FAU Institutional Repository

Total Page:16

File Type:pdf, Size:1020Kb

FAU Institutional Repository FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1980 Springer. This manuscript is an author version with the final publication available at http://www.springerlink.com and may be cited as: Eckelbarger, K. J. (1980). An ultrastructural study of oogenesis in Streblospio benedicti (Spionidae), with remarks on diversity of vitellogenic mechanisms in Polychaeta. Zoomorphologie, 94(3), 241‐263. doi:10.1007/BF00998204 euLO ~ \ Zoomorphologie 94,241 -263 (1980) Zoomorphologie © by Springer-Verlag 1980 An Ultrastructural Study of Oogenesis in Streblospio benedicti (Spionidae) , with Remarks on Diversity of Vitellogenic Mechanisms in Polychaeta Kevin J. Eckelbarger* Harbor Branch Foundation, Inc.,RR I, Boxl96,Fort Pierce, Fla. 33450, USA . Summary. The ultrastructural features of oogenesis were examined in the spionid polychaete Streblospio benedicti. Paired ovaries are attached to the genital blood vessels extending into the coe lomic space from the circumintes­ tinal sinus. The genital blood vessel wall is composed of flattened, peritoneal cells, large follicle cells and developing oocytes. Vitellogenesis occurs while the oocytes are attached to the blood vessel wall. Two morphologically distinguishable types of yolk are synthesized. Type I is synthesized first by an autosynthetic process apparently involving pinocytosis and the conjoined efforts of the Golgi complex and rough endoplasmic reticulum. Type II yolk appears later through a heterosynthetic process involving the infolding of the oolemma and the sequestering of materials from the blood vessel lumen by endocytosis. During this process, blood pigment molecules appear to be incorporated into endocytotic pits, vesicles and eventually the forming yolk body. The significance of heterosynthetic yolk formation to the general reproductive strategies of polychaetous annelids is discussed. A. Introduction Streblospio benedicti Webster, 1879, is a larviparous, deposit-feeding, estuarine polychaete, widely distributed on the east and west coasts of North America and parts of Europe and South America (Foster, 1971). It has been described as an opportunistic species (Grassle and Grassle, 1974) and an indicator of organic pollution in the marine environment (Felice, 1959; Wass, 1967; Grassle and Grassle, 1974; Young and Young, 1978). Benthic populations of S. benedicti can reach enormous densities particularly in response to a variety of environmen­ tal perturbations. Experimental field studies have shown that densities exceeding 400,000 per m 2 can be attained within azoic sediment boxes in less than 10 days / (McCall, 1977). • The author is grateful for the very capable technical assistance of Ms. P.A. Linley and the many stimulating discussions with Dr. Stan Rice. Contribution No. 156, Harbor Branch Foun­ dation, Inc. 0340-6725/80/0094/0241/$04.60 242 KJ. Eckelbarger Streblospio benedicti is a semi-continuous spawner as defined by Olive and Clark (1978). In northern latitudes, S. benedicti reproduces primarily during the summer and fall months (Dean, 1965; Simon and Brander, 1967; Grassle and Grassle, 1974). In southern Florida waters, however, reproductive individ­ uals are present most of the year. Sexual maturity is reportedly reached in about a month following settlement (Grassle and Grassle, 1974). Developing eggs are incubated in dorsal brood pouches prior to the release of larvae into the plankton (Campbell, 1957; Dean, 1965; Collier and Jones, 1967). Oogenesis occurs rapidly with vitellogenesis taking place entirely within the ovary. Two types of yolk are found within the mature egg, one of which appears to be formed heterosynthetically, a feature recently reported for the first time in another polychaete (Eckel barger, 1979). Although a general description of larval development in Streblospio benedicti is available (Campbell, 1957; Dean, 1965), little is known of its reproductive biology and nothing concerning oogenesis. Due to the unusual mode of yolk synthesis and the scarcity of information regarding gametogenesis in this ecolog­ ically important polychaete, an ultrastructural investigation of oogenesis was undertaken. B. Materials and Methods Female specimens of Streblospio benedicti in various stages of sexual maturity were collected from the shallow water s of the Indi an River estuary in S1. Lucie County, Florid a. Genital segments were cut into small pieces and prepared for electron microscopy following the procedures outlined in Eckelbarger (1979). Thin sections of embedded tissue were cut on a Porter-Blum MT-2 ultramicro­ tome with a diamond knife, stained with aqueous, saturated uran yl acetate followed by lead citrate and examined with a Zeiss EM9-S2 electron microscope . C. Observations The ovaries of Streblospio benedicti are paired organs situated on the convoluted genital blood vessels which extend laterally into the coelomic space from the circumintestinal sinus in the middle and posterior body region . Oogenesis is unsynchronized within the ovary and therefore nearly all stages of development can be observed in histological sections. Mitotically-dividing gametogonia were never observed although they are assumed to exist. Spireme oocytes in the zygotene or pachytene phases of meiotic prophase are encountered commonly as are a variety of post-pachytene oocytes in various previtellogenic and vitellogenic stages. J. Follicle Cells The genital blood vessel wall (Figs. 1 and 2) is composed partially of large , interdigitating cuboidal or squamous follicle cells, derived from the peritoneum, which lie on a discontinuous layer of thin, sinuous peritoneal cells. The latter Oogenesis in Str eblospio benedict; 243 1 Fig. 1. Diagrammatic representation of transverse section through genital blood vessel of Streblospio benedicti illustrating morphological relationship between oolemma and perivasal ooplasm and ad­ jacent peritoneal cells and basal lamina in previtellogenic (I), early vitellogenic (2) and late vitelloge­ nic (3) oocytes cells contain scattered thick and thin filaments and a few mitochondria. Nuclei or other organelles were never observed. The peritoneal cells rest on a thin basal lamina, as do the follicle cells where the latter come in contact with the vessel lumen. A part of the blood vessel wall is also occupied by developing germ cells that partially rest on the peritoneal cells and the underlying basal lamina but never on the follicle cells (Fig. 3). However, the follicle cells surround 244 K.J. Eckelbarger the majority of oocytes and partially encapsulate the entire ovary. The follicle , cell sheath is incomplete in places, permitting parts of some oocytes to contact each other. The surfaces of a few oocytes, particularly the larger ones, are in direct contact with the coelomic fluid. Within the blood vessel, a red, extracel­ lular blood pigment is present with a sufficiently high molecular weight to give it a distinctive, particulate appearance in the electron microscope (Figs. 2 and 24). The polymeric molecules measure 22-25 nm in diameter. Follicle cells contain large (4.5-6.0 11m), spherical nuclei with scattered patches ofperipheral, condensed chromatin and a single characteristic, nucleolus about 1.5 11m in diameter. The cytoplasmic surface of the nuclear envelope is covered with ribosomes. The most prominent feature of the cells is the presence of abundant rough endoplasmic reticulum (RER), frequently in the form of large, tightly packed whorls or parallel arrays (Fig. 4). Some free ribosomes are present as well as scattered oblong mitochondria with long, tubular cristae (Fig. 6). The follicle cells are also characterized by the presence of numerous organelles which morphologically resemble Iysosomes . They contain cytomem­ branes closely resembling mitochondria (Fig. 5). and RER (Fig. 6), enclosed by an isolation membrane. The enclosed mitochondria have a denser matrix than the mitochondria within the cytoplasm. In addition, one also observes heterogeneous, membrane bounded dense bodies containing an amorphous elec­ tron dense material, granules and a membranous component that frequently appears as a myelin configuration (membrane whorls) (see arrows, Fig. 6). From one to several Goigi complexes are frequently observed in close association with these inclusions (Fig . 7). The Golgi have a small number of saccules and are usually in close association with cisternae of the RER. Two products appear to be released from the mature face of the organelle in the form of numerous, small (50-70 nm), coated vesicles and larger (up to 200 nm) membrane-bounded electron dense droplets. Occasionally, multivesicular bodies are observed. Follicle cells lack cytoplasmic continuity with germ cells or other follicle cells but adjacent fol1icle cells are periodically attached by small desmosomes. Follicle cells remain in intimate association with most developing oocytes throughout oogenesis but never possess microvilli or other specializations of the plasmalemma. Specialized junctional complexes have not been observed between germ cells nor have intercellular bridges been encountered. 2. Previtellogenic Oocytes These oocytes have a germinal vesicle diameter ranging from 9 to 20 11m. The smallest of these have little cytoplasm and a circular nucleus containing very sparse, scattered chromatin and occasionally a small , eccentric nucleolus (Fig. 4). The cytoplasm of large previtellogenic oocytes (Fig. 8) contains free ribosomes, Fig. 2. Transmission electron
Recommended publications
  • Benthic Macroinvertebrate Sampling
    Benthic Macroinvertebrate Sampling Norton Basin, Little Bay, Grass Hassock Channel, and the Raunt Submitted to: The Port Authority of New York and New Jersey New York State Department of Environmental Conservation Submitted by: Barry A. Vittor & Associates, Inc. Kingston, NY February 2003 TABLE OF CONTENTS 1.0 INTRODUCTION...............................................................................................1 2.0 STUDY AREA......................................................................................................3 2.1 Norton Basin........................................................................................................ 3 2.2 Little Bay ............................................................................................................. 3 2.3 Reference Areas.................................................................................................... 3 2.3.1 The Raunt .................................................................................................... 3 2.3.2 Grass Hassock Channel ............................................................................... 4 3.0 METHODS..........................................................................................................4 3.1 Benthic Grab Sampling......................................................................................... 4 4.0 RESULTS.............................................................................................................7 4.1 Benthic Macroinvertebrates................................................................................
    [Show full text]
  • The Genome of the Poecilogonous Annelid Streblospio Benedicti Christina Zakas1, Nathan D
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.15.440069; this version posted April 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The genome of the poecilogonous annelid Streblospio benedicti Christina Zakas1, Nathan D. Harry1, Elizabeth H. Scholl2 and Matthew V. Rockman3 1Department of Genetics, North Carolina State University, Raleigh, NC, USA 2Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA 3Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY, USA [email protected] [email protected] Abstract Streblospio benedicti is a common marine annelid that has become an important model for developmental evolution. It is the only known example of poecilogony, where two distinct developmental modes occur within a single species, that is due to a heritable difference in egg size. The dimorphic developmental programs and life-histories exhibited in this species depend on differences within the genome, making it an optimal model for understanding the genomic basis of developmental divergence. Studies using S. benedicti have begun to uncover the genetic and genomic principles that underlie developmental uncoupling, but until now they have been limited by the lack of availability of genomic tools. Here we present an annotated chromosomal-level genome assembly of S. benedicti generated from a combination of Illumina reads, Nanopore long reads, Chicago and Hi-C chromatin interaction sequencing, and a genetic map from experimental crosses. At 701.4 Mb, the S. benedicti genome is the largest annelid genome to date that has been assembled to chromosomal scaffolds, yet it does not show evidence of extensive gene family expansion, but rather longer intergenic regions.
    [Show full text]
  • Population Dynamics and Production of Streblospio Benedicti (Polychaeta) in a Non-Polluted Estuary on the Basque Coast (Gulf of Biscay)*
    SCI. MAR., 68 (2): 193-203 SCIENTIA MARINA 2004 Population dynamics and production of Streblospio benedicti (Polychaeta) in a non-polluted estuary on the Basque coast (Gulf of Biscay)* LORETO GARCÍA-ARBERAS and ANA RALLO Dept. of Zoology, University of the Basque Country. P.O. Box 644. E-48080 Bilbap, Spain. E-mail: [email protected] SUMMARY: Population dynamics and production of a population of Streblospio benedicti from the Gernika estuary (Basque coast, Gulf of Biscay) were studied monthly for one year, from May 1991 to May 1992. S. benedicti was present in the muddy sand community of Gernika throughout the period of study except in March, when it all but disappeared. Con- tinuous recruitment was observed throughout the year, even though it was stronger in autumn. Abundance fluctuations were principally due to the incorporation of recruits and so the highest density in Gernika was recorded in autumn, and the low- est in spring, with an annual mean of 6346 ± 4582 ind m-2. The same pattern of seasonal variation was shown in biomass: the annual mean biomass of S. benedicti in Gernika was estimated at 0.80 ± 0.54 g dry weight m-2. Secondary production was 3.57 g dry weight m-2 year, giving a P/B ratio of 4.46. S. benedicti in Gernika behaved similarly to those described for Mediterranean Streblospio populations as regards practically continuous recruitment, but the number of individuals and the annual average density were considerably lower on the Basque coast. Key words: Streblospio benedicti, Polychaeta, population dynamics, production, estuary, Gulf of Biscay.
    [Show full text]
  • Evidence for Poecilogony in Pygospio Elegans (Polychaeta: Spionidae)
    MARINE ECOLOGY PROGRESS SERIES Published March 17 Mar Ecol Prog Ser Evidence for poecilogony in Pygospio elegans (Polychaeta: Spionidae) Torin S. organ'^^^*, Alex D. ~ogers~.~,Gordon L. J. Paterson', Lawrence E. ~awkins~,Martin sheader3 'Department of Zoology, Natural History Museum, Cromwell Road. London SW7 5BD, United Kingdom 'Biodiversity and Ecology Division. School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton S016 7PX. United Kingdom 3School of Ocean and Earth Sciences, University of Southampton, Southampton Oceanography Centre, European Way, Southampton S014 3ZH, United Kingdom ABSTRACT: The spionid polychaete Pygospio elegans displays more than one developmental mode. Larvae may develop directly, ingesting nurse eggs while brooded in capsules within the parental tube. or they may hatch early to feed in the plankton before settling. Asexual reproduction by architomic fragmentation also occurs. Geographically separated populations of P. elegans often display different life histories. Such a variable life history within a single species may be interpreted either as evidence of sibling speciation or of reproductive flexibility (poecilogony). Four populations from the English Channel were found to demonstrate differing life histories and were examined for morphological and genetic variability to determine whether P, elegans is in fact a cryptic species complex. Significant but minor inter-population polymorphisms were found in the distribution of branchiae and the extent of spoonlike hooded hooks. These externally polymorphic characters did not vary with relation to life his- tory, and variation fell within the reported range for this species. Cellulose acetate electrophoresis was used to examine 10 allozyrne loci, 5 of which were polymorphic. Overall, observed heterozygosity (H, = 0.161) was lower than that expected under Hardy-Weinberg equilibrium (H,= 0.228).
    [Show full text]
  • Effects of Pumped Flows Into Rincon Bayou on Water Quality and Benthic Macrofauna Coastal Bend Bays & Estuaries Program
    Effects of Pumped Flows into Rincon Bayou on Water Quality and Benthic Macrofauna Final Report CBBEP Publication - 101 Project Number –1417 August 2015 Prepared by: Dr. Paul A. Montagna, Principal Investigator Harte Research Institute for Gulf of Mexico Studies Texas A&M University-Corpus Christi 6300 Ocean Dr., Unit 5869 Corpus Christi, Texas 78412 Phone: 361-825-2040 Email: [email protected] Submitted to: Coastal Bend Bays & Estuaries Program 615 N. Upper Broadway, Suite 1200 Corpus Christi, TX 78401 The views expressed herein are those of the authors and do not necessarily reflect the views of CBBEP or other organizations that may have provided funding for this project. Effects of Pumped Flows into Rincon Bayou on Water Quality and Benthic Macrofauna Principal Investigator: Dr. Paul A. Montagna Co-Authors: Leslie Adams, Crystal Chaloupka, Elizabeth DelRosario, Amanda Gordon, Meredyth Herdener, Richard D. Kalke, Terry A. Palmer, and Evan L. Turner Harte Research Institute for Gulf of Mexico Studies Texas A&M University - Corpus Christi 6300 Ocean Drive, Unit 5869 Corpus Christi, Texas 78412 Phone: 361-825-2040 Email: [email protected] Final report submitted to: Coastal Bend Bays & Estuaries Program, Inc. 615 N. Upper Broadway, Suite 1200 Corpus Christi, TX 78401 CBBEP Project Number 1417 August 2015 Cite as: Montagna, P.A., L. Adams, C. Chaloupka, E. DelRosario, A. Gordon, M. Herdener, R.D. Kalke, T.A. Palmer, and E.L. Turner. 2015. Effects of Pumped Flows into Rincon Bayou on Water Quality and Benthic Macrofauna. Final Report to the Coastal Bend Bays & Estuaries Program for Project # 1417. Harte Research Institute, Texas A&M University-Corpus Christi, Corpus Christi, Texas, 46 pp.
    [Show full text]
  • (Annelida) from Soft Bottoms at Playa Dorada, Orinoco River, Venezuela
    Polychaetes (Annelida) from soft bottoms at Playa Dorada, Orinoco river, Venezuela 1 2* 2 MARÍA ALEJANDRA BALZA OSCAR DÍAZ DÍAZ & BRIGHTDOOM MÁRQUEZ 1 Universidad de Oriente, Esc. Ciencias, Dpto. Biología, Núcleo de Sucre, Venezuela. 2 Universidad de Oriente, Instituto Oceanográfico de Venezuela, Dpto. Biología Marina, Venezuela. *Corresponding author: [email protected] Abstract. A total of 582 polychaete specimens were collected at the Playa Dorada station, Manamo creek, Orinoco River. Six species were identified from the material collected, three of which are new records for Venezuela: Eteone heteropoda (Phyllodocidae), Nephtys bucera (Nephtyidae) and Streblospio benedicti (Spionidae). Key words: biodiversity, fresh water fauna, estuarine fauna, polychaetes Resumen. Poliquetos (Annelida) de fondos blandos de Playa Dorada, río Orinoco, Venezuela. Se recolectaron 582 ejemplares de poliquetos en la estación Playa Dorada de caño Manamo en el río Orinoco. Se identificaron seis especies, tres de las cuales se citan por primera vez para Venezuela: Eteone heteropoda (Phyllodocidae), Nephtys bucera (Nephtyidae), Streblospio benedicti (Spionidae). Palabras claves: biodiversidad, fauna dulceacuícola, fauna estuarina, poliquetos Introduction Materials and methods The Orinoco Delta is composed of numerous Specimens were collected between January streams, creeks, distributary rivers, islands and 2011 and February 2012 from shallow waters (2-10 marshes. This region, of significant ecological value, m deep) at Playa Dorada, Manamo creek covers an extensive area (22,000 km2) but has been (09⁰04'35.3''N-62⁰05'03.9''W), approximately 125 very poorly studied, especially with regard to km from the sea, using a 0.09 m2 drag-type Beam aquatic invertebrates (Liñero-Arana et al. 2010). The Trawl, with 1 mm mesh.
    [Show full text]
  • Dimorphic Development in Streblospio Benedicti: Genetic Analysis of Morphological Differences Between Larval Types CHRISTINA ZAKAS and MATTHEW V
    Int. J. Dev. Biol. 58: 593-599 (2014) doi: 10.1387/ijdb.140088mr www.intjdevbiol.com Dimorphic development in Streblospio benedicti: genetic analysis of morphological differences between larval types CHRISTINA ZAKAS and MATTHEW V. ROCKMAN* Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY, USA ABSTRACT The marine polychaete Streblospio benedicti exhibits two distinct larval types, making it a model for the study of developmental evolution. Females produce either large eggs or small ones, which develop into distinct lecithotrophic or planktotrophic larvae with concomitant morpho- logical and life-history differences. Here, we investigate the inheritance of key morphological traits that distinguish the larval types. We used genetic crosses to establish the influence of maternal and zygotic differences on larval phenotypes. We found a large maternal effect on larval size and the number of larval chaetae, while the number and length of these chaetae were also strongly influenced by zygotic genotype. Interestingly, the distribution of larval phenotypes produced by these crosses suggests traits intermediate to the two parental types should not be uncommon. Yet, despite gene flow between the types in natural populations, such intermediates are rarely found in nature, suggesting that selection may be maintaining distinct larval modes. KEY WORDS: Streblospio benedicti, poecilogony, quantitative genetics, life-history evolution Introduction The phenomenon of poecilogony, whereby a single species produces distinct types of embryos and thus two distinct life-history The evolution of development couples molecular and cytological strategies, offers a route toward answering these questions (Knott processes with ecological and population-genetic phenomena such and McHugh, 2012).
    [Show full text]
  • Benthic Invertebrates Benthic
    Baseline Assessment Program: 2010-2011 Report 2010-2011 Program: Assessment Baseline BENTHIC INVERTEBRATES BENTHIC E. Tuttle Photo credit: CHAPTER 9: BENTHIC INVERTEBRATES Ballona Wetlands Ecological Reserve, Los Angeles, California Santa Monica Bay Restoration Commission Prepared for: California State Coastal Conservancy June 2012 Authors: Elena Del Giudice-Tuttle, Karina Johnston, Charles Piechowski, and Ivan Medel TABLE OF CONTENTS INTRODUCTION ..............................................................................................................................9-1 METHODS – INFAUNA .....................................................................................................................9-1 Site Locations and Times ............................................................................................................... 9-1 Field Methods ........................................................................................................................... 9-3 Laboratory and Analysis Methods ............................................................................................ 9-3 METHODS – EPIFAUNA ....................................................................................................................9-4 Laboratory and Analysis Methods ............................................................................................ 9-4 RESULTS .........................................................................................................................................9-4 Infauna Results
    [Show full text]
  • Reproductive Isolation in the <I>Polydora Ligni</I>
    BULLETIN OF MARINE SCIENCE, 48(2): 432-447. 1991 REPRODUCTIVE ISOLATION IN THE POLYDORA LIGNI COMPLEX AND THE STREBLOSPIO BENEDICTI COMPLEX (POL YCHAETA: SPIONIDAE) Stanley A. Rice ABSTRACT Results of experimental crosses between individuals from geographically separated pop- ulations indicate that Tampa Bay Po/ydora /igni are reproductively isolated from their North Carolina and Los Angeles morphological counterparts. The North Carolina and Los Angeles populations of P. /igni are interfertile. The Tampa Bay population of Streb/ospio benedicti is likewise reproductively isolated from the planktotrophic North Carolina population. In both genera, experimental crosses were conducted in the laboratory using individual worms that had been raised in isolation prior to the experimental cross. Female worms from unsuccessful interpopulation crosses were back-crossed to intrapopulation males to ensure female fertility. Inter- and intra population crosses in P. /igni were accomplished via artificial transfer of spermatophores from an isolated male to an isolated female. In Streb/ospio crosses, males and females from appropriate populations were placed together and monitored daily for reproductive activity. The presence of spermatophores with active sperm in Streb/ospio cultures was taken to indicate male fertility. In the P. /igni complex, reproductive breakdown appears to occur at the sperm transfer stage. In interpopulation crosses, females accept sper- matophores from exotic males but the sperm fail to accumulate in the sperm storage organs ofthe female. In the S. benedicti complex, the breakdown is also at the sperm transfer stage. Males produce spermatophores in the presence (or absence) of exotic females but no viable larvae are produced from these crosses. Intrapopulational crosses in both genera are routinely successful.
    [Show full text]
  • Sediment-Associated Cues for Larval Settlement of Polydora Cornuta and Streblospio Benedicti (Polychaeta, Spionidae)
    Sediment-associated cues for larval settlement of Polydora cornuta and Streblospio benedicti (Polychaeta, Spionidae) Sediment-assoziierte Signale für die larvale Ansiedlung von Polydora cornuta und Streblospio benedicti (Polychaeta, Spionidae) Von der Fakultät für Mathematik und Naturwissenschaften der Carl von Ossietzky Universität Oldenburg zur Erlangung des Grades und Titels einer Doktorin der Naturwissenschaften (Dr. rer. nat.) angenommene Dissertation von Frau Zita Sebesvári geboren am 09.01.1974 in Kecskemét, Ungarn Gutachter: Junior Prof. Dr. Tilmann Harder Zweitgutachter: Prof. Dr. Karsten Reise Tag der Disputation: 31. Januar 2007 The most exciting phrase to hear in science, the one that heralds new discoveries, is not “Eureka!” but “That’s funny... ” Isaac Asimov ERKLÄRUNG ERKLÄRUNG VERÖFFENTLICHUNGEN ERKLÄRUNG Teilergebnisse dieser Arbeit sind als Beitrage in Fachzeitschriften erschienen (Kapitel 3), als Manuskript eingereicht worden (Kapitel 4) oder in der Diplomarbeit von Justus Lodemann verwendet worden (Teile von Kapitel 3). Mein Beitrag an der Erstellung der Arbeiten wird im Folgenden erläutert: SEBESVARI, Z., ESSER, F. , NEUMANN R., SCHULTE, A., BRINKHOFF, T., HARDER, T. Monospecies bacterial films on sediment induce larval settlement of the infaunal spionid polychaetes Polydora cornuta and Streblospio benedicti. J. Exp. Mar. Biol. Ecol. Submitted. Entwicklung des multiple-choice Testverfahrens durch Z. S.; Hälterung der Polychaeten durch Z. S. und F. E.; Isolierung der Bakterien durch A. S. und Z. S.; Durchführung der Siedlungstests durch Z. S. und R. N.; Bereitstellung ein Teil der Bakterien und phylogenetische Analysen durch T. B.; Erstellung des Manuskriptes durch Z. S. SEBESVARI, Z., ESSER, F. , HARDER, T. 2006. Sediment-associated cues for larval settlement of the inbenthic spionid polychaetes Polydora cornuta and Streblospio benedicti.
    [Show full text]
  • Poecilogony As a Reproductive Strategy of Marine Invertebrates
    OCEANOLOGICA ACTA- VOL. 19- No 3-4 ~ -----~- Poecilogony Poecilogony as a reproductive Marine invertebrate Reproductive strate gy strate gy of marine invertebrates Poécilogonie Invertébré marin Stratégie de reproduction Fu-Shiang CHIA, Glenys GIBSON a and Pei-Yuan QIAN Department of Biology, Hong Kong University of Science and Technology, Kow­ loon, Hong Kong. a Marine Research Group, Scripps Institute of Oceanography, La Jolla, CA. 92093-0218 USA. Received 12/04/95, in revised forrn 07/02/96, accepted 13/02/96. ABSTRACT Poecilogony is a polymorphism of sexual development in sorne marine inverte­ brates, in which both feeding and non-feeding or planktonic and benthic larvae are produced. Since the original report on poecilogony by Gaird in 1905, a good number of such species have been recognized. Upon close examination, howe­ ver, Hoagland and Roberston ( 1988) have found that almost ali the 64 species reported to be poecilogonous are in fact a result of miss-identification of species or due to laboratory disturbance. To be a poecilogonous species, a different mode of development bas to be found from sibling offspring of a single female, or from different individuals of a single biological species, and the different modes of development cannot be altered by disturbance in laboratory handling. This being the case, there are only a few known species which are poecilogonous. As a reproductive strategy poecilogony appears to have the advantages of both the commonly recognized patterns of development, short planktonic or benthic development (without planktonic larvae) and long planktonic development (broadcaster, with planktonic larvae). The former allows immediate recruitment to the parental habitats for fast population growth and the latter provides sorne degree of dispersal and gene flow.
    [Show full text]
  • A Genetic Investigation of Population Structure and Phylogenetics of the Benthic Polychaete Paraprionospio Pinnata in Chesapeake Bay
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2003 A Genetic Investigation of Population Structure and Phylogenetics of the Benthic Polychaete Paraprionospio pinnata in Chesapeake Bay Julie Beck Stubbs College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Fresh Water Studies Commons, Genetics Commons, and the Oceanography Commons Recommended Citation Stubbs, Julie Beck, "A Genetic Investigation of Population Structure and Phylogenetics of the Benthic Polychaete Paraprionospio pinnata in Chesapeake Bay" (2003). Dissertations, Theses, and Masters Projects. Paper 1539617807. https://dx.doi.org/doi:10.25773/v5-m0sk-v651 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. A GENETIC INVESTIGATION OF POPULATION STRUCTURE AND PHYLOGENETICS OF THE BENTHIC POLYCHAETE PARAPRIONOSPIO PINNATA IN CHESAPEAKE BAY A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Science by Julie Beck Stubbs 2003 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science Julie Beck Stubbs Approved, July 2003 Kimberly S. Reece, Ph.D. Co-Committee Chairperson/Advisor IjVfrMJt- U <*y(---------- Robert J. Di4z, Ph.D . f j Co-Committee Chairperson/Advisor mmett Duffy, Ph.IF /( ) TABLE OF CONTENTS Page ACKNOWLEDGMENTS....................................................................................................
    [Show full text]