Induction and Maintenance of Callus from Leaf Explants of Mirabilis Jalapa L

Total Page:16

File Type:pdf, Size:1020Kb

Induction and Maintenance of Callus from Leaf Explants of Mirabilis Jalapa L ® Medicinal and Aromatic Plant Science and Biotechnology ©2009 Global Science Books Induction and Maintenance of Callus from Leaf Explants of Mirabilis jalapa L. Anna Pick Kiong Ling1* • Kuok-Yid Tang1 • Jualang Azlan Gansau2 • Sobri Hussein3 1 Department of Bioscience, Faculty of Engineering and Science, Tunku Abdul Rahman University, 53300 Setapak, Kuala Lumpur, Malaysia 2 School of Science and Technology, Universiti Malaysia Sabah, 88999 Kota Kinabalu, Sabah, Malaysia 3 Agrotechnology and Bioscience Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia Corresponding author : * [email protected] ABSTRACT Mirabilis jalapa L., commonly known as ‘four o’clock plant’ produces a strong, sweet smelling fragrance after the flowers open at late afternoon. It is a well known ornamental plant as the flowers of different colours can be found simultaneously on the same plant or an individual flower can be splashed with different colours. The colour-changing phenomenon is one of the unique characteristics of M. jalapa as it can display flowers with different colour when it matures. Apart from its ornamental value, it has also earned its place in herbal medicine practices around the world. Its array of biological activities continues to support its use worldwide for control of viruses, fungi and yeast. In this study, callus culture was initiated from the leaf explants of M. jalapa. The suitable strength of MS (Murashige and Skoog) nutrient media was determined and the effects of different types of auxins [4-amino-3,5,6-trichloro picolinic acid (picloram), 2,4- dichlorophenoxyacetic acid (2,4-D), -naphthaleneacetic acid (NAA)] and cytokinin [6-benzyl amino purine (BAP)] at 0.0 2.5, 5.0, 7.5, 10.0, and 20.0 M were investigated in order to determine the suitable callus induction and maintenance media. The establishment of callus culture was greatly influenced by the strength of MS medium, type as well as the concentration of plant growth regulators (PGRs) used. The best callus induction response was obtained on half strength (½) MS media supplemented with 20.0 )M picloram which produced healthy and friable callus. Meanwhile, ½ MS supplemented with NAA or BAP as well as PGR-free medium did not produce any callus; rather, explants became necrotic after 3 to 4 weeks of culture. Calli were successfully maintained in ½ MS supplemented with 10.0 M picloram. Callus in maintenance medium showed a sigmoid growth pattern and reached a maximum growth rate between weeks 1 and 3. _____________________________________________________________________________________________________________ Keywords: browning effects, callus cultures, growth curve, medicinal plant Abbreviations: 2,4-D, 2,4-dichlorophenoxyacetic acid; BAP, 6-benzylamino purine; MS, Murashige and Skoog medium; NAA, - naphthaleneacetic acid; picloram, 4-amino-3,5,6-trichloro picolinic acid; PGR, plant growth regulator INTRODUCTION also valuable in speeding up conventional breeding and pro- pagation, reducing space and labour requirement and Mirabilis jalapa L. also known as the “four o’clock plant”, achieving manipulative goals that cannot be carried out via belongs to the Nyctaginaceae family. It is a tropical herb in vivo conditions. For instance, with the advances in plant commonly cultivated in North America, a perennial in the biotechnology, the extract of M. jalapa cultured cells and its south, warm west and an annual in the north. Long before precipitate fraction with 90% saturated ammonium sulfate the Spanish Conquest of Mexico, it was cultivated by the was found to show an anti-plant viral activity comparable to Aztecs for its medicinal properties and for its showy frag- that of the roots and leaves of the original plant (Ikeda et al. rant flowers (Le Duc 1986). In the traditional popular medi- 1987). In view of these facts, the present study was conduc- cine of the South American continent, particularly in Brazil, ted to determine and examine the suitable strength of MS the roots, shoots, leaves, fruits, and seeds of M. jalapa L. media, and the effects of different auxins and cytokinin at are employed for different affections (Lorenzi 1991; various concentrations on callus induction from leaf ex- Lorenzi and Souza 1995). For instance, traditionally healers plants. In addition, the best maintenance medium and the in Brazil use a paste of the root applied as a poultice to treat growth curve of leaf-derived callus of M. jalapa L. was also scabies and muscular swellings; the juice of the leaves is determined. used in the treatment of diarrhoea, indigestion and fevers (Diggs et al. 1999). MATERIALS AND METHODS Conventionally, M. jalapa reproduces via viable seeds but the low percentage of seed viability limits its natural Plant materials propagation since the hawk-moth population are the only species that act as its pollinator (Martinez and Búrquez The seeds of M. jalapa were obtained from Sabah, Malaysia. The 1996). Hence, alternative techniques like plant tissue cul- black coloured mature seeds were germinated on the soil with the ture were established to propagate a large number of in composition of nitrogen, phosphate, potassium at the ratio of 1: 3: vitro plants. A rapid and efficient in vitro regeneration sys- 2. The seeds germinated easily (with 96% of germination percen- tem has been developed from nodal segments (Zaccai et al. tage) within 3 to 7 days. The leaves were collected from one- 2007) and cotyledons (Xu et al. 2005) of M. jalapa. By month old healthy seedlings. using plant tissue culture technique, genetically similar plantlets can be produced in relatively short time. Besides, by maintaining genetic stability, tissue cultured plants are Received: 31 October, 2008. Accepted: 1 February, 2009. Original Research Paper Medicinal and Aromatic Plant Science and Biotechnology 3 (1), 42-47 ©2009 Global Science Books Surface sterilization In order to determine the best maintenance medium, callus was also transferred to ½ MS supplied with 0.0, 10.0, 20.0 and 30.0 One-month old leaves were collected and washed under running μM picloram. tap water for 30 min then initially surface sterilized in 0.2% (w/v) fungicide (Ancom Thiram, USA) for 30 min followed by a dip in Growth curve measurement 70% (v/v) ethanol for 1 min. Leaves were then immersed for 25 min in 15% (v/v) Clorox? containing 2 to 3 drops of Tween-20 Subsequently, the best treatment or maintenance medium (½ MS + (Amresco, USA) with gentle and continuous shaking. The leaves 10.0 μM picloram) was subjected to growth curve analysis with were then rinsed three times with sterile distilled water for 5, 10, the initial fresh weight of 0.01 g. The growth of leaf-derived callus and 15 min, respectively. was evaluated by measuring the fresh weight at one-week interval continuously for four weeks. The experiments were conducted Culture media with three replicates and repeated twice. Standard MS (Murashige and Skoog 1962) solid media was used Statistics analysis as the basal medium. To screen the suitable strength of MS media on callus induction of M. jalapa, full- and half-strength (½) MS The data collected in this study were subjected to the statistical media supplemented with various plant growth regulators (PGRs) analysis. One way ANOVA and Tukey’s Honestly Significant Dif- at different concentrations were prepared. Meanwhile, medium ference (Tukey’s HSD) test (p<0.05) were used to determine the without any PGR was used as the control. For the preparation of differences in mean number of all tested parameters. Statistical MS media, macronutrient, micronutrient, vitamin, FeNaEDTA analysis was performed using SPSS software (version 11.5) (SPSS were added and fortified with 3% (w/v) sucrose; PGRs were added Inc. USA). before autoclaving. The pH of the medium was adjusted to 5.7 ± 0.1 using 0.1 M NaOH or 0.1 M HCl and solidified with 0.8% RESULTS AND DISCUSSION (w/v) agar. The media were then autoclaved at 121°C for 15 min. Approximately 25 mL of the sterile medium were distributed into Effects of medium strength on callus induction each 100 mm × 15 mm sterile disposable Petri dish (Labchem, Malaysia). Different strengths of MS media produced different effects on callus induction (Table 1). The results were evaluated in Callus initiation terms of the day of callus induction, the intensity of callus growth as well as the morphology of the callus formed. It The surface-sterilized leaves were cut into approximately 5 mm2 was observed that all the full- and ½ MS medium sup- explants and cultured on either full- or ½ MS solid media sup- plemented with 2, 4-D (2.5, 5.0, 7.5, 10.0, and 20.0 μM) plemented with different PGRs – picloram (Duchefa, Netherlands), successfully induced the callus from the leaf explants of M. 2,4-D (Sigma, U.S.A), NAA (Duchefa, Netherlands), and BAP jalapa within 4 weeks of culture. In terms of days of callus (Duchefa, Netherlands) at 0.0, 2.5, 5.0, 7.5, 10.0, and 20.0 μM. A formation, explants cultured in ½ MS medium supplemen- total of 5 explants were used for each treatment and all the expe- ted with 7.5 μM 2, 4-D required the shortest period which riments were performed with three replicates and repeated twice. was 7 days of culture for callus formation. This treatment produced profuse growth of friable and whitish callus (Fig. Culture conditions 1A). On the other hand, full MS medium supplemented with 7.5 μM 2,4-D induced the callus after 10 days of cul- All the cultures were incubated and maintained at 26 ± 2°C under ture and the unhealthy yellowish watery callus (Fig. 1B) a light intensity of approximately 2000 Lux provided by cool were observed in this treatment. white fluorescent lamps under a 16-h photoperiod. Analysis of the From the results, it indicated that the callus induction percentage of callus induction, days of callus formation, morpho- from the leaf explants of M.
Recommended publications
  • Mirabilis Jalapa: a Review of Ethno and Pharmacological Activities
    Advancement in Medicinal Plant Research Vol. 9(1), pp. 1-10, January 2021 ISSN: 2354-2152 Review Mirabilis jalapa: A review of ethno and pharmacological activities Farjana Islam Liya, Mt. Farzana Yasmin, Nargis Sultana Chowdhury*, Tasnia Khasru Charu and Ismat Benta Fatema Department of Pharmacy, Manarat International University, Ashulia Model Town, Khagan, Ashulia, Dhaka, Bangladesh. Accepted 4 January, 2021 ABSTRACT Plants have been used for thousands of years to treat, prevent, and control a variety of diseases throughout the world. The initial benefits of using plant-derived medicine are that they are relatively safer than artificial alternatives. Mirabilis jalapa Linn. (Nyctaginaceae) is one of the plants that used for health care and medicinal purposes for several thousands of years. It is a perennial bushy herb promulgate by flowers or leaves, a native of America and commonly known as ‘four-o-clock’. It has traditionally been used in the treatment of gastrointestinal disorders, muscle pain, abdominal colic, and diarrhea in ancient Mexico, Japan, China and Brazil. The literature review revealed that M. jalapa is widely used as anti-oxidant, anti- inflammatory, anti-microbial, anti-diabetic, cytotoxic, antinociceptive, and several other’s medicines. In aerial parts of the M. jalapa, triterpene and flavonoids are found. Flowers mostly contain anthocyanins and flavonoids. Carbohydrate, resin and alkaloids are found in roots. Tricosan-12-one, n-hexacosanal, β- sitosterol, and tetracosanoic were isolated from the leaves of the M. jalapa. Seeds contain β-sitosterol, β- amyrin and β-sitosterol-D-glucoside. The presence of various bioactive compounds validates the whole plant for different medicinal practitioners.
    [Show full text]
  • ANNUALS for UTAH GARDENS Teresa A
    ANNUALS FOR UTAH GARDENS Teresa A. Cerny Ornamental Horticulture Specialist Debbie Amundsen Davis County Horticulture Extension Agent Loralie Cox Cache County Horticulture Extension Agent September 2003 HG-2003/05 Annuals are plants that come up in the spring, reach maturity, flower, set seeds, then die all in one season. They provide eye-catching color to any flower bed and can be used as borders, fillers, or background plantings. There are several ways to find annual species that fit your landscape needs; referring to the All-American Selection program evaluations (http://www.all-americaselections.org), visiting botanical gardens to observe examples of annuals in the landscape, and looking through commercial seed catalogs are excellent places to find ideas. Most annuals are available in cell packs, flats, or individual pots. When buying plants, choose those that are well established but not pot bound. Tall spindly plants lack vigor and should be avoided. Instead look for plants with dark green foliage that are compact and free of insect and disease problems. These criteria are much more important than the flower number when choosing a plant. An abundance of foliage with few, if any flowers, is desirable. BED PREPARATION Avoid cultivating soil too early in the spring and during conditions that are too wet. Soil conditions can be determined by feeling the soil. If the soil forms a ball in your hand but crumbles easily, it is ideal. Cultivate the flower bed to a depth of 6-10 inches by turning the soil with a spade. Utah soils can always use extra organic matter such as grass clippings, leaves, compost, manure, peat, etc.
    [Show full text]
  • Illinois Exotic Species List
    Exotic Species in Illinois Descriptions for these exotic species in Illinois will be added to the Web page as time allows for their development. A name followed by an asterisk (*) indicates that a description for that species can currently be found on the Web site. This list does not currently name all of the exotic species in the state, but it does show many of them. It will be updated regularly with additional information. Microbes viral hemorrhagic septicemia Novirhabdovirus sp. West Nile virus Flavivirus sp. Zika virus Flavivirus sp. Fungi oak wilt Ceratocystis fagacearum chestnut blight Cryphonectria parasitica Dutch elm disease Ophiostoma novo-ulmi and Ophiostoma ulmi late blight Phytophthora infestans white-nose syndrome Pseudogymnoascus destructans butternut canker Sirococcus clavigignenti-juglandacearum Plants okra Abelmoschus esculentus velvet-leaf Abutilon theophrastii Amur maple* Acer ginnala Norway maple Acer platanoides sycamore maple Acer pseudoplatanus common yarrow* Achillea millefolium Japanese chaff flower Achyranthes japonica Russian knapweed Acroptilon repens climbing fumitory Adlumia fungosa jointed goat grass Aegilops cylindrica goutweed Aegopodium podagraria horse chestnut Aesculus hippocastanum fool’s parsley Aethusa cynapium crested wheat grass Agropyron cristatum wheat grass Agropyron desertorum corn cockle Agrostemma githago Rhode Island bent grass Agrostis capillaris tree-of-heaven* Ailanthus altissima slender hairgrass Aira caryophyllaea Geneva bugleweed Ajuga genevensis carpet bugleweed* Ajuga reptans mimosa
    [Show full text]
  • Atoll Research Bulletin No. 503 the Vascular Plants Of
    ATOLL RESEARCH BULLETIN NO. 503 THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS BY NANCY VANDER VELDE ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. AUGUST 2003 Uliga Figure 1. Majuro Atoll THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS ABSTRACT Majuro Atoll has been a center of activity for the Marshall Islands since 1944 and is now the major population center and port of entry for the country. Previous to the accompanying study, no thorough documentation has been made of the vascular plants of Majuro Atoll. There were only reports that were either part of much larger discussions on the entire Micronesian region or the Marshall Islands as a whole, and were of a very limited scope. Previous reports by Fosberg, Sachet & Oliver (1979, 1982, 1987) presented only 115 vascular plants on Majuro Atoll. In this study, 563 vascular plants have been recorded on Majuro. INTRODUCTION The accompanying report presents a complete flora of Majuro Atoll, which has never been done before. It includes a listing of all species, notation as to origin (i.e. indigenous, aboriginal introduction, recent introduction), as well as the original range of each. The major synonyms are also listed. For almost all, English common names are presented. Marshallese names are given, where these were found, and spelled according to the current spelling system, aside from limitations in diacritic markings. A brief notation of location is given for many of the species. The entire list of 563 plants is provided to give the people a means of gaining a better understanding of the nature of the plants of Majuro Atoll.
    [Show full text]
  • Annuals for Nebraska Landscapes I. Flowering Plants
    G1774 Annuals for Nebraska Landscapes I. Flowering Plants Dale T. Lindgren, Extension Horticulturist; Anne M. Streich, Extension Horticulture Educator; Kim A. Todd, Extension Landscape Horticulture Specialist; and Steven N. Rodie, Extension Landscape Horticulture Specialist typically required for healthy establishment and growth, are This NebGuide describes those annual flowers that potential disadvantages of using annual flowers. can be grown in Nebraska for use by the home gardener Annuals can be used in beds, borders, rock gardens, in landscape design. window boxes, hanging baskets and container gardens. They can add focal color to entrances or enhance monotonous Annuals are non-woody plants that complete their life landscapes. Annuals can be used in newly planted perennial cycle in one growing season, ending with seed production. or shrub beds and borders, filling the vacant spaces with color Annuals provide color from early summer until frost, an ad- until the permanent plantings mature. vantage over most perennial flowers, which usually have a Consider site conditions and the preferred growing shorter blooming season. Certain annuals, such as moss rose, requirements of annuals when designing with them. Annuals California poppy and alyssum, may self-seed, but most an- are generally incorporated into a design for their color, but nuals must be planted yearly. Some perennial plants that live texture, form, size and mass characteristics also contribute to the from year to year in warmer climates, such as begonias and overall effect. Evaluate the planting site’s sun exposure, wind snapdragons, are included with annuals in Nebraska since they patterns, water requirements, soil type and fertility, and then are not winter-hardy and must be replanted each year.
    [Show full text]
  • Mirabilis Jalapa L
    Floral biology of a population of Mirabilis jalapa L. (Nyctaginaceae) from Southern Brazil Ausileide Alves Leal, Yoko Terada+ and Maria de Fátima Pires da Silva Machado* Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900, Maringá, Paraná, Brasil. +In memoriam. *Author for correspondence. ABSTRACT. The reproductive pattern of a cultivated population of Mirabilis jalapa in the Southern region of Brazil was investigated. Flowers of M. jalapa opened for one night, in the early evening at 17h00 and closed early the next morning from 4h30 to 6h00. Anther dehiscence occurred from about 19h30 to 20h30. The presence of pollen grains on the stigma surface was recorded in flowers in which the anther lay at the same level as the stigma or higher. Absence of pollen grains was observed in flowers in which the anther was below the stigma and in previously emasculated flowers. One moth was reported to be the only visitor and possible pollinator of M. jalapa flowers throughout the experimental period. Self-pollination was the predominant mode of reproduction in the M. jalapa population cultured in the garden of the State University of Maringá. Key words: self-pollination, four o’clock plant, Mirabilis jalapa, anthesis. RESUMO. Biologia floral de uma população de Mirabilis jalapa L. (Nyctaginaceae) do Sul do Brasil. Neste estudo foi investigado o padrão reprodutivo de uma população de Mirabilis jalapa cultivada na Região Sul do território brasileiro. A abertura das flores de M. jalapa ocorreu no início da tarde, às 17 h, e o fechamento foi na manhã seguinte a partir das 4h30min até as 6 h.
    [Show full text]
  • Seed Law Rules & Regulations
    GEORGIA SEED LAW AND RULES AND REGULATIONS Georgia Department of Agriculture Gary W. Black Commissioner of Agriculture AGRICULTURAL INPUTS DIVISION GEORGIA DEPARTMENT OF AGRICULTURE 19 M. L. KING JR. DRIVE SW, ROOM 410 ATLANTA, GA 30334 PHONE: 404-656-5584 FAX: 404-463-8568 Revised May 14, 2018 TABLE OF CONTENTS Article 2 SALE AND TRANSPORTATION OF SEEDS Section Page 2-11-20 Short title 2-11-21 Definitions 2-11-22 Labeling requirements 2-11-23 Prohibited acts 2-11-24 Records 2-11-25 Powers and duties of Commissioner 2-11-26 Licensing authority; penalties 2-11-27 Reserved 2-11-28 Rule-making authority 2-11-29 Reserved 2-11-30 Seizure 2-11-31 Injunctions 2-11-32 Exemption 2-11-33 Applicability 2-11-34 Penalties Article 3 CERTIFICATION OF SEEDS AND PLANTS 2-11-50 Legislative intent 2-11-51 Definitions 2-11-52 Designation of agency; liability 2-11-53 False certification Page 1 SEED ARBITRATION COUNCIL 2-11-70 Purpose 2-11-71 Definitions 2-11-72 Labeling requirements 2-11-73 Filing complaints 2-11-74 Council membership 2-11-75 Hearings and investigations 2-11-76 Findings and recommendations 2-11-77 Rules and regulations RULES AND REGULATIONS Chapters & Rules Page 40-12-1 Definitions 40-12-2 Seed testing protocol & statistical tolerances 40-12-3 Standards 40-12-4 Limitations on noxious weed seeds 40-12-5 Labeling requirements 40-12-6 Seed arbitration 40-12-7 Charges for seed sample assay 40-12-8 Seed dealer license fees Page 2 Official Code of Georgia Annotated TITLE 2 CHAPTER 11 SEEDS AND PLANTS ARTICLE 2 SALE AND TRANSPORTATION OF SEEDS Revised July 1, 2012 2-11-20.
    [Show full text]
  • Mirabilis Jalapa L. Var. Jalapa, FOUR-O'clock, MARVEL of PERU. Subshrub, Winter- Dormant, Swollen-Taprooted, Several−Many-S
    Mirabilis jalapa L. var. jalapa, FOUR-O’CLOCK, MARVEL OF PERU. Subshrub, winter- dormant, swollen-taprooted, several−many-stemmed at base, branched throughout and unequally 2-forked with axes divergent at each node, erect, 50–150 cm tall; shoots with paired leaves of slightly different sizes (anisophyllous, 1 blade 10−20% smaller), tomentose to short-tomentose sometimes becoming glabrescent; taproot often very large, fleshy-tuberous. Stems: 4-sided (cylindric) + swollen just above node, green, densely pubescent in broad vertical lines on 2 (opposite) sides, with a horizontal zone of shaggy reddish hairs across base of internode, internodes < 135 mm long, soft-hairy; appearing to have a pith with vascular (medullary) bundles. Leaves: opposite decussate, simple, petiolate, without stipules; petiole shallowly channeled, (2–)10–70 mm; blade deltate- ovate to ovate or lanceolate, 35–140 × 18–85 mm, slightly asymmetric with left and right halves different widths, truncate to rounded or subcordate at base, entire and slightly wavy on margins, acute to acuminate at tip, pinnately veined with the midrib raised slightly on upper surface and principal veins raised on lower surface, conspicuously soft-hairy when young with longer hairs persisting on margins and midrib. Inflorescence: leafy dichasial cyme, compact, mostly terminal but appearing axillary, secondarily also axillary, many- flowered, with opposite decussate branchlets, bracteate, tomentose; bract subtending each branchlet leaflike, short-petiolate to subsessile, narrowly ovate to lanceolate or linear- oblanceolate, decreasing upward, not glandular; pedicel 1–4 mm long, with involucre of bracteoles at tip; involucre subtending flower, 5-lobed, calyxlike, bell-shaped, short- tomentose, not glandular; tube at anthesis 2–4.5 × 2–3.5 mm increasing 2× in fruit, with conspicuously raised midveins; lobes 5, overlapping, ± unequal, triangular-acuminate, at anthesis 4.5–7 × 2–3 mm increasing 2× in fruit, spreading in fruit, pinnately veined, with persistent hairs on margins.
    [Show full text]
  • Raspberry/White Peach Facial Protocol
    Raspberry/White Peach Facial Protocol Raspberries, White Peach and a Winter Complex come together to gently exfoliate and nourish/hydrate your skin through the use of (1) the DermaPep peptide with retinoic effects to stimulate collagen and reduce photo-damage, (2) the ayurvedic plant Indian Senna to hydrate dry skin, and (3) the Mirabilis Jalapa Flower to sooth sensitive skin. Raspberries are known to be anti- inflammatory to make this a gentle, softening and exfoliating facial. This facial is safe for pregnancy. Skin Conditions: Normal/combination, dry, sensitive, photo-damaged and aging skin. Safe for pregnancy. Professional Facial 1. Cleanse once with Green Tea Cleanser. 2. Cleanse a second time with Green Tea Cleanser. 3. Apply Raspberry Peach Enzyme under steam for 7-10 minutes. 4. Remove with a warm barber towel or with cool aesthetic wipes. 5. Optional: Perform a microdermabrasion. 6. Perform extractions. 7. Apply Vitamin C/Green Tea Serum and Ageless Hydrating Serum. 8. Apply White Peach Nourishing Mask for 10 minutes, and remove with warm barber towel. 9. Tone with Cucumber Hydration Toner. 10. Moisturize with Acai Berry Moisturizer. 11. Protect with Sheer Protection SPF 30. Products Needed for this Professional Facial Green Tea Cleanser Raspberry Peach Enzyme White Peach Nourishing Mask Ageless Skin Hydrating Serum Vitamin C/Green Tea Serum Cucumber Hydration Toner Acai Berry Moisturizer Sheer Protection SPF 30 Page 1 This is the Mirabilis Jalapa Flower which fades redness and soothes sensitive skin. This is the Indian Senna (Cassia Angustifolia) plant which promotes hydration. Page 2 Raspberry Peach Enzyme Description Professional Use Only.
    [Show full text]
  • Cytoplasmic Inheritance of Plastids in Impatiens Sultanii Hook, F., Petunia
    CYTOPLASMIC INHERITANCE OF PLASTIDS IN IMPATIENS SULTANII HOOK, P., PETUNIA VIOLACEA LINDL. AND CHOLROPHYTUM ELATUM R. BR.1 K. K. PANDEY AND GLENN W. BLAYDES Department of Botany and Plant Pathology, The Ohio State University, Columbus 10 INTRODUCTION The inheritance and mode of chlorophyll distribution in variegated plants have long attracted the attention of botanists. It is probable that most variegated varieties of plant species, domesticated and wild, are somatic, mutant individuals which appear as chimeras (Blaydes, 1953). Many of these may be propagated vegetatively and persist indefinitely through the aid of man. However, the understanding of the processes involved in the structure and inheritance of leaf variegation is still far from complete. A favorable condition for the study of chlorophyll inheritance is found in plants where one or more shoots are completely albino. Such shoots are incapable of independent existence, except when under special cultural methods, and may be found as mutants or somatic segregates on green or variegated plants (Blaydes, 1953). The most frequent occurrence of such albino mutants is found in periclinally, mericlinally and sectorially variegated plants. Since flowers on albino shoots are frequently unable to produce seed normally, mericlinal, periclinal, or sectorial chimeras are generally used for genetical experiments. As the repro- ductive cells are derived from the sub-epidermal layer of the shoot, the second layer of the shoot apex must be regularly albino if the genetic data from crosses in such plants are to be relied upon. Sectorially variegated plants in which the histogenic tissues are constantly rearranging are not reliable for genetic studies on variegation.
    [Show full text]
  • Southern Plant Lists
    Southern Plant Lists Southern Garden History Society A Joint Project With The Colonial Williamsburg Foundation September 2000 1 INTRODUCTION Plants are the major component of any garden, and it is paramount to understanding the history of gardens and gardening to know the history of plants. For those interested in the garden history of the American south, the provenance of plants in our gardens is a continuing challenge. A number of years ago the Southern Garden History Society set out to create a ‘southern plant list’ featuring the dates of introduction of plants into horticulture in the South. This proved to be a daunting task, as the date of introduction of a plant into gardens along the eastern seaboard of the Middle Atlantic States was different than the date of introduction along the Gulf Coast, or the Southern Highlands. To complicate maters, a plant native to the Mississippi River valley might be brought in to a New Orleans gardens many years before it found its way into a Virginia garden. A more logical project seemed to be to assemble a broad array plant lists, with lists from each geographic region and across the spectrum of time. The project’s purpose is to bring together in one place a base of information, a data base, if you will, that will allow those interested in old gardens to determine the plants available and popular in the different regions at certain times. This manual is the fruition of a joint undertaking between the Southern Garden History Society and the Colonial Williamsburg Foundation. In choosing lists to be included, I have been rather ruthless in expecting that the lists be specific to a place and a time.
    [Show full text]
  • Dyeing of Cotton and Wool Fabric Using Mirabilis Jalapa Flower
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Impact Factor (2012): 3.358 Dyeing of Cotton and Wool Fabric Using Mirabilis Jalapa Flower Grace Annapoorani1, Divya Sundarraj2 1Assistant Professor, Department of Textiles and Apparel Design, Bharathiar University, Coimbatore, Tamil Nadu India 2Research Scholar, Department of Textiles and Apparel Design, Bharathiar University, Coimbatore, Tamil Nadu India Abstract: Textiles, namely protein fibers, in continental part of central Europe have been traditionally dyed by natural dyes. Textile materials (natural and synthetic) used to be coloured for value addition, look and desire of the customers. Anciently, this purpose of coloring textile was initiated using colors of natural source, until synthetic colors/dyes were invented and commercialized. Hence, worldwide, growing consciousness about organic value of eco-friendly products as generated renewed interest of consumers towards use of textiles dyed with eco-friendly natural dyes. Natural dyes are known for their use in coloring of food substrate, leather as well as natural fibres like wool, silk and cotton as major areas of application since pre-historic times. A study was under taken to find out the effect of selected Mirabilis Jalapa Flower on cotton and wool fabric with different mordants Depth of shade and evenness of dye was also evaluated. Keywords: Textile, Natural dyes, Eco-friendly, Mirabilis Jalapa. 1. Introduction Mirabilis Jalapa is said to have been exported from the Peruvian Andes in 1540. Dyeing is an ancient art which predates written records. It was practiced during the Bronze age in Europe. Primitive a Flowers and color dyeing techniques included sticking plants to fabric or A curious aspect of this plant is that flowers of different rubbing crushed pigments into cloth.
    [Show full text]