Superphylum Ecdysozoa: Arthropods
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hox Gene Duplications Correlate with Posterior Heteronomy in Scorpions
Downloaded from http://rspb.royalsocietypublishing.org/ on February 17, 2015 Hox gene duplications correlate with posterior heteronomy in scorpions Prashant P. Sharma1, Evelyn E. Schwager2, Cassandra G. Extavour2 and Ward C. Wheeler1 rspb.royalsocietypublishing.org 1Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA 2Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA Research The evolutionary success of the largest animal phylum, Arthropoda, has been attributed to tagmatization, the coordinated evolution of adjacent metameres Cite this article: Sharma PP, Schwager EE, to form morphologically and functionally distinct segmental regions called Extavour CG, Wheeler WC. 2014 Hox gene tagmata. Specification of regional identity is regulated by the Hox genes, of duplications correlate with posterior which 10 are inferred to be present in the ancestor of arthropods. With six heteronomy in scorpions. Proc. R. Soc. B 281: different posterior segmental identities divided into two tagmata, the bauplan of scorpions is the most heteronomous within Chelicerata. Expression 20140661. domains of the anterior eight Hox genes are conserved in previously surveyed http://dx.doi.org/10.1098/rspb.2014.0661 chelicerates, but it is unknown how Hox genes regionalize the three tagmata of scorpions. Here, we show that the scorpion Centruroides sculpturatus has two paralogues of all Hox genes except Hox3, suggesting cluster and/or whole genome duplication in this arachnid order. Embryonic anterior expression Received: 19 March 2014 domain boundaries of each of the last four pairs of Hox genes (two paralogues Accepted: 22 July 2014 each of Antp, Ubx, abd-A and Abd-B) are unique and distinguish segmental groups, such as pectines, book lungs and the characteristic tail, while main- taining spatial collinearity. -
Online Dictionary of Invertebrate Zoology Parasitology, Harold W
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Armand R. Maggenti Online Dictionary of Invertebrate Zoology Parasitology, Harold W. Manter Laboratory of September 2005 Online Dictionary of Invertebrate Zoology: S Mary Ann Basinger Maggenti University of California-Davis Armand R. Maggenti University of California, Davis Scott Gardner University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/onlinedictinvertzoology Part of the Zoology Commons Maggenti, Mary Ann Basinger; Maggenti, Armand R.; and Gardner, Scott, "Online Dictionary of Invertebrate Zoology: S" (2005). Armand R. Maggenti Online Dictionary of Invertebrate Zoology. 6. https://digitalcommons.unl.edu/onlinedictinvertzoology/6 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Armand R. Maggenti Online Dictionary of Invertebrate Zoology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Online Dictionary of Invertebrate Zoology 800 sagittal triact (PORIF) A three-rayed megasclere spicule hav- S ing one ray very unlike others, generally T-shaped. sagittal triradiates (PORIF) Tetraxon spicules with two equal angles and one dissimilar angle. see triradiate(s). sagittate a. [L. sagitta, arrow] Having the shape of an arrow- sabulous, sabulose a. [L. sabulum, sand] Sandy, gritty. head; sagittiform. sac n. [L. saccus, bag] A bladder, pouch or bag-like structure. sagittocysts n. [L. sagitta, arrow; Gr. kystis, bladder] (PLATY: saccate a. [L. saccus, bag] Sac-shaped; gibbous or inflated at Turbellaria) Pointed vesicles with a protrusible rod or nee- one end. dle. saccharobiose n. -
Zootaxa,Crustacean Classification
Zootaxa 1668: 313–325 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Crustacean classification: on-going controversies and unresolved problems* GEOFF A. BOXSHALL Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom E-mail: [email protected] *In: Zhang, Z.-Q. & Shear, W.A. (Eds) (2007) Linnaeus Tercentenary: Progress in Invertebrate Taxonomy. Zootaxa, 1668, 1–766. Table of contents Abstract . 313 Introduction . 313 Treatment of parasitic Crustacea . 315 Affinities of the Remipedia . 316 Validity of the Entomostraca . 318 Exopodites and epipodites . 319 Using of larval characters in estimating phylogenetic relationships . 320 Fossils and the crustacean stem lineage . 321 Acknowledgements . 322 References . 322 Abstract The journey from Linnaeus’s original treatment to modern crustacean systematics is briefly characterised. Progress in our understanding of phylogenetic relationships within the Crustacea is linked to continuing discoveries of new taxa, to advances in theory and to improvements in methodology. Six themes are discussed that serve to illustrate some of the major on-going controversies and unresolved problems in the field as well as to illustrate changes that have taken place since the time of Linnaeus. These themes are: 1. the treatment of parasitic Crustacea, 2. the affinities of the Remipedia, 3. the validity of the Entomostraca, 4. exopodites and epipodites, 5. using larval characters in estimating phylogenetic rela- tionships, and 6. fossils and the crustacean stem-lineage. It is concluded that the development of the stem lineage concept for the Crustacea has been dominated by consideration of taxa known only from larval or immature stages. -
Comparative Neuroanatomy of Mollusks and Nemerteans in the Context of Deep Metazoan Phylogeny
Comparative Neuroanatomy of Mollusks and Nemerteans in the Context of Deep Metazoan Phylogeny Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Biologin Simone Faller aus Frankfurt am Main Berichter: Privatdozent Dr. Rudolf Loesel Universitätsprofessor Dr. Peter Bräunig Tag der mündlichen Prüfung: 09. März 2012 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Contents 1 General Introduction 1 Deep Metazoan Phylogeny 1 Neurophylogeny 2 Mollusca 5 Nemertea 6 Aim of the thesis 7 2 Neuroanatomy of Minor Mollusca 9 Introduction 9 Material and Methods 10 Results 12 Caudofoveata 12 Scutopus ventrolineatus 12 Falcidens crossotus 16 Solenogastres 16 Dorymenia sarsii 16 Polyplacophora 20 Lepidochitona cinerea 20 Acanthochitona crinita 20 Scaphopoda 22 Antalis entalis 22 Entalina quinquangularis 24 Discussion 25 Structure of the brain and nerve cords 25 Caudofoveata 25 Solenogastres 26 Polyplacophora 27 Scaphopoda 27 i CONTENTS Evolutionary considerations 28 Relationship among non-conchiferan molluscan taxa 28 Position of the Scaphopoda within Conchifera 29 Position of Mollusca within Protostomia 30 3 Neuroanatomy of Nemertea 33 Introduction 33 Material and Methods 34 Results 35 Brain 35 Cerebral organ 38 Nerve cords and peripheral nervous system 38 Discussion 38 Peripheral nervous system 40 Central nervous system 40 In search for the urbilaterian brain 42 4 General Discussion 45 Evolution of higher brain centers 46 Neuroanatomical glossary and data matrix – Essential steps toward a cladistic analysis of neuroanatomical data 49 5 Summary 53 6 Zusammenfassung 57 7 References 61 Danksagung 75 Lebenslauf 79 ii iii 1 General Introduction Deep Metazoan Phylogeny The concept of phylogeny follows directly from the theory of evolution as published by Charles Darwin in The origin of species (1859). -
Fossils from South China Redefine the Ancestral Euarthropod Body Plan Cédric Aria1 , Fangchen Zhao1, Han Zeng1, Jin Guo2 and Maoyan Zhu1,3*
Aria et al. BMC Evolutionary Biology (2020) 20:4 https://doi.org/10.1186/s12862-019-1560-7 RESEARCH ARTICLE Open Access Fossils from South China redefine the ancestral euarthropod body plan Cédric Aria1 , Fangchen Zhao1, Han Zeng1, Jin Guo2 and Maoyan Zhu1,3* Abstract Background: Early Cambrian Lagerstätten from China have greatly enriched our perspective on the early evolution of animals, particularly arthropods. However, recent studies have shown that many of these early fossil arthropods were more derived than previously thought, casting uncertainty on the ancestral euarthropod body plan. In addition, evidence from fossilized neural tissues conflicts with external morphology, in particular regarding the homology of the frontalmost appendage. Results: Here we redescribe the multisegmented megacheirans Fortiforceps and Jianfengia and describe Sklerolibyon maomima gen. et sp. nov., which we place in Jianfengiidae, fam. nov. (in Megacheira, emended). We find that jianfengiids show high morphological diversity among megacheirans, both in trunk ornamentation and head anatomy, which encompasses from 2 to 4 post-frontal appendage pairs. These taxa are also characterized by elongate podomeres likely forming seven-segmented endopods, which were misinterpreted in their original descriptions. Plesiomorphic traits also clarify their connection with more ancestral taxa. The structure and position of the “great appendages” relative to likely sensory antero-medial protrusions, as well as the presence of optic peduncles and sclerites, point to an overall -
A Phylum-Wide Survey Reveals Multiple Independent Gains of Head Regeneration Ability in Nemertea
bioRxiv preprint doi: https://doi.org/10.1101/439497; this version posted October 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A phylum-wide survey reveals multiple independent gains of head regeneration ability in Nemertea Eduardo E. Zattara1,2,5, Fernando A. Fernández-Álvarez3, Terra C. Hiebert4, Alexandra E. Bely2 and Jon L. Norenburg1 1 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA 2 Department of Biology, University of Maryland, College Park, MD, USA 3 Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain 4 Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA 5 INIBIOMA, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Bariloche, RN, Argentina Corresponding author: E.E. Zattara, [email protected] Abstract Animals vary widely in their ability to regenerate, suggesting that regenerative abilities have a rich evolutionary history. However, our understanding of this history remains limited because regeneration ability has only been evaluated in a tiny fraction of species. Available comparative regeneration studies have identified losses of regenerative ability, yet clear documentation of gains is lacking. We surveyed regenerative ability in 34 species spanning the phylum Nemertea, assessing the ability to regenerate heads and tails either through our own experiments or from literature reports. Our sampling included representatives of the 10 most diverse families and all three orders comprising this phylum. -
Analysis of the Complete Mitochondrial DNA Sequence of the Brachiopod Terebratulina Retusa Places Brachiopoda Within the Protostomes
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/12415870 Analysis of the complete mitochondrial DNA sequence of the brachiopod Terebratulina retusa places Brachiopoda within the protostomes Article in Proceedings of the Royal Society B: Biological Sciences · November 1999 DOI: 10.1098/rspb.1999.0885 · Source: PubMed CITATIONS READS 83 50 2 authors, including: Martin Schlegel University of Leipzig 151 PUBLICATIONS 2,931 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Rare for a reason? Scale-dependence of factors influencing rarity and diversity of xylobiont beetles View project Bat diversity and vertical niche activity in the fluvial flood forest Leipzig View project All content following this page was uploaded by Martin Schlegel on 22 May 2014. The user has requested enhancement of the downloaded file. Analysis of the complete mitochondrial DNA sequence of the brachiopod Terebratulina retusa places Brachiopoda within the protostomes Alexandra Stechmann* and Martin Schlegel UniversitÌt Leipzig, Institut fÏr Zoologie/Spezielle Zoologie,Talstr. 33, 04103 Leipzig, Germany Brachiopod phylogeny is still a controversial subject. Analyses using nuclear 18SrRNA and mitochondrial 12SrDNA sequences place them within the protostomes but some recent interpretations of morphological data support a relationship with deuterostomes. In order to investigate brachiopod a¤nities within the metazoa further,we compared the gene arrangement on the brachiopod mitochondrial genome with several metazoan taxa. The complete (15 451bp) mitochondrial DNA (mtDNA) sequence of the articulate brachiopod Terebratulina retusa was determined from two overlapping long polymerase chain reaction products. All the genes are encoded on the same strand and gene order comparisons showed that only one major rearrangement is required to interconvert the T.retusa and Katharina tunicata (Mollusca: Polyplaco- phora) mitochondrial genomes. -
Segmentation and Tagmosis in Chelicerata
Arthropod Structure & Development 46 (2017) 395e418 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Segmentation and tagmosis in Chelicerata * Jason A. Dunlop a, , James C. Lamsdell b a Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, D-10115 Berlin, Germany b American Museum of Natural History, Division of Paleontology, Central Park West at 79th St, New York, NY 10024, USA article info abstract Article history: Patterns of segmentation and tagmosis are reviewed for Chelicerata. Depending on the outgroup, che- Received 4 April 2016 licerate origins are either among taxa with an anterior tagma of six somites, or taxa in which the ap- Accepted 18 May 2016 pendages of somite I became increasingly raptorial. All Chelicerata have appendage I as a chelate or Available online 21 June 2016 clasp-knife chelicera. The basic trend has obviously been to consolidate food-gathering and walking limbs as a prosoma and respiratory appendages on the opisthosoma. However, the boundary of the Keywords: prosoma is debatable in that some taxa have functionally incorporated somite VII and/or its appendages Arthropoda into the prosoma. Euchelicerata can be defined on having plate-like opisthosomal appendages, further Chelicerata fi Tagmosis modi ed within Arachnida. Total somite counts for Chelicerata range from a maximum of nineteen in Prosoma groups like Scorpiones and the extinct Eurypterida down to seven in modern Pycnogonida. Mites may Opisthosoma also show reduced somite counts, but reconstructing segmentation in these animals remains chal- lenging. Several innovations relating to tagmosis or the appendages borne on particular somites are summarised here as putative apomorphies of individual higher taxa. -
Animal Diversity Part 2
Textbook resources • pp. 517-522 • pp. 527-8 Animal Diversity • p. 530 part 2 • pp. 531-2 Clicker question In protostomes A. The blastopore becomes the mouth. B. The blastopore becomes the anus. C. Development involves indeterminate cleavage. D. B and C Fig. 25.2 Phylogeny to know (1). Symmetry Critical innovations to insert: Oral bilateral symmetry ecdysis mouth develops after anus multicellularity Aboral tissues 1 Animal diversity, part 2 Parazoa Diversity 2 I. Parazoa • Porifera: Sponges II. Cnidaria & Ctenophora • Tissues • Symmetry I. Outline the • Germ Layers III. Lophotrochozoa unique • Embryonic characteristics Development of sponges IV. Ecdysozoa • Body Cavities • Segmentation Parazoa Parazoa • Porifera: Sponges • Porifera: Sponges – Multicellular without – Hermaphrodites tissues – Sexual and asexual reproduction – Choanocytes (collar cells) use flagella to move water and nutrients into pores – Intracellular digestion Fig. 25.11 Animal diversity, part 2 Clicker Question Diversity 2 I. Parazoa In diploblastic animals, the inner lining of the digestive cavity or tract is derived from II. Cnidaria & Ctenophora A. Endoderm. II. Outline the B. Ectoderm. unique III. Lophotrochozoa C. Mesoderm. characteristics D. Coelom. of cnidarians and IV. Ecdysozoa ctenophores 2 Coral Box jelly Cnidaria and Ctenophora • Cnidarians – Coral; sea anemone; jellyfish; hydra; box jellies • Ctenophores – Comb jellies Sea anemone Jellyfish Hydra Comb jelly Cnidaria and Ctenophora Fig. 25.12 Coral Box jelly Cnidaria and Ctenophora • Tissues Fig. 25.12 – -
Metamerism & Tagmatization
Phylum Arthropoda Pt. I Arthropoda Phylogeny Miller and Harley Chap. 14 Fig. 14.2 BIO2135 – Animal Form and Function BIO2135 – Animal Form and Function Arthropoda Taxonomy Metamerism & Tagmatization ● Sub-phylum Trilobitomorpha – Marine, all extinct, 3 longitudinal lobes ● Sub-phylum Chelicerata – 2 tagma (prosoma & opisthosoma), 1st pair of appendages modified into feeding chelicera ● Sub-phylum Myriapoda – Body divided into head and trunk, 4 pairs of head appendages, uniramous appendages ● Sub-phylum Crustacea – Mostly aquatic, head with 2 pairs of antennae, one pair of mandibles, 2 pairs of maxillae, biramous appendages ● Sub-phylum Hexapoda – Body divided into head, thorax and abdomen; 5 pairs of appendages on head, 3 pairs uniramous appendages on thorax only BIO2135 – Animal Form and Function BIO2135 – Animal Form and Function Arthropod Exoskeleton Modifications & Articulations Fig. 14.4 Fig. 14.3 BIO2135 – Animal Form and Function BIO2135 – Animal Form and Function 1 Ecdysis Ecdysis Fig. 14.5 Fig. 14.5 BIO2135 – Animal Form and Function BIO2135 – Animal Form and Function Ecdysis Spider Molting Fig. 14.5 BIO2135 – Animal Form and Function BIO2135 – Animal Form and Function Crab Molting Class Merostomata Fig. 14.8 BIO2135 – Animal Form and Function BIO2135 – Animal Form and Function 2 Class Arachnida Book Lung Order Aranea Fig. 14.12 Fig. 14.9 BIO2135 – Animal Form and Function BIO2135 – Animal Form and Function Excretion Sense Organs Fig. 28.13 & 28.14 Fig. 14.10 & 14.13 BIO2135 – Animal Form and Function BIO2135 – Animal Form and Function Venomous Spiders Brown Recluse Haemolytic Venom Black Widow Brown Recluse Fig. 14.14 BIO2135 – Animal Form and Function BIO2135 – Animal Form and Function 3 Class Arachnida Class Arachnida Order Scorpionida Order Acarina Fig. -
Arthropod Origins
Bulletin of Geosciences, Vol. 78, No. 4, 323–334, 2003 © Czech Geological Survey, ISSN 1214-1119 Arthropod origins Jan Bergström 1 – Hou Xian-Guang 2 1 Swedish Museum of Nature History, Box 50007, S-104 05 Stockholm, Sweden. E-mail: [email protected] 2 Yunnan University, Yunnan Research Center for Chengjiang Biota, Kunming 650091, Peoples’ Republic of China. E-mail: [email protected] Abstract. Reconsideration of the position of trilobite-like arthropods leads to an idea of the last shared ancestor of known (eu)arthropods. The ancestry and morphological evolution is traced back from this form to a hypothetical ciliated and pseudosegmented slug-like ancestor. Evolution logically passed through a lobopodian stage. Extant onychophorans, Cambrian xenusians, and perhaps anomalocaridids with their kin (the Dinocaridida) may represent probable offshoots on the way. As such, these groups are highly derived and not ancestral to the arthropods. Results of molecular studies indicate a rela- tionship to moulting worms, which at first could seem to be in conflict with what was just said. However, if this is correct, the arthropod and moulting worm lineages must have diverged when some “coelomate” features such as specific vascular and neural systems were still present. The moulting worms would therefore have lost such characters, either only once or several times. Key words: arthropod origins, Anomalocaris, Tardigrada, Cambrian arthropods, Cycloneuralia, trilobitomorphs, eye ridge Introduction immediate ancestors might have looked like, and what they could not have been like. For instance, if the first arthro- Most of our important information on early arthropods co- pods were completely primitive in certain respects, they mes from such deposits as the Lower Cambrian Chengji- cannot be traced back to animals that are highly derived in ang beds, the Middle Cambrian Burgess Shale, and the Up- these respects. -
Tagmatization in Stomatopoda
Haug et al. Frontiers in Zoology 2012, 9:31 http://www.frontiersinzoology.com/content/9/1/31 RESEARCH Open Access Tagmatization in Stomatopoda – reconsidering functional units of modern-day mantis shrimps (Verunipeltata, Hoplocarida) and implications for the interpretation of fossils Carolin Haug1*, Wafaa S Sallam2, Andreas Maas3, Dieter Waloszek3, Verena Kutschera3 and Joachim T Haug1 Abstract Introduction: We describe the tagmatization pattern of the anterior region of the extant stomatopod Erugosquilla massavensis. For documentation we used the autofluorescence capacities of the specimens, resulting in a significant contrast between sclerotized and membranous areas. Results: The anterior body region of E. massavensis can be grouped into three tagmata. Tagma I, the sensorial unit, comprises the segments of the eyes, antennules and antennae. This unit is set-off anteriorly from the posterior head region. Ventrally this unit surrounds a large medial sclerite, interpreted as the anterior part of the hypostome. Dorsally the antennular and antennal segments each bear a well-developed tergite. The dorsal shield is part of tagma II, most of the ventral part of which is occupied in the midline by the large, partly sclerotized posterior part of a complex combining hypostome and labrum. Tagma II includes three more segments behind the labrum, the mandibular, maxillulary and maxillary segments. Tagma III includes the maxillipedal segments, bearing five pairs of sub-chelate appendages. The dorsal sclerite of the first of these tagma-III segments, the segment of the first maxillipeds, is not included in the shield, so this segment is not part of tagma II as generally thought. The second and third segments of tagma III form a unit dorsally and ventrally.