General Aspects of Pattern Formation 1 Alexander A

Total Page:16

File Type:pdf, Size:1020Kb

General Aspects of Pattern Formation 1 Alexander A Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems NATO Science Series A Series presenting the results of scientific meetings supported under the NATO Science Programme. The Series is published by IOS Press, Amsterdam, and Springer (formerly Kluwer Academic Publishers) in conjunction with the NATO Public Diplomacy Division Sub-Series I. Life and Behavioural Sciences IOS Press II. Mathematics, Physics and Chemistry Springer (formerly Kluwer Academic Publishers) III. Computer and Systems Science IOS Press IV. Earth and Environmental Sciences Springer (formerly Kluwer Academic Publishers) The NATO Science Series continues the series of books published formerly as the NATO ASI Series. The NATO Science Programme offers support for collaboration in civil science between scientists of countries of the Euro-Atlantic Partnership Council. The types of scientific meeting generally supported are “Advanced Study Institutes” and “Advanced Research Workshops”, and the NATO Science Series collects together the results of these meetings. The meetings are co-organized by scientists from NATO countries and scientists from NATO’s Partner countries – countries of the CIS and Central and Eastern Europe. Advanced Study Institutes are high-level tutorial courses offering in-depth study of latest advances in a field. Advanced Research Workshops are expert meetings aimed at critical assessment of a field, and identification of directions for future action. As a consequence of the restructuring of the NATO Science Programme in 1999, the NATO Science Series was re-organized to the four sub-series noted above. Please consult the following web sites for information on previous volumes published in the Series. http://www.nato.int/science http://www.springeronline.com http://www.iospress.nl Series II: Mathematics, Physics and Chemistry – Vol. 216 Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems edited by Alexander A. Golovin Northwestern University, Evanston, IL, U.S.A. and Alexander A. Nepomnyashchy Israel Institute of Technology, Haifa, Israel Published in cooperation with NATO Public Diplomacy Division Proceedings of the NATO Advanced Study Institute on Self- Assembly, Pattern Formation and Growth Phenomena in Nano- System s St. Etienne de Tinee, France August 28– September 11, 2004 A C.I.P.Catalogue record for this book is available from the Library of Congress. ISBN-10 1-4020-4353-8 (PB) ISBN-13 978-1-4020-4353-6 (PB) ISBN-10 1-4020-4354-6 (HB) ISBN-13 978-1-4020-4354-3 (HB) ISBN-10 1-4020-4355-4 (e-book) ISBN-13 978-1-4020-4355-0 (e-book) Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. www.springer.com Printed on acid-free paper All Rights Reserved © 2006 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed in the Netherlands. This book is dedicated to the memory of Lorenz Kramer v Contents Dedication v Contributing Authors xi Foreword xiii Preface xv Acknowledgments xvii General Aspects of Pattern Formation 1 Alexander A. Nepomnyashchya and Alexander A. Golovinb 1 Introduction 1 2 Basic models for domain coarsening and pattern formation 3 3 Pattern selection 11 4 Modulated patterns 22 5 Beyond the Swift-Hohenberg model 41 6 Wavy patterns 43 7 Conclusions 50 8 Acknowledgement 52 References 52 Convective patterns in liquid crystals driven by electric field 55 Agnes Buka, Nándor Éber, Werner Pesch, Lorenz Kramer Introduction56 1 Physical properties of nematics 57 2 Electroconvection 61 Acknowledgements 79 References 80 Dynamical phenomena in nematic liquid crystals induced by light 83 Dmitry O. Krimer, Gabor Demeter, and Lorenz Kramer Introduction83 1 Simple setups - complicated phenomena 84 2 Theoretical description 85 3 Obliquely incident, linearly polarized light 91 4 Perpendicularly incident, circularly polarized light 98 5 Perpendicularly incident, elliptically polarized light 107 6 Finite beam-size effects and transversal pattern formation 115 Acknowledgments 120 vii viii PATTERN FORMATION IN NANO-SYSTEMS References 120 Self-Assembly of Quantum Dots from Thin Solid Films 123 Alexander A. Golovin, Peter W. Voorhees, and Stephen H. Davis 1 Introduction 123 2 Mechanisms of morphological evolution of epitaxial films 124 3 Elastic effects and wetting interactions 127 4 Surface-energy anisotropy and wetting interactions 139 5 Conclusions 156 Acknowledgment 157 References 156 Macroscopic and mesophysics together: the moving contact line problem revisited 159 Yves Pomeau References 166 Nanoscale Effects in Mesoscopic Films 167 L. M. Pismen Introduction167 1 Hydrodynamic Equations 169 2 Thermodynamic Equations 173 3 Fluid-Substrate Interactions 178 4 Dynamic Contact Line 184 5 Mobility Relations 186 Acknowledgements 192 References 192 Dynamics of thermal polymerization waves 195 V.A. Volpert 1 Introduction 195 2 Mathematical model 198 3 Gasless combustion 202 4 Analysis of base FP model 230 5 Other thermal FP studies 238 6 Conclusion 239 References 239 Spatiotemporal Pattern Formation in Solid Fuel Combustion 247 Alvin Bayliss Bernard J. Matkowsky Vladimir A. Volpert 1 Introduction. 248 2 Mathematical Model 254 3 Analytical Results 257 4 Computational Results 267 References 280 Contents ix Self-organization of microtubules and motors 283 Igor S. Aranson, Lev S. Tsimring Introduction283 1 Maxwell Model and Orientational Instability 285 2 Spatial Localization 288 3 Aster and Vortex Solutions 291 4 Conclusion 293 Acknowledgments 294 References 294 Physics of DNA 295 Maxim D. Frank-Kamenetskii 1 Introduction 295 2 Major structures of DNA 296 3 DNA functioning 300 4 Global DNA conformation 303 5 The DNA stability 317 6 Conclusion 322 References 322 Topic Index 327 Contributing Authors Dr. Igor S. Aranson, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA Prof. Alvin Bayliss, Department of Engineering Sciences and Applied Mathe- matics, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA Prof. Agnes Buka, Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, Konkoly-Thege Miklos u. 29-33, H-1121 Budapest, Hungary Prof. Stephen H. Davis, Department of Engineering Sciences and Applied Mathematics, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA Dr. Gabor Demeter, Research Institute for Particle and Nuclear Physics of the Hungarian Academy of Sciences, Konkoly-Thege Miklos ut 29-33, H-1121 Budapest, Hungary Prof. Nandor Eber, Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, Konkoly-Thege Miklos u. 29-33, H-1121 Budapest, Hungary Prof. Maxim D. Frank-Kamenetskii, Department of Biomedical Engineer- ing, Boston University, 36 Cummington St., Boston, MA 02215, USA Prof. Alexander A. Golovin, Department of Engineering Sciences and Ap- plied Mathematics, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA xi xii PATTERN FORMATION IN NANO-SYSTEMS Prof. Lorenz Kramer (deceased). Dr. Dmitry Krimer, Physikalisches Institut der Universitaet Bayreuth, D- 95440 Bayreuth, Germany Prof. Bernard J. Matkowsky, Department of Engineering Sciences and Ap- plied Mathematics, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA Prof. Alexander A. Nepomnyashchy, Department of Mathematics, Technion – Israel Institute of Technology, Haifa 32000, Israel Prof. Werner Pesch, Institute of Physics, University of Bayreuth, D-95440 Bayreuth, Germany Prof. Leonid M. Pismen, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel Prof. Yves Pomeau, Laboratoire de Physique Statistique de l’Ecole normale sup«erieure, 24 Rue Lhomond, 75231 Paris Cedex 05, France Dr. Lev S. Tsimring, Institute for Nonlinear Science, University of California, San Diego, La Jolla, CA 92093-0402, USA Prof. Vladimir A. Volpert, Department of Engineering Sciences and Ap- plied Mathematics, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA Prof. Peter W. Voorhees, Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA Foreword Lorenz Kramer, who was the main driving force behind the PHYSBIO pro- gram, died suddenly on 5 April 2005. This was a shock to his numerous friends who were not aware that this strong, vigorous and buoyant man struggled for many years with a deeply rooted decease which all of a sudden went out of control. Lorenz has always been an innovator working with enthusiasm and persua- sion on the leading edge of scientific exploration. The three main subjects of his work: superconductivity from 1968 to 1981; pattern formation out of equi- librium starting from 1982 ; biophysics from 1975 to 1980 and again from the start of this century – were intertwined and supplied each other with ideas and techniques. One example will suffice here: a direct interpretation of superflow solutions as saddle points in transitions between different patterns – thereby connecting two opposites: conservative and gradient systems. He was one of the principal players in the field of nonlinear science during its acme in 1990s, and one who directed this field, when it came of age, to new applications, in particular,
Recommended publications
  • The Ordered Distribution of Natural Numbers on the Square Root Spiral
    The Ordered Distribution of Natural Numbers on the Square Root Spiral - Harry K. Hahn - Ludwig-Erhard-Str. 10 D-76275 Et Germanytlingen, Germany ------------------------------ mathematical analysis by - Kay Schoenberger - Humboldt-University Berlin ----------------------------- 20. June 2007 Abstract : Natural numbers divisible by the same prime factor lie on defined spiral graphs which are running through the “Square Root Spiral“ ( also named as “Spiral of Theodorus” or “Wurzel Spirale“ or “Einstein Spiral” ). Prime Numbers also clearly accumulate on such spiral graphs. And the square numbers 4, 9, 16, 25, 36 … form a highly three-symmetrical system of three spiral graphs, which divide the square-root-spiral into three equal areas. A mathematical analysis shows that these spiral graphs are defined by quadratic polynomials. The Square Root Spiral is a geometrical structure which is based on the three basic constants: 1, sqrt2 and π (pi) , and the continuous application of the Pythagorean Theorem of the right angled triangle. Fibonacci number sequences also play a part in the structure of the Square Root Spiral. Fibonacci Numbers divide the Square Root Spiral into areas and angle sectors with constant proportions. These proportions are linked to the “golden mean” ( golden section ), which behaves as a self-avoiding-walk- constant in the lattice-like structure of the square root spiral. Contents of the general section Page 1 Introduction to the Square Root Spiral 2 2 Mathematical description of the Square Root Spiral 4 3 The distribution
    [Show full text]
  • Some Curves and the Lengths of Their Arcs Amelia Carolina Sparavigna
    Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna To cite this version: Amelia Carolina Sparavigna. Some Curves and the Lengths of their Arcs. 2021. hal-03236909 HAL Id: hal-03236909 https://hal.archives-ouvertes.fr/hal-03236909 Preprint submitted on 26 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna Department of Applied Science and Technology Politecnico di Torino Here we consider some problems from the Finkel's solution book, concerning the length of curves. The curves are Cissoid of Diocles, Conchoid of Nicomedes, Lemniscate of Bernoulli, Versiera of Agnesi, Limaçon, Quadratrix, Spiral of Archimedes, Reciprocal or Hyperbolic spiral, the Lituus, Logarithmic spiral, Curve of Pursuit, a curve on the cone and the Loxodrome. The Versiera will be discussed in detail and the link of its name to the Versine function. Torino, 2 May 2021, DOI: 10.5281/zenodo.4732881 Here we consider some of the problems propose in the Finkel's solution book, having the full title: A mathematical solution book containing systematic solutions of many of the most difficult problems, Taken from the Leading Authors on Arithmetic and Algebra, Many Problems and Solutions from Geometry, Trigonometry and Calculus, Many Problems and Solutions from the Leading Mathematical Journals of the United States, and Many Original Problems and Solutions.
    [Show full text]
  • Archimedean Spirals ∗
    Archimedean Spirals ∗ An Archimedean Spiral is a curve defined by a polar equation of the form r = θa, with special names being given for certain values of a. For example if a = 1, so r = θ, then it is called Archimedes’ Spiral. Archimede’s Spiral For a = −1, so r = 1/θ, we get the reciprocal (or hyperbolic) spiral. Reciprocal Spiral ∗This file is from the 3D-XploreMath project. You can find it on the web by searching the name. 1 √ The case a = 1/2, so r = θ, is called the Fermat (or hyperbolic) spiral. Fermat’s Spiral √ While a = −1/2, or r = 1/ θ, it is called the Lituus. Lituus In 3D-XplorMath, you can change the parameter a by going to the menu Settings → Set Parameters, and change the value of aa. You can see an animation of Archimedean spirals where the exponent a varies gradually, from the menu Animate → Morph. 2 The reason that the parabolic spiral and the hyperbolic spiral are so named is that their equations in polar coordinates, rθ = 1 and r2 = θ, respectively resembles the equations for a hyperbola (xy = 1) and parabola (x2 = y) in rectangular coordinates. The hyperbolic spiral is also called reciprocal spiral because it is the inverse curve of Archimedes’ spiral, with inversion center at the origin. The inversion curve of any Archimedean spirals with respect to a circle as center is another Archimedean spiral, scaled by the square of the radius of the circle. This is easily seen as follows. If a point P in the plane has polar coordinates (r, θ), then under inversion in the circle of radius b centered at the origin, it gets mapped to the point P 0 with polar coordinates (b2/r, θ), so that points having polar coordinates (ta, θ) are mapped to points having polar coordinates (b2t−a, θ).
    [Show full text]
  • Analysis of Spiral Curves in Traditional Cultures
    Forum _______________________________________________________________ Forma, 22, 133–139, 2007 Analysis of Spiral Curves in Traditional Cultures Ryuji TAKAKI1 and Nobutaka UEDA2 1Kobe Design University, Nishi-ku, Kobe, Hyogo 651-2196, Japan 2Hiroshima-Gakuin, Nishi-ku, Hiroshima, Hiroshima 733-0875, Japan *E-mail address: [email protected] *E-mail address: [email protected] (Received November 3, 2006; Accepted August 10, 2007) Keywords: Spiral, Curvature, Logarithmic Spiral, Archimedean Spiral, Vortex Abstract. A method is proposed to characterize and classify shapes of plane spirals, and it is applied to some spiral patterns from historical monuments and vortices observed in an experiment. The method is based on a relation between the length variable along a curve and the radius of its local curvature. Examples treated in this paper seem to be classified into four types, i.e. those of the Archimedean spiral, the logarithmic spiral, the elliptic vortex and the hyperbolic spiral. 1. Introduction Spiral patterns are seen in many cultures in the world from ancient ages. They give us a strong impression and remind us of energy of the nature. Human beings have been familiar to natural phenomena and natural objects with spiral motions or spiral shapes, such as swirling water flows, swirling winds, winding stems of vines and winding snakes. It is easy to imagine that powerfulness of these phenomena and objects gave people a motivation to design spiral shapes in monuments, patterns of cloths and crafts after spiral shapes observed in their daily lives. Therefore, it would be reasonable to expect that spiral patterns in different cultures have the same geometrical properties, or at least are classified into a small number of common types.
    [Show full text]
  • Superconics + Spirals 17 July 2017 1 Superconics + Spirals Cye H
    Superconics + Spirals 17 July 2017 Superconics + Spirals Cye H. Waldman Copyright 2017 Introduction Many spirals are based on the simple circle, although modulated by a variable radius. We have generalized the concept by allowing the circle to be replaced by any closed curve that is topologically equivalent to it. In this note we focus on the superconics for the reasons that they are at once abundant, analytical, and aesthetically pleasing. We also demonstrate how it can be applied to random closed forms. The spirals of interest are of the general form . A partial list of these spirals is given in the table below: Spiral Remarks Logarithmic b = flair coefficient m = 1, Archimedes Archimedean m = 2, Fermat (generalized) m = -1, Hyperbolic m = -2, Lituus Parabolic Cochleoid Poinsot Genesis of the superspiral (1) The idea began when someone on line was seeking to create a 3D spiral with a racetrack planiform. Our first thought was that the circle readily transforms to an ellipse, for example Not quite a racetrack, but on the right track. The rest cascades in a hurry, as This is subject to the provisions that the random form is closed and has no crossing lines. This also brought to mind Euler’s famous derivation, connecting the five most famous symbols in mathematics. 1 Superconics + Spirals 17 July 2017 In the present paper we’re concerned primarily with the superconics because the mapping is well known and analytic. More information on superconics can be found in Waldman (2016) and submitted for publication by Waldman, Chyau, & Gray (2017). Thus, we take where is a parametric variable (not to be confused with the polar or tangential angles).
    [Show full text]
  • Archimedean Spirals * an Archimedean Spiral Is a Curve
    Archimedean Spirals * An Archimedean Spiral is a curve defined by a polar equa- tion of the form r = θa. Special names are being given for certain values of a. For example if a = 1, so r = θ, then it is called Archimedes’ Spiral. Formulas in 3DXM: r(t) := taa, θ(t) := t, Default Morph: 1 aa 1.25. − ≤ ≤ For a = 1, so r = 1/θ, we get the− reciprocal (or Archimede’s Spiral hyperbolic) spiral: Reciprocal Spiral * This file is from the 3D-XplorMath project. Please see: http://3D-XplorMath.org/ 1 The case a = 1/2, so r = √θ, is called the Fermat (or hyperbolic) spiral. Fermat’s Spiral While a = 1/2, or r = 1/√θ, it is called the Lituus: − Lituus 2 In 3D-XplorMath, you can change the parameter a by go- ing to the menu Settings Set Parameters, and change the value of aa. You can see→an animation of Archimedean spirals where the exponent a = aa varies gradually, be- tween 1 and 1.25. See the Animate Menu, entry Morph. − The reason that the parabolic spiral and the hyperbolic spiral are so named is that their equations in polar coor- dinates, rθ = 1 and r2 = θ, respectively resembles the equations for a hyperbola (xy = 1) and parabola (x2 = y) in rectangular coordinates. The hyperbolic spiral is also called reciprocal spiral be- cause it is the inverse curve of Archimedes’ spiral, with inversion center at the origin. The inversion curve of any Archimedean spirals with re- spect to a circle as center is another Archimedean spiral, scaled by the square of the radius of the circle.
    [Show full text]
  • APS March Meeting 2012 Boston, Massachusetts
    APS March Meeting 2012 Boston, Massachusetts http://www.aps.org/meetings/march/index.cfm i Monday, February 27, 2012 8:00AM - 11:00AM — Session A51 DCMP DFD: Colloids I: Beyond Hard Spheres Boston Convention Center 154 8:00AM A51.00001 Photonic Droplets Containing Transparent Aqueous Colloidal Suspensions with Optimal Scattering Properties JIN-GYU PARK, SOFIA MAGKIRIADOU, Department of Physics, Harvard University, YOUNG- SEOK KIM, Korea Electronics Technology Institute, VINOTHAN MANOHARAN, Department of Physics, Harvard University, HARVARD UNIVERSITY TEAM, KOREA ELECTRONICS TECHNOLOGY INSTITUTE COLLABORATION — In recent years, there has been a growing interest in quasi-ordered structures that generate non-iridescent colors. Such structures have only short-range order and are isotropic, making colors invariant with viewing angle under natural lighting conditions. Our recent simulation suggests that colloidal particles with independently controlled diameter and scattering cross section can realize the structural colors with angular independence. In this presentation, we are exploiting depletion-induced assembly of colloidal particles to create isotropic structures in a milimeter-scale droplet. As a model colloidal particle, we have designed and synthesized core-shell particles with a large, low refractive index shell and a small, high refractive index core. The remarkable feature of these particles is that the total cross section for the entire core-shell particle is nearly the same as that of the core particle alone. By varying the characteristic length scales of the sub-units of such ‘photonic’ droplet we aim to tune wavelength selectivity and enhance color contrast and viewing angle. 8:12AM A51.00002 Curvature-Induced Capillary Interaction between Spherical Particles at a Liquid Interface1 , NESRIN SENBIL, CHUAN ZENG, BENNY DAVIDOVITCH, ANTHONY D.
    [Show full text]
  • Dynamics of Self-Organized and Self-Assembled Structures
    This page intentionally left blank DYNAMICS OF SELF-ORGANIZED AND SELF-ASSEMBLED STRUCTURES Physical and biological systems driven out of equilibrium may spontaneously evolve to form spatial structures. In some systems molecular constituents may self-assemble to produce complex ordered structures. This book describes how such pattern formation processes occur and how they can be modeled. Experimental observations are used to introduce the diverse systems and phenom- ena leading to pattern formation. The physical origins of various spatial structures are discussed, and models for their formation are constructed. In contrast to many treatments, pattern-forming processes in nonequilibrium systems are treated in a coherent fashion. The book shows how near-equilibrium and far-from-equilibrium modeling concepts are often combined to describe physical systems. This interdisciplinary book can form the basis of graduate courses in pattern forma- tion and self-assembly. It is a useful reference for graduate students and researchers in a number of disciplines, including condensed matter science, nonequilibrium sta- tistical mechanics, nonlinear dynamics, chemical biophysics, materials science, and engineering. Rashmi C. Desai is Professor Emeritus of Physics at the University of Toronto, Canada. Raymond Kapral is Professor of Chemistry at the University of Toronto, Canada. DYNAMICS OF SELF-ORGANIZED AND SELF-ASSEMBLED STRUCTURES RASHMI C. DESAI AND RAYMOND KAPRAL University of Toronto CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521883610 © R.
    [Show full text]
  • John Sharp Spirals and the Golden Section
    John Sharp Spirals and the Golden Section The author examines different types of spirals and their relationships to the Golden Section in order to provide the necessary background so that logic rather than intuition can be followed, correct value judgments be made, and new ideas can be developed. Introduction The Golden Section is a fascinating topic that continually generates new ideas. It also has a status that leads many people to assume its presence when it has no relation to a problem. It often forces a blindness to other alternatives when intuition is followed rather than logic. Mathematical inexperience may also be a cause of some of these problems. In the following, my aim is to fill in some gaps, so that correct value judgements may be made and to show how new ideas can be developed on the rich subject area of spirals and the Golden Section. Since this special issue of the NNJ is concerned with the Golden Section, I am not describing its properties unless appropriate. I shall use the symbol I to denote the Golden Section (I |1.61803 ). There are many aspects to Golden Section spirals, and much more could be written. The parts of this paper are meant to be read sequentially, and it is especially important to understand the different types of spirals in order that the following parts are seen in context. Part 1. Types of Spirals In order to understand different types of Golden Section spirals, it is necessary to be aware of the properties of different types of spirals. This section looks at spirals from that viewpoint.
    [Show full text]
  • Curves Defined Using Polar Coordinates
    Curves defined using polar coordinates Instead of using Cartesian (x; y) coordinates, we can describe points in the plane by specifying how far they are from some fixed reference point (the pole) and the angle the line from the point to the pole makes with some reference direction. The convention is to treat the origin (0; 0) as the pole, and the reference direction as the positive x-axis. In this way, we can convert back and forth between polar coordinates and cartesian. So a point in the plane may be specified by a pair (r; θ) like this: (r; θ) r θ Here are some points in both xy-coordinates and polar coordinates: Cartesian polar (1; 0) (p1; 0) (1; 1) ( 2; π p 4 (0; 1) (1; π2 (−1; 0) (p1; π) 5π (−1; −1 ( 2; 4 3π (0; −1) (1; 2 (3; 7) (7:6157:::; 1:1659:::) (0:5673:::; −1:9178) (2; 5) To convert back and forth, we can use these relationships: x = r cos θ; y = r sin θ and p y r = x 2 + y 2; θ = tan−1 x with the caveat that the theta value yielded might be negative. For example, (r; θ); (−r; θ + π); (−r; θ + 3π); (r; θ + 2π) all represent the same point. This makes thing interesting: simple polar equations can create complex curves. Which brings us the main oddity of polar coordinates: they are not unique. If we add 2π (or any multiple of 2 pi) to θ, we are specifying the same point. We can even use a negative r if we add an odd multiple π to θ.
    [Show full text]
  • Arm Spiral Antennas
    INVESTIGATION OF CYLINDRICALLY-CONFORMED FOUR- ARM SPIRAL ANTENNAS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering By DOUGLAS JEREMY GLASS B.S.E.P., Wright State University, 2003 2007 Wright State University WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES June 29, 2007 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Douglas Jeremy Glass ENTITLED Investigation of Cylindrically- Conformed Four-Arm Spiral Antennas BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Engineering. _________________________________ Ronald Riechers, Ph.D. Thesis Director _________________________________ Fred Garber, Ph.D. Department Chair Committee on Final Examination _________________________________ Ronald Riechers, Ph.D. _________________________________ Fred Garber, Ph.D. _________________________________ Marian Kazimierczuk, Ph.D. _________________________________ Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies ABSTRACT Glass, Douglas Jeremy, M.S. Egr., Department of Electrical Engineering, Wright State University, 2007. Investigation of Cylindrically-Conformed Four-Arm Spiral Antennas. A four-arm spiral antenna offers broadband frequency response, wide beamwidths, reduced size compared to other antenna designs, and the ability to determine the relative direction of an incident signal with appropriate mode-forming. The reduced overall area projection of the four-arm spiral antenna compared to other antenna designs
    [Show full text]
  • The Mathematics and Art of Spirals Workshop
    Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture The Mathematics and Art of Spirals Workshop Ann Hanson Science and Mathematics Department, Columbia College Chicago, 600 S. Michigan, Chicago, IL 606005 [email protected] Abstract In this workshop, the participants will learn several properties of spirals. Some of the properties are: that all spirals start from a fixed point and move out from that point in a regular manner. Other universal properties of spirals and their mathematical connections will be demonstrated by making an Archimedean spiral, a Golden spiral and a Baravelle spiral. The presenter will supply all equipment needed for the activities. A spiral is a curve that moves out from the center in a regular manner getting progressively farther away as it moves out. The spiral shape is so prevalent that it is easy not to notice them. They can be seen in natural objects, such as in the shells of mollusks, sunflower heads and in vortices in air and water. Spirals are also seen in the coil of watch balance springs, the grooves of a phonograph record and in the roll of paper towels. In addition, all spirals have some common characteristics. They all have a fixed starting point (center) and move out from the center in a regular manner. Spirals grow by self-accumulation and solve a problem of efficient growth in terms of energy, materials and expansion within space. The previously mentioned properties as well as other mathematical properties will be examined and demonstrated through hands-on activities. For example, the participants will make a one type of spiral called an Archimedean spiral using polar graph paper.
    [Show full text]