW ONE NEUTRINO 7.20.69 CHANGED ASTROPHYSICS 5YEARS REMEMBERING TWO APOLLO 11 FORMER LEAGUE PRESIDENTS ONOMY T STR O T A H G E N P I E G O Contents N P I L R E B 4 . President’s Corner ASTRONOMY DAY Join a Tour This Year! 4 . All Things Astronomical 6 . Full Steam Ahead OCTOBER 5, From 37,000 feet above the Pacific Total Eclipse Flight: Chile 7 . Night Sky Network 2019 Ocean, you’ll be high above any clouds, July 2, 2019 For a FREE 76-page Astronomy seeing up to 3¼ minutes of totality in a PAGE 4 9 . Wanderers in the Neighborhood dark sky that makes the Sun’s corona look Day Handbook full of ideas and incredibly dramatic. Our flight will de- 10 . Deep Sky Objects suggestions, go to: part from and return to Santiago, Chile. skyandtelescope.com/2019eclipseflight www.astroleague.org Click 12 . International Dark-Sky Association on "Astronomy Day” Scroll 14 . Fire & Ice: How One Neutrino down to "Free Astronomy Day African Stargazing Safari Join astronomer Stephen James ̃̃̃Changed a Field Handbook" O’Meara in wildlife-rich Botswana July 29–August 4, 2019 for evening stargazing and daytime PAGE 14 18 . Remembering Two Former For more information, contact: safari drives at three luxury field ̃̃̃Astronomical League Presidents Gary Tomlinson camps. Only 16 spaces available! Astronomy Day Coordinator Optional extension to Victoria Falls. 21 . Coming Events [email protected] skyandtelescope.com/botswana2019 22 . Gallery—Moon Shots 25 . Observing Awards Iceland Aurorae September 26–October 2, 2019 26 .
    [Show full text]
  • 134, December 2007
    British Astronomical Association VARIABLE STAR SECTION CIRCULAR No 134, December 2007 Contents AB Andromedae Primary Minima ......................................... inside front cover From the Director ............................................................................................. 1 Recurrent Objects Programme and Long Term Polar Programme News............4 Eclipsing Binary News ..................................................................................... 5 Chart News ...................................................................................................... 7 CE Lyncis ......................................................................................................... 9 New Chart for CE and SV Lyncis ........................................................ 10 SV Lyncis Light Curves 1971-2007 ............................................................... 11 An Introduction to Measuring Variable Stars using a CCD Camera..............13 Cataclysmic Variables-Some Recent Experiences ........................................... 16 The UK Virtual Observatory ......................................................................... 18 A New Infrared Variable in Scutum ................................................................ 22 The Life and Times of Charles Frederick Butterworth, FRAS........................24 A Hard Day’s Night: Day-to-Day Photometry of Vega and Beta Lyrae.........28 Delta Cephei, 2007 ......................................................................................... 33
    [Show full text]