Very-Long-Baseline Radio Interferometry Observations of Low Power Radio Galaxies G

Total Page:16

File Type:pdf, Size:1020Kb

Very-Long-Baseline Radio Interferometry Observations of Low Power Radio Galaxies G Proc. Natl. Acad. Sci. USA Vol. 92, pp. 11356-11359, December 1995 Colloquium Paper This paper was presented at a colloquium entitled "Quasars and Active Galactic Nuclei: High Resolution Radio Imaging," organized by a committee chaired by Marshall Cohen and Kenneth Kellermann, held March 24 and 25, 1995, at the National Academy of Sciences Beckman Center, Irvine, CA. Very-long-baseline radio interferometry observations of low power radio galaxies G. GIOVANNINI*t, W. D. COFTONt, L. FERETTI*t, L. LARAt§, T. VENTURIt, AND J. M. MARCAIDEI *Dipartimento di Astronomia, Universita di Bologna, Bologna, Italy; tIstituto di Radioastronomia, Consiglio Nazionale delle Richerche, Bologna, Italy; *National Radio Astronomy Observatory, Charlottesville, VA 22903-2475; §Instituto de Astrofisica de Andalucia, Consejo Superior de Investigaciones Cientificas, Andalucia, Spain; and 1Departamento de Astronomia, Universitat de Valencia, Valencia, Spain ABSTRACT The parsec scale properties of low power Table 1. VLBI radio galaxies radio galaxies are reviewed here, using the available data on Log 12 Fanaroff-Riley type I galaxies. The most frequent radio P408,t VLBI structure is an asymmetric parsec-scale morphology-i.e., Radio galaxy z* W/Hz morphology4: Ref.§ core and one-sided jet. It is shared by 9 (possibly 10) of the 12 mapped radio galaxies. One (possibly 2) of the other galaxies 0055+30 NGC 315 0.0167 23.95 One-sided (7) has a two-sided jet emission. Two sources are known from 0104+32 3C31 0.0169 24.50 One-sided This paper published data to show a proper motion; we present here 0206+35 4C35.03 0.0375 24.28 One-sided This paper evidence for proper motion in two more galaxies. Therefore, in 0755+37 NGC 2484 0.0413 25.04 One-sided (8) the present sample we have 4 radio galaxies with a measured 0836+29 4C29.30 0.0790 25.08 One-sided (9) proper motion. One of these has a very symmetric structure 1142+20 3C264 0.0206 24.85 One-sided This paper and therefore should be in the plane of the sky. The results 1144+35 0.0630 24.15 One-sided? This paper discussed here are in agreement with the predictions of the 1222+13 3C272.1 0.0037 23.27 Two-sided? This paper unified scbeme models. Moreover, the present data indicate 1228+12 3C274 0.0037 25.07 One-sided (10) that the parsec scale structure in low and high power radio 1626+39 3C338 0.0303 25.25 Two-sided (11) and galaxies is essentially the same. this paper 1637+82 NGC 6251 0.0230 24.55 One-sided (5) 2335+26 3C465 0.0301 25.39 One-sided (9) The knowledge of the structure of radio galaxies on the *Galaxy redshift. parsec scale is important to test current models of jet tTotal radio power at 408 MHz. dynamics and acquire new pieces of information to test the 4Parsec scale radio morphology. radio source unified schemes. Very-long-baseline radio in- §Reference for radio morphology. terferometry (VLBI) data on powerful radio galaxies and quasars show a strong evidence of relativistic jets and in many Radio galaxies in the same range of total radio power, but cases a proper motion with an apparent superluminal velocity unresolved on the arcsecond scale, have not yet been properly has been found (1, 2). VLBI observations of low power radio mapped. Therefore, they are not discussed here. Observations galaxies are also necessary to compare the parsec scale prop- to study this class of radio sources remain to be made, in order erties of radio sources with different radio powers and to test to understand their nature and connection with the more the unified scheme models, which predict also that low power radio galaxies should have parsec scale jets moving at a velocity powerful CSO and CSS sources (6). close to the speed of light. In this paper, we present and discuss A Hubble constant Ho = 100 km-sec- 'Mpc-1 (Mpc, the available VLBI data on extended low power radio galaxies megaparsec; 1 pc = 3.09 x 1016 m) and deceleration parameter [Fanaroff-Riley type I, hereafter referred to as FRI (3)]. We qo = 1 have been used throughout this paper. will use the radio galaxies of the sample currently under study by us (4) observed at 5 GHz with the very long baseline array Radio Morphology (VLBA) or the global array. This sample was obtained by selecting from the B2 and 3CR galaxy samples those objects The list of radio galaxies studied so far and discussed here is with a core flux density >100 millijansky (mJy; 1 Jy = 10-26 presented in Table 1. A morphological analysis based on the wm-2-Hz-1) at 6 cm at arcsecond resolution (4). The core flux available VLBI maps indicates that an asymmetric morphol- limit, imposed by observational constraints, could produce a ogy-i.e., core and one-sided jet-is the most frequent radio sample biased toward objects with jets pointing toward the structure (see, for example, Fig. 1). It is shared by 9 (possibly observer. This point is not important in discussing single 10) of the 12 mapped radio galaxies. A clear symmetric struc- objects but has to be taken in account for statistical studies. ture is found in 3C338 (Fig. 2), while 3C272.1 shows a complex The well known FRI galaxy NGC 6251 (see ref. 5 and structure with a possible counterjet close to the core (Fig. 3). references therein), not included in our sample, was added, for The one-sided jet is always well collimated and only small a total of 12 FRI radio galaxies. Some of them have been oscillations or bendings are visible. The nuclear emission is observed also at 1.6 and 8.4 GHz. Only 5 have observations at always the dominant component. When maps at two or more different epochs to search for a possible proper motion. frequencies are available, the core emission shows a flat or The publication costs of this article were defrayed in part by page charge Abbreviations: VLBI, very-long-baseline radio interferometry; FRI payment. This article must therefore be hereby marked "advertisement" in and -II, Fanaroff-Riley types I and II; Jy, Jansky; VLBA, very long accordance with 18 U.S.C. §1734 solely to indicate this fact. baseline array. 11356 Downloaded by guest on October 5, 2021 Colloquium Paper: Giovannini et al. Proc. Natl. Acad. Sci. USA 92 (1995) 11357 3C264 4974.989 MHz 3C338 4987.490 MHz I I ~I* I I 4 25 _A ;-> .I C~~-( 20 F 80 -2 15 F 20 10 0 -10 -20 10 F mas FIG. 2. VLBA map of 3C338 at 5 GHz. The HPBW is 2.2 X 2.2 5 , milliarcsec (mas). The peak flux is 44.4 mJy per beam; contour levels are -0.5, 0.5, 0.7, 1, 1.5, 2, 3, 4, 6, 8, 10, 20, 30, and 40 mJy per beam. oF. Q Two-sided arrow shows the direction of the symmetric kiloparsec scale I 0 jet. -5 F strongly variable. Several measurements of the flux density (4) , '. I ,t-. at 1.4 and 5 GHz show that it was "300 mJy in 1974 while now -10 it is 540 mJy after reaching a maximum of 610 mJy in 1991. -15 Simultaneous multifrequency observations show that the core 15 10 5 0 -5 -10 spectrum is flat between 1.4 and 5 GHz but strongly steepens mas between 5 and 8.4 GHz. The VLBI structure consists of two main components (A and C) with an inverted spectrum 3C465 8417.990 MHz between 1.7 and 5 GHz and low brightness, jet-like features departing from them (Fig. 4). A comparison between our data and the 5-GHz VLBI map obtained in the second Caltech- Jodrell Bank VLBI survey (14) shows that (i) component A is probably variable, and therefore we tentatively identify it as the core; in this case the parsec scale structure would be in the direction of the fainter kiloparsec scale jet. However, owing to the complexity of this source and the slight asymmetry of the faint kiloparsec scale jets, the definition of a main jet may be ambiguous. (ii) The separation between A and C increases between the two observing epochs. This proper motion is clearly visible also in comparing the model given (14) with our visibilities. The data are consistent with a proper motion of component C with respect to A with an apparent superluminal velocity = 1.2c. The snapshot data obtained by us (4) are in agreement with this motion. mas 3C272.1 4973.241 MHz FIG. 1. (A) VLBI map of 3C264 at 5.0 GHz. The half-power beam 40 width (HPBW) is 3.5 x 2.1 milliarcsec (mas) in position angle 11°. The peak flux is 135 mJy per beam; contour levels are -0.3, 0.3, 0.5, 0.8, 1.5, 3, 5, 10, 25, 50, and 100 mJy per beam. Arrow shows the direction of the main kiloparsec scale jet. (B) VLBI map of 3C465 at 8.4 GHz. 30 The HPBW is 2.52 x 0.83 mas in position angle -9.7°. The peak flux '0 is 132 mJy per beam; contour levels are -0.75, 0.75, 1.5, 2, 3, 5, 10, 20, 50, and 100 mJy per beam. Arrow shows the direction of the main kiloparsec scale jet. 20 _ inverted spectrum while the jet emission has a spectral index Io1 of ;0.5. A few sources are described in detail below. peculiar 10 _ 3C264.
Recommended publications
  • Fermi Large Area Telescope Second Source Catalog the Fermi LAT Collaboration
    Revision: 3455: Last update: 2011-07-09 23:47:14 - 0700 Fermi Large Area Telescope Second Source Catalog The Fermi LAT Collaboration ABSTRACT This is a pre-submission draft of the paper provided to document the public release of the 2FGL catalog through the FSSC. The draft will be replaced soon by the version that is submitted to ApJS and posted on the arXiv. We present the second catalog of high-energy γ-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi),derivedfromdatatakenduringthefirst 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24-monthperiod.The Second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, power-law-with-exponential-cutoff, or log-normal forms. Also in- cluded are flux measurements in 5 energy bands for each source and monthly light curves. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalogcontains1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1174 as being reliably associated with counterparts of known or likely γ-ray-producing source classes.
    [Show full text]
  • The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope M
    The Astrophysical Journal, 810:14 (34pp), 2015 September 1 doi:10.1088/0004-637X/810/1/14 © 2015. The American Astronomical Society. All rights reserved. THE THIRD CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE FERMI LARGE AREA TELESCOPE M. Ackermann1, M. Ajello2, W. B. Atwood3, L. Baldini4, J. Ballet5, G. Barbiellini6,7, D. Bastieri8,9, J. Becerra Gonzalez10,11, R. Bellazzini12, E. Bissaldi13, R. D. Blandford14, E. D. Bloom14, R. Bonino15,16, E. Bottacini14, T. J. Brandt10, J. Bregeon17, R. J. Britto18, P. Bruel19, R. Buehler1, S. Buson8,9, G. A. Caliandro14,20, R. A. Cameron14, M. Caragiulo13, P. A. Caraveo21, B. Carpenter10,22, J. M. Casandjian5, E. Cavazzuti23, C. Cecchi24,25, E. Charles14, A. Chekhtman26, C. C. Cheung27, J. Chiang14, G. Chiaro9, S. Ciprini23,24,28, R. Claus14, J. Cohen-Tanugi17, L. R. Cominsky29, J. Conrad30,31,32,70, S. Cutini23,24,28,R.D’Abrusco33,F.D’Ammando34,35, A. de Angelis36, R. Desiante6,37, S. W. Digel14, L. Di Venere38, P. S. Drell14, C. Favuzzi13,38, S. J. Fegan19, E. C. Ferrara10, J. Finke27, W. B. Focke14, A. Franckowiak14, L. Fuhrmann39, Y. Fukazawa40, A. K. Furniss14, P. Fusco13,38, F. Gargano13, D. Gasparrini23,24,28, N. Giglietto13,38, P. Giommi23, F. Giordano13,38, M. Giroletti34, T. Glanzman14, G. Godfrey14, I. A. Grenier5, J. E. Grove27, S. Guiriec10,2,71, J. W. Hewitt41,42, A. B. Hill14,43,68, D. Horan19, R. Itoh40, G. Jóhannesson44, A. S. Johnson14, W. N. Johnson27, J. Kataoka45,T.Kawano40, F. Krauss46, M. Kuss12, G. La Mura9,47, S. Larsson30,31,48, L.
    [Show full text]
  • Revealing Hidden Substructures in the $ M {BH} $-$\Sigma $ Diagram
    Draft version November 14, 2019 A Typeset using L TEX twocolumn style in AASTeX63 Revealing Hidden Substructures in the MBH –σ Diagram, and Refining the Bend in the L–σ Relation Nandini Sahu,1,2 Alister W. Graham2 And Benjamin L. Davis2 — 1OzGrav-Swinburne, Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia 2Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia (Accepted 2019 October 22, by The Astrophysical Journal) ABSTRACT Using 145 early- and late-type galaxies (ETGs and LTGs) with directly-measured super-massive black hole masses, MBH , we build upon our previous discoveries that: (i) LTGs, most of which have been 2.16±0.32 alleged to contain a pseudobulge, follow the relation MBH ∝ M∗,sph ; and (ii) the ETG relation 1.27±0.07 1.9±0.2 MBH ∝ M∗,sph is an artifact of ETGs with/without disks following parallel MBH ∝ M∗,sph relations which are offset by an order of magnitude in the MBH -direction. Here, we searched for substructure in the MBH –(central velocity dispersion, σ) diagram using our recently published, multi- component, galaxy decompositions; investigating divisions based on the presence of a depleted stellar core (major dry-merger), a disk (minor wet/dry-merger, gas accretion), or a bar (evolved unstable 5.75±0.34 disk). The S´ersic and core-S´ersic galaxies define two distinct relations: MBH ∝ σ and MBH ∝ 8.64±1.10 σ , with ∆rms|BH = 0.55 and 0.46 dex, respectively. We also report on the consistency with the slopes and bends in the galaxy luminosity (L)–σ relation due to S´ersic and core-S´ersic ETGs, and LTGs which all have S´ersic light-profiles.
    [Show full text]
  • 00E the Construction of the Universe Symphony
    The basic construction of the Universe Symphony. There are 30 asterisms (Suites) in the Universe Symphony. I divided the asterisms into 15 groups. The asterisms in the same group, lay close to each other. Asterisms!! in Constellation!Stars!Objects nearby 01 The W!!!Cassiopeia!!Segin !!!!!!!Ruchbah !!!!!!!Marj !!!!!!!Schedar !!!!!!!Caph !!!!!!!!!Sailboat Cluster !!!!!!!!!Gamma Cassiopeia Nebula !!!!!!!!!NGC 129 !!!!!!!!!M 103 !!!!!!!!!NGC 637 !!!!!!!!!NGC 654 !!!!!!!!!NGC 659 !!!!!!!!!PacMan Nebula !!!!!!!!!Owl Cluster !!!!!!!!!NGC 663 Asterisms!! in Constellation!Stars!!Objects nearby 02 Northern Fly!!Aries!!!41 Arietis !!!!!!!39 Arietis!!! !!!!!!!35 Arietis !!!!!!!!!!NGC 1056 02 Whale’s Head!!Cetus!! ! Menkar !!!!!!!Lambda Ceti! !!!!!!!Mu Ceti !!!!!!!Xi2 Ceti !!!!!!!Kaffalijidhma !!!!!!!!!!IC 302 !!!!!!!!!!NGC 990 !!!!!!!!!!NGC 1024 !!!!!!!!!!NGC 1026 !!!!!!!!!!NGC 1070 !!!!!!!!!!NGC 1085 !!!!!!!!!!NGC 1107 !!!!!!!!!!NGC 1137 !!!!!!!!!!NGC 1143 !!!!!!!!!!NGC 1144 !!!!!!!!!!NGC 1153 Asterisms!! in Constellation Stars!!Objects nearby 03 Hyades!!!Taurus! Aldebaran !!!!!! Theta 2 Tauri !!!!!! Gamma Tauri !!!!!! Delta 1 Tauri !!!!!! Epsilon Tauri !!!!!!!!!Struve’s Lost Nebula !!!!!!!!!Hind’s Variable Nebula !!!!!!!!!IC 374 03 Kids!!!Auriga! Almaaz !!!!!! Hoedus II !!!!!! Hoedus I !!!!!!!!!The Kite Cluster !!!!!!!!!IC 397 03 Pleiades!! ! Taurus! Pleione (Seven Sisters)!! ! ! Atlas !!!!!! Alcyone !!!!!! Merope !!!!!! Electra !!!!!! Celaeno !!!!!! Taygeta !!!!!! Asterope !!!!!! Maia !!!!!!!!!Maia Nebula !!!!!!!!!Merope Nebula !!!!!!!!!Merope
    [Show full text]
  • 7.5 X 11.5.Threelines.P65
    Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93,
    [Show full text]
  • A Catalogue of Radio Sources at 151.5 Mhz
    Appendix B A catalogue of radio sources at 151.5 MHz 547 Appendix B. A catalogue of radio sources at 151.5 MHz 548 In this Appendix, we present a source list extracted from the deconvolved images pre- sented in this thesis. The source extraction and catalogue construction was carried out by the algorithm discussed in Sec. 7.3 for sources having peak detection threshold higher than 5σ. The reliability of all sources presented here has been confirmed by visual inspection. Details of sky coverage, accuracy of flux densities and positions are discussed in Sec. 7.3.2. Catalogue Format : The catalogue is organized in order of increasing RA and declination. The various columns of the catalogue are : Column 1 : This follows the IAU convention of naming sources. Jhhmm-ddmm(J2000). As a prefix to the name we use MRT for the name of the survey. Column 2 : RA position of the source (J2000). Column 3 : Declination position of the source (J2000). 1 Column 4 : Flux density of the source in Jy beam− . In case the source is extended, inte- grated flux density is given. Column 5 : The ratio of flux density estimate to the χ value obtained during fitting. This is a confidence level estimate of the least square fit. It is different from the signal to noise ratio in the sense that the value of χ depends not only on the local noise but also on the presence of other sources, sidelobes, large scale structures in the neighbourhood. Column 6 : Sources which are well extended are marked as E.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Lavoro Di Maturità
    Liceo Lugano 2 Astrofisica Lavoro di maturità Cinematica centrale delle galassie Stefano Andreoli Gent Ismaili 23 marzo 2012 Docente responsabile Nicolas Cretton Fisica Liceo di Lugano 2 Esperta scienze e gioventù Chiara Mastropietro Savosa Figura 1: Raffigurazione artistica di un buco nero all’interno di una galassia (crediti: Gordon Francis Ferri, 2011, riferimento 80) Indice 1Galassie 1 1.1 La sequenza di Hubble . 2 1.1.1 L’evoluzione delle galassie . 4 1.2 Galassie ellittiche . 5 1.3 Galassie a disco . 9 1.3.1 Teoria delle onde di densità . 11 1.4 Galassie irregolari . 12 1.5 Forme peculiari . 12 1.6 AGN . 13 1.6.1 Cosa attiva un buco nero supermassivo? . 14 2 Cinematica interna delle galassie 16 2.1 Spettro . 16 2.1.1 Righe di emissione e di assorbimento . 17 2.2 Profilo di velocità . 17 2.2.1 Osservazioni . 20 2.3 Tempo di rilassamento . 21 I 3 La materia oscura 21 3.1 LostudiodiZwicky ......................... 22 3.2 Lo studio di Vera Rubin . 22 3.3 Inperiferiadellegalassie. 23 3.4 Lenti gravitazionali . 23 3.4.1 L’ammasso di galassie MACS J1206.2-0847 . 24 3.5 Teoria MOND . 25 3.6 Rapporto massa-luminosità . 26 3.7 Composizionedellamateriaoscura . 29 3.8 Struttura della materia oscura . 31 4 Simulazioni N-body 33 5 Buchi neri 34 5.1 Evidenze osservative dell’esistenza dei buchi neri . 34 5.2 Nascita di un buco nero stellare . 34 5.3 Buco nero supermassivo . 35 5.3.1 Sfera di influenza . 35 5.3.2 Buco nero supermassivo nella Via Lattea .
    [Show full text]
  • Objektauswahl NGC
    UMi – Objektauswahl NGC NGC 3172 NGC 5452 NGC 5909 NGC 6217 NGC 5034 NGC 5479 NGC 5912 NGC 6251 NGC 5144 NGC 5547 NGC 5939 NGC 6252 NGC 5262 NGC 5607 NGC 6011 NGC 6324 NGC 5314 NGC 5620 NGC 6048 NGC 6331 NGC 5323 NGC 5671 NGC 6068 NGC 5340 NGC 5712 NGC 6071 NGC 5344 NGC 5819 Sternbild- NGC 5412 NGC 5832 NGC 6091 Übersicht NGC 5415 NGC 5836 NGC 6094 Zur Objektauswahl: Nummer anklicken Zur Übersichtskarte: Objekt in Aufsuchkarte anklicken Zum Detailfoto: Objekt in Übersichtskarte anklicken UMi Übersichtskarte Auswahl NGC 3172 Aufsuchkarte Auswahl NGC 5034_5144_5314_5340_5415 Aufsuchkarte Auswahl NGC 5262_5323_5344_5412 Aufsuchkarte Auswahl NGC 5452_5547_5712 Aufsuchkarte Auswahl NGC 5479_5620_5671 Aufsuchkarte Auswahl NGC 5607_5819_5832_5836 Aufsuchkarte Auswahl NGC 5909_5912 Aufsuchkarte Auswahl N 5939_6011_6048_6071_6091_6094 Aufsuchkarte Auswahl NGC 6068_6217 Aufsuchkarte Auswahl NGC 6251_6252 Aufsuchkarte Auswahl NGC 6324 Aufsuchkarte Auswahl NGC 6331 Aufsuchkarte Auswahl Auswahl NGC 3172 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 5034 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 5144 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 5262 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 5314 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 5323 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 5340 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 5344_5412 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 5415 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 5452_5547 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 5479 ÜbersichtskarteNGC Aufsuch- karte
    [Show full text]
  • The COLOUR of CREATION Observing and Astrophotography Targets “At a Glance” Guide
    The COLOUR of CREATION observing and astrophotography targets “at a glance” guide. (Naked eye, binoculars, small and “monster” scopes) Dear fellow amateur astronomer. Please note - this is a work in progress – compiled from several sources - and undoubtedly WILL contain inaccuracies. It would therefor be HIGHLY appreciated if readers would be so kind as to forward ANY corrections and/ or additions (as the document is still obviously incomplete) to: [email protected]. The document will be updated/ revised/ expanded* on a regular basis, replacing the existing document on the ASSA Pretoria website, as well as on the website: coloursofcreation.co.za . This is by no means intended to be a complete nor an exhaustive listing, but rather an “at a glance guide” (2nd column), that will hopefully assist in choosing or eliminating certain objects in a specific constellation for further research, to determine suitability for observation or astrophotography. There is NO copy right - download at will. Warm regards. JohanM. *Edition 1: June 2016 (“Pre-Karoo Star Party version”). “To me, one of the wonders and lures of astronomy is observing a galaxy… realizing you are detecting ancient photons, emitted by billions of stars, reduced to a magnitude below naked eye detection…lying at a distance beyond comprehension...” ASSA 100. (Auke Slotegraaf). Messier objects. Apparent size: degrees, arc minutes, arc seconds. Interesting info. AKA’s. Emphasis, correction. Coordinates, location. Stars, star groups, etc. Variable stars. Double stars. (Only a small number included. “Colourful Ds. descriptions” taken from the book by Sissy Haas). Carbon star. C Asterisma. (Including many “Streicher” objects, taken from Asterism.
    [Show full text]
  • 870 Micron Observations of Nearby 3Crr Radio Galaxies A
    The Astronomical Journal, 126:2677–2686, 2003 December # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. 870 MICRON OBSERVATIONS OF NEARBY 3CRR RADIO GALAXIES A. C. Quillen,1,2,3 Jessica Almog,1 and Mihoko Yukita2,4 Received 2003 August 18; accepted 2003 September 3 ABSTRACT We present submillimeter continuum observations at 870 lm of the cores of low-redshift 3CRR radio galaxies, observed at the Heinrich Hertz Submillimeter Telescope. The cores are nearly flat-spectrum between the radio and submillimeter, which implies that the submillimeter continuum is likely to be synchrotron emission and not thermal emission from dust. The emitted power from nuclei detected at optical wavelengths and in the X-rays is similar in the submillimeter, optical, and X-rays. The submillimeter-to-optical and X-ray power ratios suggest that most of these sources resemble misdirected BL Lac–type objects with synchrotron emission peaking at low energies. However, we find three exceptions, the FR I galaxy 3C 264 and the FR II galaxies 3C 390.3 and 3C 338 with high X-ray–to–submillimeter luminosity ratios. These three objects are candidate misdirected high- or intermediate-energy peaked BL Lac–type objects. With additional infrared observations and from archival data, we compile spectral energy distributions for a subset of these objects. The steep dips observed near the optical wavelengths in many of these objects suggest that extinction inhibits the detection and reduces the flux of optical continuum core counterparts. High-resolution near- or mid-infrared imaging may provide better measurements of the underlying synchrotron emission peak.
    [Show full text]
  • Exploring Black Holes – Integrated Physics and Chemistry Exploring Black Holes a Unit Based on Force and Motion for Integrated Physics and Chemistry
    Exploring Black Holes – Integrated Physics and Chemistry Exploring Black Holes A Unit Based on Force and Motion for Integrated Physics and Chemistry Part I: NEWS FLASH! Quasars and Fast Stars Inside Galaxies? Materials for each student: 3 x 5 index card Student journal For the class: PowerPoint, computer, and video projector Materials for each group (5 groups): News flashes: cut out each news flash, one for each group. Duration: One class period Begin this first of six activities with a fast write: students respond to a question on a small 3 x 5 index card for two minutes. This is a chance for them to bring their ideas about black holes to the fore of their minds, and give you an idea of what they know. You may decide to post a giant K-W-L chart (what do I know, what do I want to know, and what have I learned) for students to chronicle their progress through this activity set. This activity gives them a chance to fill up the "K" (what do I know) and the "W" (what do I want to know) sections. Fast write (two minutes) What do you think are the most important characteristics of a black hole? News Flashes: Astronomers Astounded by Super-Luminous Objects and Fast Moving Stars Inside the Cores of Galaxies Break students up into five groups, and give each group a news flash to review. Their job is to review the news flash and present it (with feeling, like the way a news journalist inspires interest in an evolving story) to the class in an interactive way.
    [Show full text]