Index of International Publications in Aerospace Medicine

Total Page:16

File Type:pdf, Size:1020Kb

Index of International Publications in Aerospace Medicine Federal Aviation Administration DOT/FAA/AM-14/7 Office of Aerospace Medicine Washington, DC 20591 Index of International Publications in Aerospace Medicine Melchor J. Antuñano Katherine Wade Civil Aerospace Medical Institute Federal Aviation Administration Oklahoma City, OK 73125 May 2014 Final Report NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents thereof. ___________ This publication and all Office of Aerospace Medicine technical reports are available in full-text from the Federal Aviation Administration website. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/AM-14/7 4. Title and Subtitle 5. Report Date Index of International Publications in Aerospace Medicine May 2014 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Antuñano MJ, Wade K 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) FAA Civil Aerospace Medical Institute P.O. Box 25082 Oklahoma City, OK 73125 11. Contract or Grant No. 12. Sponsoring Agency name and Address 13. Type of Report and Period Covered Office of Aerospace Medicine Federal Aviation Administration 800 Independence Ave., S.W. Washington, DC 20591 14. Sponsoring Agency Code 15. Supplemental Notes 16. Abstract The 5th edition of the Index of International Publications in Aerospace Medicine is a comprehensive listing of international publications in clinical aerospace medicine, operational aerospace medicine, aerospace physiology, environmental medicine/physiology, diving medicine/physiology, aerospace human factors, as well as other topics directly or indirectly related to aerospace medicine. The Index is divided into six major sections: I) Open Publications in General Aerospace Medicine, II) Government Publications in General Aerospace Medicine, III) Publications in Other Topics Related to Aerospace Medicine and Aerospace Human Factors IV) Proceedings From Scientific Meetings in Aerospace Medicine and Psychology, V) Journals, Newsletters, and Bulletins in Aerospace Medicine and Aerospace Human Factors, and VI) On-line Databases Containing Bibliographic, Regulatory, and Safety Information in Aerospace Medicine and Related Disciplines. 17. Key Words 18. Distribution Statement Aerospace Medicine, Accident Investigation, Document is available to the public through the Bibliography, Diving, Human Factors, Physiology Internet: www.faa.gov/go/oamtechreports 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 84 Form DOT F 1700.7 (8-72) Reproduction of completed page authorized i FOREWORD This manuscript, revised as of February 2014, contains However, the inclusion of thousands of individual article a comprehensive listing of international publications in and technical report citations was beyond the scope of Clinical Aerospace Medicine, Operational Aerospace this bibliographic guide. For those colleagues interested Medicine, Aerospace Physiology, Environmental Medi- in periodical publications, our guide includes a section cine/Physiology, Diving Medicine/Physiology, Aerospace containing general information on journals, bulletins, Human Factors, as well as other important topics directly and newsletters in Aerospace Medicine and Aerospace or indirectly-related to aerospace medicine. This biblio- Human Factors, indicating which are currently being graphic guide is divided into six major sections: I) Open published on a regular basis and which have been dis- Publications in General Aerospace Medicine, II) Govern- continued. Citations to technical reports are included in ment Publications in General Aerospace Medicine, III) the numerous indices, bibliographies, serial publications, Publications in other Topics related to Aerospace Medicine and online databases that are listed throughout the guide. and Aerospace Human Factors, IV) Proceedings From We believe this guide will be useful as a primary source Scientific Meetings, Conferences, and Symposiums in of consultation for bibliographic information, especially Aerospace Medicine and Psychology, and V) Journals, to those colleagues who are in their formative years and Newsletters, and Bulletins in Aerospace Medicine and to those who do not have easy access to computer-aided Aerospace Human Factors, and VI) Online Computer- literature search systems. ized Databases Containing Information in Aerospace The guide is not intended to be an all-inclusive list- Medicine and Related Disciplines. ing of every publication in aerospace medicine available With respect to the type of publications included in worldwide. Obviously, there are other publications that this bibliographic guide, our primary objective was to pro- we are not aware of due to limitations in our literature vide the reader with detailed information about “books.” search methodologies. Therefore, we take this opportunity Books were selected because they offer a comprehensive to encourage readers to let us know of any publication coverage of a general area of interest, and they represent (old or recent) not listed in this guide that should be excellent tools for structured learning and consultation. included. On the other hand, article citations from periodical pub- Finally, it is important to establish that this biblio- lications (journals, bulletins, and newsletters) were kept graphic guide does not constitute a recommendation or to a minimum because their coverage is usually limited an endorsement of any of the publications listed herein. to specific issues. Articles are very useful to colleagues The merits and limitations of each publication should be who have an adequate understanding of a given general judged by the reader, keeping in mind that some of these discipline and wish to keep up with the latest develop- publications should be evaluated as historical documents ments in the various areas that confirm such a discipline. and not as up-to-date consultation sources. iii CONTENTS INDEX OF INTERNATIONAL PUBLICATIONS IN AEROSPACE MEDICINE I) Open Publications in General Aerospace Medicine ..............................1 II) Government Publications in General Aerospace Medicine ........................7 III) Publications in Other Topics Related to Aerospace Medicine ....................10 Aerospace Medical Certification and Standards .....................................10 Operational Aerospace Medicine ................................................11 Aeromedical Care and Air Ambulances ...........................................15 Aerospace Medicine for Flight Crews ............................................17 Medical Aspects of Aviation Safety and Accidents ...................................18 Aviation and Environmental Physiology ..........................................23 Space Physiology, Medicine, and Human Factors ...................................30 Diving Physiology and Medicine ...............................................40 Aerospace Human Factors and Psychology ........................................45 General Human Factors and Psychology ..........................................55 Aerospace Medicine History ...................................................63 IV) Proceedings From Scientific Meetings in Aerospace Medicine and Psychology .....67 V) Journals, Newsletters, and Bulletins in Aerospace Medicine and Aerospace Human Factors ............................................................72 VI) Online Databases Containing Bibliographic, Regulatory, and Safety Information in Aerospace Medicine and Related Disciplines ................................78 v INDEX OF INTERNATIONAL PUBLICATIONS IN AEROSPACE MEDICINE I) OPEN PUBLICATIONS IN GENERAL AEROSPACE MEDICINE Aczél G. A Gyáli Uti Kórház Ünnepi Tudományos Beier W, Dorner E. Probleme der Raumflugmedizin. Ülésének Elöadásai. Budapest, Hungary: Gyáli Leipzig, Germany: Veb Georg Thieme, 1961. Uti Kórház, 1960. Benford RJ. Doctors in the Sky. Springfield, IL, USA: Anderson HG. The Medical and Surgical Aspects of Charles C. Thomas, 1955. Aviation. London, England: Oxford University Press, 1919. Bergin KG. Aviation Medicine - Its Theory and Application. Bristol, England: John Wright & Anton M. Indreptar de Medicina si Psichologie Sons Ltd., 1949. Aeronautica. Buscuresti, Romania: Editura Military, 1976. Bondarenko MR, Braude AI. Voprosy Morfologii, Fiziologii, Biokhimii i Aviatsionnoi Meditsiny. Apollonov AP, Voiachek VI. Osnovy Aviatsionnoi Moskva, USSR: Nauchnye Trudy Tsentral’nogo Meditsiny. Moskva, USSR: Institut Aviatsionnoi Ordena Lenina Instituta, 1968. Meditsiny, 1939. Boque N. Vida Humana y Espacio. Barcelona, Spain: Apollonov AP. Fundamentals of Aviation Medicine. Jims Editorial Company, 1965. Toronto, Canada: University of Toronto Press, 1943. Box A. Tratado de Medicina Aeronáutica y Aviación. Ceuta, Spain: Impresora Rosaura, 1936. Armstrong HG. Principles and Practice of Aviation Medicine. Baltimore, MD, USA: Williams & Box A. Medicina Aeronáutica y Aviación Sanitaria. Wilkins Co., 1939, 1943, 1952. Madrid, Spain: 1936. Armstrong HG. Aerospace Medicine. Baltimore, MD, Boyer J, Strumza MV. Précis d’Hygiene Aéronautique. USA: Williams & Wilkins Co., 1961. Paris, France: Expansion Scientifique Française, 1956. Artelli M. Legislazione Sanitaria, Marittima e Aeronautica. Milano, Italy: Giuffrè, 1964. Cai Q, Feng G. Hang kong yu Kong Jian yi Xue ji Chu. 航空与空间医学基础 Beijing,
Recommended publications
  • Nitrox CONFIRME
    Formation théorique NITROX Patrick Baptiste MF1 n° 22108 Formation théorique Nitrox confirmé Sommaire de la formation • Rappels • La réglementation • La crise Hyperoxique l’effet Paul Bert l’effet Lorrain Smith • La table NOAA • Le compteur SNC • Les UPDT ou OTU • Les autres effets physiologiques La syncope Hypoxique Effet vasoconstricteur de l’O2 • La fabrication des mélanges Patrick Baptiste MF1 n° 22108 Formation théorique Nitrox confirmé Composition de l’air L'air sec au voisinage du sol est approximativement composé de: • 78,08 % d’azote, • 20,95 % d’oxygène, • moins de 1 % d'autres gaz dont : • argon 0,93%, • néon 0,0018%, • krypton 0,00011%, • xénon 0,00009% • dioxyde de carbone 0,033 %. Il contient aussi des traces d'hydrogène 0,000072%, mais aussi d'ozone et de radon. Patrick Baptiste MF1 n° 22108 Formation théorique Nitrox confirmé Composition de l’air Nous considérons que la composition de l’air est la suivante : - Oxygène (O²) 21 % - Azote (N²) 79 % Convention d’appellation Par convention, on désigne ce mélange en citant en premier sa teneur en O² puis sa teneur en N², on obtient une indication du type : O²/N² ou XX / YY . un mélange définit comme suit : 40/60 Désigne un NITROX contenant 40 % d’O² et 60 % de N² Patrick Baptiste MF1 n° 22108 Formation théorique Nitrox confirmé Limites et contraintes Liés à l’augmentation de la pression partielle d’oxygène (PpO²) - Limitation de la profondeur maximum par rapport à l’air( PpO²max = 1,6b .) - Limitation variable de la profondeur en fonction du mélange respiré - Risque d’accident hyperoxique si les profondeurs planchées ou la durée d’utilisation sont dépassés, - Manipulation plus contraignante et plus dangereuse, - Nécessite un matériel spécifique ( compresseur, équipement spécifique si Nitrox > 40/60) - Planification des plongées obligatoires et plus complexes - Prix de revient plus élevé que l’air.
    [Show full text]
  • The Coastwatcher
    13 JUN-CTWG Op Eval TRANEX TBA-JUL CTWG Encampment 21-23 AUG-CTWG/USAF Evaluation Missions for 15-23 AUG-NER Glider Academy@KSVF America 26-29 AUG-CAP National Conference Semper vigilans! 12 SEP-Cadet Ball-USCGA Semper volans! CADET MEETING REPORT The Coastwatcher 24 February, 2015 Publication of the Thames River Composite Squadron Connecticut Wing Maj Roy Bourque outlined the Squadron Civil Air Patrol Rocketry Program and set deadlines for Cadet submission of plans. 300 Tower Rd., Groton, CT http://ct075.org . The danger of carbon monoxide poisoning was the subject of the safety meeting. C/2dLt Jessica LtCol Stephen Rocketto, Editor Carter discussed the prevention and detection of [email protected] this hazardous gas and opened up the forum to comments and questions from the Cadets. C/CMSgt Virginia Poe, Scribe C/SMSgt Michael Hollingsworth, Printer's Devil C/CMSgt Virginia Poe delivered her Armstrong Lt David Meers & Maj Roy Bourque, Papparazis Lecture on the “The Daily Benefits of the Hap Rocketto, Governor-ASOQB, Feature Editor Aerospace Program.” Vol. IX 9.08 25 February, 2015 Maj Brendan Schultz delivered his Eaker Lecture explaining the value of leadership skills learned in SCHEDULE OF COMING EVENT the Cadet Program and encouraged Cadets to apply their learning to the world outside of CAP. 03 MAR-TRCS Staff Meeting 10 MAR-TRCS Meeting C/SrA Thomas Turner outlined the history of 17 MAR-TRCS Meeting rocket propulsion from Hero's Aeopile to the 21 MAR-CTWG WWII Gold Medal Ceremony landing on the moon. He then explained each of 24 MAR-TRCS Meeting Newton's Three Laws of Dynamics and showed 31 MAR-TRCS Meeting their applications to rocketry.
    [Show full text]
  • Hyperbaric Physiology the Rouse Story Arrival at Recompression
    Hyperbaric Physiology The Rouse Story • Oct 12, 1992, off the New Jersey coast • father/son team of experienced divers • explore submarine wreck in 230 ft (70 m) • breathing compressed air • trapped in wreck & escaped with no time for decompression Chris and Chrissy Rouse Arrival at recompression Recompression efforts facility • Both divers directly ascend to dive boat • Recompression starts about 3 hrs after • Helicopter arrives at boat in 1 hr 27 min ascent • Bronx Municipal Hospital recompression facility – put on pure O2 and compressed to 60 ft – Chris (39 yrs) pronounced dead • extreme pain as circulation returned – compressed to 165 ft, then over 5.5 hrs – Chrissy (22 yrs) gradually ascended back to 30 ft., lost • coherent and talking consciousness • paralysis from chest down • no pain – back to 60 ft. Heart failure and death • blood sample contained foam • autopsy revealed that the heart contained only foam Medical Debriefing Gas Laws • Boyle’s Law • Doctors conclusions regarding their – P1V1 = P2V2 treatment • Dalton’s Law – nothing short of recompression to extreme – total pressure is the sum of the partial pressures depths - 300 to 400 ft • Henry’s Law – saturation treatment lasting several days – the amt of gas dissolved in liquid at any temp is – complete blood transfusion proportional to it’s partial pressure and solubility – deep helium recompression 1 Scuba tank ~ 64 cf of air Gas problems during diving Henry, 1 ATM=33 ft gas (10 m) dissovled = gas Pp & tissue • Rapture of the deep (Nitrogen narcosis) solubility • Oxygen
    [Show full text]
  • Chapter 23 ENVIRONMENTAL EXTREMES: ALTERNOBARIC
    Environmental Extremes: Alternobaric Chapter 23 ENVIRONMENTAL EXTREMES: ALTERNOBARIC RICHARD A. SCHEURING, DO, MS*; WILLIAM RAINEY JOHNSON, MD†; GEOFFREY E. CIARLONE, PhD‡; DAVID KEYSER, PhD§; NAILI CHEN, DO, MPH, MASc¥; and FRANCIS G. O’CONNOR, MD, MPH¶ INTRODUCTION DEFINITIONS MILITARY HISTORY AND EPIDEMIOLOGY Altitude Aviation Undersea Operations MILITARY APPLIED PHYSIOLOGY Altitude Aviation Undersea Operations HUMAN PERFORMANCE OPTIMIZATION STRATEGIES FOR EXTREME ENVIRONMENTS Altitude Aviation Undersea Operations ONLINE RESOURCES FOR ALTERNOBARIC ENVIRONMENTS SUMMARY *Colonel, Medical Corps, US Army Reserve; Associate Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sci- ences, Bethesda, Maryland †Lieutenant, Medical Corps, US Navy; Undersea Medical Officer, Undersea Medicine Department, Naval Medical Research Center, Silver Spring, Maryland ‡Lieutenant, Medical Service Corps, US Navy; Research Physiologist, Undersea Medicine Department, Naval Medical Research Center, Silver Spring, Maryland §Program Director, Traumatic Injury Research Program; Assistant Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland ¥Colonel, Medical Corps, US Air Force; Assistant Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland ¶Colonel (Retired), Medical Corps, US Army; Professor and former Department Chair, Military and Emergency Medicine, Uniformed Services University of the Health Sciences,
    [Show full text]
  • Diving Safety Manual Revision 3.2
    Diving Safety Manual Revision 3.2 Original Document: June 22, 1983 Revision 1: January 1, 1991 Revision 2: May 15, 2002 Revision 3: September 1, 2010 Revision 3.1: September 15, 2014 Revision 3.2: February 8, 2018 WOODS HOLE OCEANOGRAPHIC INSTITUTION i WHOI Diving Safety Manual DIVING SAFETY MANUAL, REVISION 3.2 Revision 3.2 of the Woods Hole Oceanographic Institution Diving Safety Manual has been reviewed and is approved for implementation. It replaces and supersedes all previous versions and diving-related Institution Memoranda. Dr. George P. Lohmann Edward F. O’Brien Chair, Diving Control Board Diving Safety Officer MS#23 MS#28 [email protected] [email protected] Ronald Reif David Fisichella Institution Safety Officer Diving Control Board MS#48 MS#17 [email protected] [email protected] Dr. Laurence P. Madin John D. Sisson Diving Control Board Diving Control Board MS#39 MS#18 [email protected] [email protected] Christopher Land Dr. Steve Elgar Diving Control Board Diving Control Board MS# 33 MS #11 [email protected] [email protected] Martin McCafferty EMT-P, DMT, EMD-A Diving Control Board DAN Medical Information Specialist [email protected] ii WHOI Diving Safety Manual WOODS HOLE OCEANOGRAPHIC INSTITUTION DIVING SAFETY MANUAL REVISION 3.2, September 5, 2017 INTRODUCTION Scuba diving was first used at the Institution in the summer of 1952. At first, formal instruction and proper information was unavailable, but in early 1953 training was obtained at the Naval Submarine Escape Training Tank in New London, Connecticut and also with the Navy Underwater Demolition Team in St.
    [Show full text]
  • Biomechanics of Safe Ascents Workshop
    PROCEEDINGS OF BIOMECHANICS OF SAFE ASCENTS WORKSHOP — 10 ft E 30 ft TIME AMERICAN ACADEMY OF UNDERWATER SCIENCES September 25 - 27, 1989 Woods Hole, Massachusetts Proceedings of the AAUS Biomechanics of Safe Ascents Workshop Michael A. Lang and Glen H. Egstrom, (Editors) Copyright © 1990 by AMERICAN ACADEMY OF UNDERWATER SCIENCES 947 Newhall Street Costa Mesa, CA 92627 All Rights Reserved No part of this book may be reproduced in any form by photostat, microfilm, or any other means, without written permission from the publishers Copies of these Proceedings can be purchased from AAUS at the above address This workshop was sponsored in part by the National Oceanic and Atmospheric Administration (NOAA), Department of Commerce, under grant number 40AANR902932, through the Office of Undersea Research, and in part by the Diving Equipment Manufacturers Association (DEMA), and in part by the American Academy of Underwater Sciences (AAUS). The U.S. Government is authorized to produce and distribute reprints for governmental purposes notwithstanding the copyright notation that appears above. Opinions presented at the Workshop and in the Proceedings are those of the contributors, and do not necessarily reflect those of the American Academy of Underwater Sciences PROCEEDINGS OF THE AMERICAN ACADEMY OF UNDERWATER SCIENCES BIOMECHANICS OF SAFE ASCENTS WORKSHOP WHOI/MBL Woods Hole, Massachusetts September 25 - 27, 1989 MICHAEL A. LANG GLEN H. EGSTROM Editors American Academy of Underwater Sciences 947 Newhall Street, Costa Mesa, California 92627 U.S.A. An American Academy of Underwater Sciences Diving Safety Publication AAUSDSP-BSA-01-90 CONTENTS Preface i About AAUS ii Executive Summary iii Acknowledgments v Session 1: Introductory Session Welcoming address - Michael A.
    [Show full text]
  • Orbital Debris: a Chronology
    NASA/TP-1999-208856 January 1999 Orbital Debris: A Chronology David S. F. Portree Houston, Texas Joseph P. Loftus, Jr Lwldon B. Johnson Space Center Houston, Texas David S. F. Portree is a freelance writer working in Houston_ Texas Contents List of Figures ................................................................................................................ iv Preface ........................................................................................................................... v Acknowledgments ......................................................................................................... vii Acronyms and Abbreviations ........................................................................................ ix The Chronology ............................................................................................................. 1 1961 ......................................................................................................................... 4 1962 ......................................................................................................................... 5 963 ......................................................................................................................... 5 964 ......................................................................................................................... 6 965 ......................................................................................................................... 6 966 ........................................................................................................................
    [Show full text]
  • Podiform Chromite at Voskhod, Kazakhstan
    PODIFORM CHROMITE AT VOSKHOD, KAZAKHSTAN Caroline Johnson Submitter in partial fulfilment of the requirements for the degree of Ph.D. November, 2012 Somewhat unconventionally, this thesis is for me. Caroline Johnson “I love deadlines. I like the whooshing sound they make as they fly by.” Douglas Adams (1952-2001) Abstract The Voskhod podiform chromitite is one of more than 30 chromitite deposits that collectively form the Main Ore Field (MOF) within the Kempirsai Massif, in Kazakhstan. The MOF is the largest podiform chromitite ore-field in the world. The Voskhod deposit, encased in a serpentinised dunite halo, is situated within harzburgite units that comprise the mantle sequence of the Kempirsai ophiolite. This study arose from a unique opportunity to work on drill core samples through an un-mined podiform chromite deposit and investigate its internal structure, composition and genesis. The 18Mt ore-body has a strike of 600 m, is 170 m to 360 m wide and has an average thickness of 39 m. It has an immediate dunite halo between 1 m and 5 m thick. The ore body is made up of multiple stacked chromitite layers. Mineralised layers are separated by barren dunite or by weakly disseminated dunite lenses ranging from <1 m to 50 m. The style of mineralization varies throughout the ore body; the central region is dominated by thick (>5 – 45 m) units of massive chromite (>80% chromite), with progression towards the south west disseminated chromite (10 – 40% chromite) becomes increasingly abundant. Drill core logging and cross- section profiling of the internal structure of the ore body has identified an intricately connected network of what appear to be chromite-filled channel-ways.
    [Show full text]
  • Hitler's Doubles
    Hitler’s Doubles By Peter Fotis Kapnistos Fully-Illustrated Hitler’s Doubles Hitler’s Doubles: Fully-Illustrated By Peter Fotis Kapnistos [email protected] FOT K KAPNISTOS, ICARIAN SEA, GR, 83300 Copyright © April, 2015 – Cold War II Revision (Trump–Putin Summit) © August, 2018 Athens, Greece ISBN: 1496071468 ISBN-13: 978-1496071460 ii Hitler’s Doubles Hitler’s Doubles By Peter Fotis Kapnistos © 2015 - 2018 This is dedicated to the remote exploration initiatives of the Stargate Project from the 1970s up until now, and to my family and friends who endured hard times to help make this book available. All images and items are copyright by their respective copyright owners and are displayed only for historical, analytical, scholarship, or review purposes. Any use by this report is done so in good faith and with respect to the “Fair Use” doctrine of U.S. Copyright law. The research, opinions, and views expressed herein are the personal viewpoints of the original writers. Portions and brief quotes of this book may be reproduced in connection with reviews and for personal, educational and public non-commercial use, but you must attribute the work to the source. You are not allowed to put self-printed copies of this document up for sale. Copyright © 2015 - 2018 ALL RIGHTS RESERVED iii Hitler’s Doubles The Cold War II Revision : Trump–Putin Summit [2018] is a reworked and updated account of the original 2015 “Hitler’s Doubles” with an improved Index. Ascertaining that Hitler made use of political decoys, the chronological order of this book shows how a Shadow Government of crisis actors and fake outcomes operated through the years following Hitler’s death –– until our time, together with pop culture memes such as “Wunderwaffe” climate change weapons, Brexit Britain, and Trump’s America.
    [Show full text]
  • A Review of Alterations to the Brain During Spaceflight and the Potential
    www.nature.com/npjmgrav REVIEW ARTICLE OPEN A review of alterations to the brain during spaceflight and the potential relevance to crew in long-duration space exploration ✉ Meaghan Roy-O’Reilly 1,2 , Ajitkumar Mulavara3 and Thomas Williams4 During spaceflight, the central nervous system (CNS) is exposed to a complex array of environmental stressors. However, the effects of long-duration spaceflight on the CNS and the resulting impact to crew health and operational performance remain largely unknown. In this review, we summarize the current knowledge regarding spaceflight-associated changes to the brain as measured by magnetic resonance imaging, particularly as they relate to mission duration. Numerous studies have reported macrostructural changes to the brain after spaceflight, including alterations in brain position, tissue volumes and cerebrospinal fluid distribution and dynamics. Changes in brain tissue microstructure and connectivity were also described, involving regions related to vestibular, cerebellar, visual, motor, somatosensory and cognitive function. Several alterations were also associated with exposure to analogs of spaceflight, providing evidence that brain changes likely result from cumulative exposure to multiple independent environmental stressors. Whereas several studies noted that changes to the brain become more pronounced with increasing mission duration, it remains unclear if these changes represent compensatory phenomena or maladaptive dysregulations. Future work is needed to understand how spaceflight-associated changes to the brain affect crew health and performance, with the goal of developing comprehensive monitoring and countermeasure strategies for future long-duration space exploration. npj Microgravity (2021) 7:5 ; https://doi.org/10.1038/s41526-021-00133-z 1234567890():,; BACKGROUND with increased mission length4,8,9.
    [Show full text]
  • Appendix Program Managers/Acknowledgments
    Flight Information Appendix Program Managers/Acknowledgments Selected Readings Acronyms Contributors’ Biographies Index Image of a Legac y—The Final Re-entry Appendix 517 Flight Information Approx. Orbiter Enterprise STS Flight No. Orbiter Crew Launch Mission Approach and Landing Test Flights and Crew Patch Name Members Date Days 1 Columbia John Young (Cdr) 4/12/1981 2 Robert Crippen (Plt) Captive-Active Flights— High-speed taxi tests that proved the Shuttle Carrier Aircraft, mated to Enterprise, could steer and brake with the Orbiter perched 2 Columbia Joe Engle (Cdr) 11/12/1981 2 on top of the airframe. These fights featured two-man crews. Richard Truly (Plt) Captive-Active Crew Test Mission Flight No. Members Date Length 1 Fred Haise (Cdr) 6/18/1977 55 min 46 s Gordon Fullerton (Plt) 2 Joseph Engle (Cdr) 6/28/1977 62 min 0 s 3 Columbia Jack Lousma (Cdr) 3/22/1982 8 Richard Truly (Plt) Gordon Fullerton (Plt) 3 Fred Haise (Cdr) 7/26/1977 59 min 53 s Gordon Fullerton (Plt) Free Flights— Flights during which Enterprise separated from the Shuttle Carrier Aircraft and landed at the hands of a two-man crew. 4 Columbia Thomas Mattingly (Cdr) 6/27/1982 7 Free Flight No. Crew Test Mission Henry Hartsfield (Plt) Members Date Length 1 Fred Haise (Cdr) 8/12/1977 5 min 21 s Gordon Fullerton (Plt) 5 Columbia Vance Brand (Cdr) 11/11/1982 5 2 Joseph Engle (Cdr) 9/13/1977 5 min 28 s Robert Overmyer (Plt) Richard Truly (Plt) William Lenoir (MS) 3 Fred Haise (Cdr) 9/23/1977 5 min 34 s Joseph Allen (MS) Gordon Fullerton (Plt) 4 Joseph Engle (Cdr) 10/12/1977 2 min 34 s Richard Truly (Plt) 5 Fred Haise (Cdr) 10/26/1977 2 min 1 s 6 Challenger Paul Weitz (Cdr) 4/4/1983 5 Gordon Fullerton (Plt) Karol Bobko (Plt) Story Musgrave (MS) Donald Peterson (MS) The Space Shuttle Numbering System The first nine Space Shuttle flights were numbered in sequence from STS -1 to STS-9.
    [Show full text]
  • Structural Brain Changes Following Long-Term 6° Head-Down Tilt Bed Rest As an Analog for Spaceflight
    ORIGINAL RESEARCH ADULT BRAIN Structural Brain Changes following Long-Term 6° Head-Down Tilt Bed Rest as an Analog for Spaceflight D.R. Roberts, X. Zhu, A. Tabesh, E.W. Duffy, D.A. Ramsey, and T.R. Brown ABSTRACT BACKGROUND AND PURPOSE: Following long-term spaceflight, a subset of the National Aeronautics and Space Administration astro- nauts present with visual impairment and increased intracranial pressure, known as visual impairment and intracranial pressure syndrome. We investigated structural brain changes following long-term head-down tilt bed rest as a spaceflight analog. MATERIALS AND METHODS: Volumetric analysis was performed on structural pre- and post–bed rest brain MR images. RESULTS: Comparing post–bed rest to pre–bed rest images, we found the following: 1) no significant group differences in GM, WM, CSF, or ventricular volumes; 2) shift of the center of mass of the brain upward and posterior rotation of the brain relative to the skull; 3) a significant correlation between posterior brain rotation and changes in ventricular volume; and 4) significant increases in brain tissue density in regions at the vertex, including the frontoparietal lobes, with contraction of adjacent extra-axial CSF spaces, and significant decreases in tissue density in areas along the base of the brain, including the orbitofrontal cortex. CONCLUSIONS: We observed widespread morphologic changes with brain tissue redistribution in response to gravity changes; possible associated functional changes are unknown. The observation that ventricular change is correlated to posterior brain rotation suggests an alteration in CSF homeostasis. Ultimately, to elucidate any structural changes that may play a role in visual impairment and intracranial pressure syndrome, volumetric analysis of pre- and postflight structural scans of astronauts is needed.
    [Show full text]