Steven D. Vance –
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
3D Convection, Phase Change, and Solute Transport in Mushy Sea Ice
3D convection, phase change, and solute transport in mushy sea ice Dan Martin, James Parkinson, Andrew Wells, Richard Katz Lawrence Berkeley National Laboratory (USA), Oxford University (UK). Summary: ● Simulated brine drainage via 3-D convection in porous mushy sea ice ● Shallow region near ice-ocean interface is desalinated by many small brine channels ● Full-depth “mega-channels” allow drainage from saline layer near top of ice. What is a mushy layer? Dense brine drains convectively from porous mushy sea ice into the ocean. - What is spatial structure of this flow in 3 dimensions? Upper fig.: Sea ice is a porous mixture of solid ice crystals (white) and liquid brine (dark). H. Eicken et al. Cold Regions Science and Technology 31.3 (2000), pp. 207–225 Lower fig.: Trajectory (→) of a solidifying salt water parcel through the phase diagram. As the temperature T decreases, the ice fraction increases and the residual brine salinity SI increases making the fluid denser, which can drive convection. Using a linear approximation for the liquidus curve, the freezing point is - Problem setup Numerically solve mushy-layer equations for porous ice-water Cold upper boundary O matrix g T=-10 C, no normal salt flux, no vertical flow (see appendix). 2m Initial conditions z S=30g/kg O T=Tfreezing (S=30g/kg) + 0.2 C U = 0 Horizontally periodic O y Plus small random O(0.01 C) temperature perturbation x 4m 4m Open bottom boundary Inflow/outflow, with constant pressure O Inflow: S=30g/kg, T=Tfreezing (S=30g/kg) + 0.2 C Movie Contours of: Ice permeability -function of ice porosity; (red lower, green higher ~ice-ocean interface) Velocity (blue lower, purple higher). -
Curriculum Vitae for Cecilia M. Bitz 22 May 2019 Department of Atmospheric Sciences Box 351640 University of Washington Seattle, WA 98195-1640
Curriculum Vitae for Cecilia M. Bitz 22 May 2019 Department of Atmospheric Sciences Box 351640 University of Washington Seattle, WA 98195-1640 Education 1997 PhD Atmospheric Sciences University of Washington Dissertation title: A Model Study of Natural Variability in the Arctic Climate 1990 MS Physics University of Washington 1988 BS Engineering Physics Oregon State University Professional positions held 2019 (July) –Present Chair of Department of Atmospheric Sciences, University of Washington 2017–Present Directory Program on Climate Change, University of Washington 2013–Present Professor, Atmospheric Sciences, University of Washington 2012–Present Faculty, Astrobiology Program, University of Washington 2006–Present Adjunct Physicist, Polar Science Center, University of Washington 2009–2013 Associate Professor, Atmospheric Sciences, University of Washington 2005–2009 Assistant Professor, Atmospheric Sciences, University of Washington 2001–2005 Physicist, Polar Science Center, Applied Physics Lab, University of Washington 2000 - 2001 NOAA Climate and Global Change Visiting Scholar, Polar Science Center, Applied Physics Laboratory, University of Washington 1999 Apr.-Dec. Research Associate, Quaternary Research Center, University of Washington 1997 -1999 Research Associate, School of Earth & Ocean Sciences, Univ. of Victoria, Canada. 1993-1997 Research Assistant, Department of Atmospheric Sciences, University of Washington 1988-1993 Research Assistant, Department of Physics, University of Washington Awards and Honors Graduate Student Invited -
Factors Affecting the Nature and Identification of Exoplanet Habitability
Factors Affecting the Nature and Identification of Planetary Habitability Victoria Meadows and the NAI Virtual Planetary Laboratory Team The University of Washington, California Institute of Technology, Jet Propulsion Laboratory, Pennsylvania State University, NASA Goddard Space Flight Center, University of Maryland, NASA Goddard Institute for Space Studies, University of Chicago, Weber State University, Princeton University, Laboratoire d’Astrophysique – Bordeaux, NASA Ames Research Center, Stanford University, Rice University, Washington University at Saint Louis, Yale University, Australian Center for Astrobiology. Habitability • Habitability is a measure of an environment’s potential to support life. Why is the Study of Habitability Important? • Habitability increases the probability that life, a planetary process, may be operating in the planetary environment. – This can make a target more desirable, and will improve interpretation of our data. • Broader definitions of habitability help inform the possible distribution of life elsewhere. • Narrower definitions of planetary habitability provide practical tools to inform mission design and help prioritize targets. Life’s Requirements Cockell et al., 2016; After Hoehler et al., 2007 Photo: Frans Lanting The Surface Liquid Water Habitable Zone That region around a star where life’s requirements are most likely to be met, and be detectable. A Multitude of Worlds Observational Bias Many unlike planets in our own Solar System Planetary System Architectures Planets May Form In Crowded Systems -
A Suitable Climate for a Successful Life in Academia Dr
A suitable climate for a successful life in Academia Dr. Aomawa Shields NSF Astronomy and Astrophysics Postdoctoral Fellow UC President’s Postdoctoral Program Fellow 2015 TED Fellow UCLA/Harvard NRAO Diversity Speaker Series July 6, 2015 Courtesy of ESO/L. Calçada www.pixgood.com How I became an Astronomer and Astrobiologist Aomawa (Ah-Ō-muh-wah) Emphasis here My Grandmother Delphine Simmons My Mom (and me) My Dad Dad and Me The Facts • Parents are musicians • Grandmother liked math, studied for a while • School was important Typical Scientist Spitzer Space Telescope University of Washington Credit: Spitzer Space Telescope Credit: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team ✔ • Habitable planet • hosting life? Climate modeling of exoplanets Challenges • High blood pressure • Anxiety, depression • Imposter Syndrome • Difficulty separating work from home • Fun?? Shutterstock http://www.huffingtonpost.ca Approach What does success mean to you? • Career • Family • Physical health/fitness • Wealth/status Happiness! Graduate School • Mentorship • Support/process groups • Exercise • Family/friends • Hobbies • Spiritual community • Collecting evidence Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD’S) Resources Good notes are essential for meaningful learning Lecture: 9/30/15 Keyword(s) In my own words What I don’t understand Resources • www.msphds.org • 7 habits of Highly Effective People (Covey) • University counseling centers (free) • www.phdcomics.com • www.variablestargirl.com Beyond graduate -
I ABSTRACT a CONCEPTUAL MODEL of ICE SHELF
i ABSTRACT A CONCEPTUAL MODEL OF ICE SHELF SEDIMENTATION Matthew Mayerle, M.S. Department of Geology and Environmental Geosciences Northern Illinois University 2014 Ross Powell, Director Sedimentation studies of polar glacimarine systems remain few relative to temperate glacimarine systems due to the problem of accessibility below ice shelves. This thesis presents a conceptual model of ice shelf sedimentation at the scale of a continental shelf, which is an update of Howat and Domack’s (2003) model. This update adds scale, a third dimension, a decade of research on new geologic/glaciological processes, depositional bias', and greater specificity to their model. The shelf-scale model groups facies into deformation till, glacigenic debris flows, shelfstone mud, and diatomaceous mud. Furthermore, the model is tested and shown to be capable of replicating the facies distribution and major landforms found in two distinctly different Antarctic paleo-ice stream troughs within time constraints dictated by radiometric dating. It is hoped that ideas and techniques presented by this conceptual model will serve as a launching pad for more advanced computational models in the future, which are badly needed in order to help constrain future behavior of ice sheets in a warming world. i NORTHERN ILLINOIS UNIVERSITY DE KALB, ILLINOIS DECEMBER 2014 A CONCEPTUAL MODEL OF ICE SHELF SEDIMENTATION BY MATTHEW WILLIAM MAYERLE ©2014 Matthew Mayerle A THESIS SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL GEOSCIENCES Thesis Director: Ross D. Powell ii DEDICATION With love to my parents William and Margaret Mayerle, whose long hours of work provided me with the gift of education. -
Multi-Column Ocean Grid for Ocean Mixing Under Sea Ice in CESM
Multi-column ocean grid for ocean mixing under sea ice in CESM Meibing Jin International Arctic Research Center (IARC) University of Alaska Fairbanks Single column ocean model multi-column ocean model Sea ice Open water Open water model Thick ice Thin ice Thick ice Thin ice Flux i2o Coupler Average flux by ice category Pass Surface layer of ocean model Surface layer of ocean model Ocean vertical mixing: (1) Mixing coef. only (2) Mixing coef. tracer 2-column ocean grid (2cog) experiments scheme Case v0 Case v1 Lead (�↓0 ) Lead (�↓0 ) Ice (�↓1 =1− Ice (�↓1 =1− �↓0 ) �↓0 ) Ocean surface Ocean surface Ocean surface Ocean surface flux F1 flux F0 flux F1 flux F0 Ocean vertical Ocean vertical Ocean vertical Ocean vertical mixing coefficient mixing coefficient mixing coefficient mixing coefficient (VDC1)by KPP (VDC0)by KPP (VDC1)by KPP (VDC0)by KPP Merge (VDC) into single column Ocean implicit Ocean implicit then vertical mixing (T, S) vertical mixing vertical mixing (T1, S1) (T0, S0) Merge (VDC and T, S) into single column Case settings Model: POP-CICE active on GX1 grid CORE 2 forcing data from 1948 to 2009 Parameters are default CESM 1_1_1 setting except: 1) Control case, surface flux (heat and salt) �=�↓0 �↓0 +�↓1 �↓1 2) Case v0 and v1, �↓0 =1−∑↑▒�↓� is lead fraction and�↓1 =1−�↓0 is ice concentration. 3) Case fix, �↓0 is a constant (0.001%) when sea ice present. When �↓0���� =�−�+�↓��_���_��� , the results are almost identical to that of the control. The following discussion, �↓0���� =�−�+�↓��_���_��� , 4) Case n5 is a -
Announcement
Announcement Total 100 articles, created at 2016-05-29 12:08 1 Ohio Zoo Closes Gorilla Exhibit for Now After Boy Falls In (1.02/2) The Cincinnati Zoo has temporarily closed its gorilla exhibit after a special zoo response team shot and killed a 17-year-old gorilla that grabbed and dragged a 4-year-old boy who fell into a moat. Zoo officials said the boy fell after he climbed through a public... 2016-05-29 12:08 3KB abcnews.go.com 2 5 killed, 3 missing in floods in China At least five people were killed and other three remained missing following a flash flood in south China's Guangdong Province (1.02/2) 2016-05-29 10:34 931Bytes www.mid-day.com 3 Filoil: Red Lions maul Knights San Beda smelled blood and feasted on Letran, 84-70, in the Filoil Flying V Preseason Premier Cup Sunday at San Juan Arena. It (1.00/2) was the first meeting between the two teams since the NCAA Season 2016-05-29 12:08 2KB sports.inquirer.net 4 The Final journey: Real and Atletico fans Madrid (0.01/2) A Real Madrid fan poses at Piazza Duomo ahead of the UEFA Champions League final which will determine the football kings of Europe through a battle between Spanish rivals Real Madrid and Club Atletico de Madrid which took place at Stadio Giuseppe Meazza in Milan, Italy on Saturday 2016-05-29 10:04 1KB www.mid- day.com 5 Lineman electrocuted in Quirino Province CABARROGUIS, Quirino — A technician of the Quirino Electric Cooperative was electrocuted on Saturday (May 28) after fixing a power line in Maddela town. -
3D Convection, Phase Change, and Solute Transport in Mushy Sea Ice
3D convection, phase change, and solute transport in mushy sea ice Dan Martin, James Parkinson, Andrew Wells, Richard Katz Lawrence Berkeley National Laboratory (USA), Oxford University (UK). Summary: ● Simulated brine drainage via 3-D convection in porous mushy sea ice ● Shallow region near ice-ocean interface is desalinated by many small brine channels ● Full-depth “mega-channels” allow drainage from saline layer near top of ice. What is a mushy layer? Dense brine drains convectively from porous mushy sea ice into the ocean. - What is spatial structure of this flow in 3 dimensions? Upper fig.: Sea ice is a porous mixture of solid ice crystals (white) and liquid brine (dark). H. Eicken et al. Cold Regions Science and Technology 31.3 (2000), pp. 207–225 Lower fig.: Trajectory (→) of a solidifying salt water parcel through the phase diagram. As the temperature T decreases, the ice fraction increases and the residual brine salinity SI increases making the fluid denser, which can drive convection. Using a linear approximation for the liquidus curve, the freezing point is - Problem setup Numerically solve mushy-layer equations for porous ice-water Cold upper boundary O matrix g T=-10 C, no normal salt flux, no vertical flow (see appendix). 2m Initial conditions z S=30g/kg O T=Tfreezing (S=30g/kg) + 0.2 C U = 0 Horizontally periodic O y Plus small random O(0.01 C) temperature perturbation x 4m 4m Open bottom boundary Inflow/outflow, with constant pressure O Inflow: S=30g/kg, T=Tfreezing (S=30g/kg) + 0.2 C Movie Contours of: Ice permeability -function of ice porosity; (red lower, green higher ~ice-ocean interface) Velocity (blue lower, purple higher). -
Entrainment and Dynamics of Ocean‐Derived Impurities Within Europa's
RESEARCH ARTICLE Entrainment and Dynamics of Ocean‐Derived Impurities 10.1029/2020JE006394 Within Europa's Ice Shell Key Points: J. J. Buffo1,2 , B. E. Schmidt1 , C. Huber3 , and C. C. Walker4 • Planetary ices contain a chemical fingerprint inherited from the 1Georgia Institute of Technology, Atlanta, GA, USA, 2Dartmouth College, Hanover, NH, USA, 3Brown University, thermochemical properties and 4 dynamics of the parent liquid Providence, RI, USA, Woods Hole Oceanographic Institution, Woods Hole, MA, USA reservoir • The refreezing of basal fractures and perched lenses in Europa's ice Abstract Compositional heterogeneities within Europa's ice shell likely impact the dynamics and shell produces regions of high habitability of the ice and subsurface ocean, but the total inventory and distribution of impurities within the chemical gradation and ‐ concentration shell are unknown. In sea ice on Earth, the thermochemical environment at the ice ocean interface • Europa's ice shell is predicted to governs impurity entrainment into the ice. Here, we simulate Europa's ice‐ocean interface and bound the have a bulk salinity between 1.053 impurity load (1.053–14.72 g/kg [parts per thousand weight percent, or ppt] bulk ice shell salinity) and and 14.72 ppt, depending on the fi ocean composition bulk salinity pro le of the ice shell. We derive constitutive equations that predict ice composition as a function of the ice shell thermal gradient and ocean composition. We show that evolving solidification rates Supporting Information: of the ocean and hydrologic features within the shell produce compositional variations (ice bulk • Supporting Information S1 salinities of 5–50% of the ocean salinity) that can affect the material properties of the ice. -
Class Summary Table (5Th) Negotiating Ideas and Evidence Through Task
Class Summary Table (5th) Negotiating ideas and evidence through task Task Number and What we learned from this task. How it helps us explain the anchoring Name phenomenon? Task 1 -Temperature is the speed of particles -Brinicles have heat Temperature, heat, -Heat is the speed and mass (number of -Brine, seawater, and ice have different and energy particles) in a system amounts of heat -Cold things have heat Task 2 -Adding or removing energy can cause -Energy is being transferred from the Icy Hot and Liquid Cool the intermolecular forces between seawater to the brine and this causes the particles to break or form seawater to freeze -During phase changes temperature -When the seawater freezes it is slowing the does not change particles and allowing intermolecular forces to -When things cool down they release reform energy -When things heat up energy is being absorbed -Energy also causes particles to speed up or slow down -Thermal energy is stored in the motion of particles -Phase energy is stored in the arrangement of particles Task 3: -Liquid water is more dense than ice -What ice looks like at the particle level will Water’s Wacky Ways -Water forms hydrogen bonds help with final model -liquid water and solid water look -Ice floats so it can hold the brine on top of different at the particle level the water -Solid water forms hexagon rings -The oxygen have a slightly negative charge, -Surface tension is created by hydrogen while the hydrogens have a slightly positive bonds charge -Cohesion is when particles are attracted to the same type -
Antarctic Dive Guide ASC-17-022 Version 1
Antarctic Dive Guide ASC-17-022 Version 1 July 2017 Antarctic Dive Guide ASC-17-022 Version 1 July 2017 Version History Section Version # Date Author/Editor Change Details (if applicable) This document is derived from a former July Steve Rupp 1 All NSF document, Antarctic Scientific 2017 Dean Hancock Diving Manual (NSF 99-22). The document library holds the most recent versions of all documents. Approved by: Signature Print Name Date Supervisor, Dive Services Approved by: Signature Print Name Date Supervisor, Dive Services All brand and product names remain the trademarks of their respective owners. This publication may also contain copyrighted material, which remains the property of respective owners. Permission for any further use or reproduction of copyrighted material must be obtained directly from the copyright holder. Page i Antarctic Dive Guide ASC-17-022 Version 1 July 2017 Table of Contents Forward ......................................................................................................................... vi 1. Introduction to Antarctic Scientific Diving................................................. 1 2. United States Antarctic Program Scientific Diving Certification ............. 4 2.1. Project Dive Plan Approval ............................................................................ 4 2.2. Diver Certification ........................................................................................... 4 2.3. Pre-Dive Orientation ...................................................................................... -
Contents Overview
Final Grant Report 2018: Virtual Planetary Laboratory at The University of Washington Reporting Period: January 1, 2013 – December 31, 2018 PI: Victoria Meadows (UW) Contents Overview ................................................................................................................................................. 2 Our Research: Year 1 ............................................................................................................................. 3 Our Research: Year 2 ............................................................................................................................. 8 Our Research: Year 3 ........................................................................................................................... 16 Our Research: Year 4 ........................................................................................................................... 25 Our Research: Year 5 ........................................................................................................................... 35 Our Research: Year 6 (NCE) ............................................................................................................... 49 New Technology ................................................................................................................................... 56 Publications (398 Total) ........................................................................................................................ 57 NAI Information Management System 1 of 91 Overview