Path Generation for High Speed Machining Using Spiral Curves
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Ordered Distribution of Natural Numbers on the Square Root Spiral
The Ordered Distribution of Natural Numbers on the Square Root Spiral - Harry K. Hahn - Ludwig-Erhard-Str. 10 D-76275 Et Germanytlingen, Germany ------------------------------ mathematical analysis by - Kay Schoenberger - Humboldt-University Berlin ----------------------------- 20. June 2007 Abstract : Natural numbers divisible by the same prime factor lie on defined spiral graphs which are running through the “Square Root Spiral“ ( also named as “Spiral of Theodorus” or “Wurzel Spirale“ or “Einstein Spiral” ). Prime Numbers also clearly accumulate on such spiral graphs. And the square numbers 4, 9, 16, 25, 36 … form a highly three-symmetrical system of three spiral graphs, which divide the square-root-spiral into three equal areas. A mathematical analysis shows that these spiral graphs are defined by quadratic polynomials. The Square Root Spiral is a geometrical structure which is based on the three basic constants: 1, sqrt2 and π (pi) , and the continuous application of the Pythagorean Theorem of the right angled triangle. Fibonacci number sequences also play a part in the structure of the Square Root Spiral. Fibonacci Numbers divide the Square Root Spiral into areas and angle sectors with constant proportions. These proportions are linked to the “golden mean” ( golden section ), which behaves as a self-avoiding-walk- constant in the lattice-like structure of the square root spiral. Contents of the general section Page 1 Introduction to the Square Root Spiral 2 2 Mathematical description of the Square Root Spiral 4 3 The distribution -
Coverrailway Curves Book.Cdr
RAILWAY CURVES March 2010 (Corrected & Reprinted : November 2018) INDIAN RAILWAYS INSTITUTE OF CIVIL ENGINEERING PUNE - 411 001 i ii Foreword to the corrected and updated version The book on Railway Curves was originally published in March 2010 by Shri V B Sood, the then professor, IRICEN and reprinted in September 2013. The book has been again now corrected and updated as per latest correction slips on various provisions of IRPWM and IRTMM by Shri V B Sood, Chief General Manager (Civil) IRSDC, Delhi, Shri R K Bajpai, Sr Professor, Track-2, and Shri Anil Choudhary, Sr Professor, Track, IRICEN. I hope that the book will be found useful by the field engineers involved in laying and maintenance of curves. Pune Ajay Goyal November 2018 Director IRICEN, Pune iii PREFACE In an attempt to reach out to all the railway engineers including supervisors, IRICEN has been endeavouring to bring out technical books and monograms. This book “Railway Curves” is an attempt in that direction. The earlier two books on this subject, viz. “Speed on Curves” and “Improving Running on Curves” were very well received and several editions of the same have been published. The “Railway Curves” compiles updated material of the above two publications and additional new topics on Setting out of Curves, Computer Program for Realignment of Curves, Curves with Obligatory Points and Turnouts on Curves, with several solved examples to make the book much more useful to the field and design engineer. It is hoped that all the P.way men will find this book a useful source of design, laying out, maintenance, upgradation of the railway curves and tackling various problems of general and specific nature. -
Some Curves and the Lengths of Their Arcs Amelia Carolina Sparavigna
Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna To cite this version: Amelia Carolina Sparavigna. Some Curves and the Lengths of their Arcs. 2021. hal-03236909 HAL Id: hal-03236909 https://hal.archives-ouvertes.fr/hal-03236909 Preprint submitted on 26 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna Department of Applied Science and Technology Politecnico di Torino Here we consider some problems from the Finkel's solution book, concerning the length of curves. The curves are Cissoid of Diocles, Conchoid of Nicomedes, Lemniscate of Bernoulli, Versiera of Agnesi, Limaçon, Quadratrix, Spiral of Archimedes, Reciprocal or Hyperbolic spiral, the Lituus, Logarithmic spiral, Curve of Pursuit, a curve on the cone and the Loxodrome. The Versiera will be discussed in detail and the link of its name to the Versine function. Torino, 2 May 2021, DOI: 10.5281/zenodo.4732881 Here we consider some of the problems propose in the Finkel's solution book, having the full title: A mathematical solution book containing systematic solutions of many of the most difficult problems, Taken from the Leading Authors on Arithmetic and Algebra, Many Problems and Solutions from Geometry, Trigonometry and Calculus, Many Problems and Solutions from the Leading Mathematical Journals of the United States, and Many Original Problems and Solutions. -
Archimedean Spirals ∗
Archimedean Spirals ∗ An Archimedean Spiral is a curve defined by a polar equation of the form r = θa, with special names being given for certain values of a. For example if a = 1, so r = θ, then it is called Archimedes’ Spiral. Archimede’s Spiral For a = −1, so r = 1/θ, we get the reciprocal (or hyperbolic) spiral. Reciprocal Spiral ∗This file is from the 3D-XploreMath project. You can find it on the web by searching the name. 1 √ The case a = 1/2, so r = θ, is called the Fermat (or hyperbolic) spiral. Fermat’s Spiral √ While a = −1/2, or r = 1/ θ, it is called the Lituus. Lituus In 3D-XplorMath, you can change the parameter a by going to the menu Settings → Set Parameters, and change the value of aa. You can see an animation of Archimedean spirals where the exponent a varies gradually, from the menu Animate → Morph. 2 The reason that the parabolic spiral and the hyperbolic spiral are so named is that their equations in polar coordinates, rθ = 1 and r2 = θ, respectively resembles the equations for a hyperbola (xy = 1) and parabola (x2 = y) in rectangular coordinates. The hyperbolic spiral is also called reciprocal spiral because it is the inverse curve of Archimedes’ spiral, with inversion center at the origin. The inversion curve of any Archimedean spirals with respect to a circle as center is another Archimedean spiral, scaled by the square of the radius of the circle. This is easily seen as follows. If a point P in the plane has polar coordinates (r, θ), then under inversion in the circle of radius b centered at the origin, it gets mapped to the point P 0 with polar coordinates (b2/r, θ), so that points having polar coordinates (ta, θ) are mapped to points having polar coordinates (b2t−a, θ). -
Analysis of Spiral Curves in Traditional Cultures
Forum _______________________________________________________________ Forma, 22, 133–139, 2007 Analysis of Spiral Curves in Traditional Cultures Ryuji TAKAKI1 and Nobutaka UEDA2 1Kobe Design University, Nishi-ku, Kobe, Hyogo 651-2196, Japan 2Hiroshima-Gakuin, Nishi-ku, Hiroshima, Hiroshima 733-0875, Japan *E-mail address: [email protected] *E-mail address: [email protected] (Received November 3, 2006; Accepted August 10, 2007) Keywords: Spiral, Curvature, Logarithmic Spiral, Archimedean Spiral, Vortex Abstract. A method is proposed to characterize and classify shapes of plane spirals, and it is applied to some spiral patterns from historical monuments and vortices observed in an experiment. The method is based on a relation between the length variable along a curve and the radius of its local curvature. Examples treated in this paper seem to be classified into four types, i.e. those of the Archimedean spiral, the logarithmic spiral, the elliptic vortex and the hyperbolic spiral. 1. Introduction Spiral patterns are seen in many cultures in the world from ancient ages. They give us a strong impression and remind us of energy of the nature. Human beings have been familiar to natural phenomena and natural objects with spiral motions or spiral shapes, such as swirling water flows, swirling winds, winding stems of vines and winding snakes. It is easy to imagine that powerfulness of these phenomena and objects gave people a motivation to design spiral shapes in monuments, patterns of cloths and crafts after spiral shapes observed in their daily lives. Therefore, it would be reasonable to expect that spiral patterns in different cultures have the same geometrical properties, or at least are classified into a small number of common types. -
Superconics + Spirals 17 July 2017 1 Superconics + Spirals Cye H
Superconics + Spirals 17 July 2017 Superconics + Spirals Cye H. Waldman Copyright 2017 Introduction Many spirals are based on the simple circle, although modulated by a variable radius. We have generalized the concept by allowing the circle to be replaced by any closed curve that is topologically equivalent to it. In this note we focus on the superconics for the reasons that they are at once abundant, analytical, and aesthetically pleasing. We also demonstrate how it can be applied to random closed forms. The spirals of interest are of the general form . A partial list of these spirals is given in the table below: Spiral Remarks Logarithmic b = flair coefficient m = 1, Archimedes Archimedean m = 2, Fermat (generalized) m = -1, Hyperbolic m = -2, Lituus Parabolic Cochleoid Poinsot Genesis of the superspiral (1) The idea began when someone on line was seeking to create a 3D spiral with a racetrack planiform. Our first thought was that the circle readily transforms to an ellipse, for example Not quite a racetrack, but on the right track. The rest cascades in a hurry, as This is subject to the provisions that the random form is closed and has no crossing lines. This also brought to mind Euler’s famous derivation, connecting the five most famous symbols in mathematics. 1 Superconics + Spirals 17 July 2017 In the present paper we’re concerned primarily with the superconics because the mapping is well known and analytic. More information on superconics can be found in Waldman (2016) and submitted for publication by Waldman, Chyau, & Gray (2017). Thus, we take where is a parametric variable (not to be confused with the polar or tangential angles). -
ALL ABOUT SPIRALS a Spiral Can Be Described As Any 2D Continuous Curve Where the Radial Distance R from the Origin Equals a Specified Function of the Angle Θ
, ALL ABOUT SPIRALS A spiral can be described as any 2D continuous curve where the radial distance r from the origin equals a specified function of the angle θ. Mathematically it has the unique derivative given by- dr=(df/dθ)dθ with r=0 at θ=0 On integrating one finds- () ∫ 푑푡 r= This solution yields two simple forms. The first occurs when df/dt=α. We get- r=α(θ) This simplest of continuous spiral figures is just the Archimedes Spiral discovered by him over two thousand years ago. Setting the constant to α=3/π , we have the plot- Note that the distance between turns of the spiral remain the same. A second simple spiral is found when df/dθ=βf, where f=exp(훽휃). If we take r=1 at θ=0, it produces- r=exp(βθ) or the equivalent ln(r)=βθ It is known as the Logarithmic Spiral or Bernoulli’s Spiral. Here is its graph when β=1/10- A property of the Bernouli Spiral is that the angle between any radial line and the tangent to the spiral remains a constant. J. Bernoulli was so intrigued by this spiral that he had a copy placed on his tombstone in Basel Switzerland. Here I am pointing to it back in 2000 - One can construct numerous other spirals by simply changing the form of df(θ)/dθ and picking a starting point r(θ0)=r0. So if df/dθ=α/[2sqrt(θ)] and r=0 when θ=0, we get the spiral– r=αsqrt(θ) It looks as follows- This figure is known as the Fermat Spiral. -
Archimedean Spirals * an Archimedean Spiral Is a Curve
Archimedean Spirals * An Archimedean Spiral is a curve defined by a polar equa- tion of the form r = θa. Special names are being given for certain values of a. For example if a = 1, so r = θ, then it is called Archimedes’ Spiral. Formulas in 3DXM: r(t) := taa, θ(t) := t, Default Morph: 1 aa 1.25. − ≤ ≤ For a = 1, so r = 1/θ, we get the− reciprocal (or Archimede’s Spiral hyperbolic) spiral: Reciprocal Spiral * This file is from the 3D-XplorMath project. Please see: http://3D-XplorMath.org/ 1 The case a = 1/2, so r = √θ, is called the Fermat (or hyperbolic) spiral. Fermat’s Spiral While a = 1/2, or r = 1/√θ, it is called the Lituus: − Lituus 2 In 3D-XplorMath, you can change the parameter a by go- ing to the menu Settings Set Parameters, and change the value of aa. You can see→an animation of Archimedean spirals where the exponent a = aa varies gradually, be- tween 1 and 1.25. See the Animate Menu, entry Morph. − The reason that the parabolic spiral and the hyperbolic spiral are so named is that their equations in polar coor- dinates, rθ = 1 and r2 = θ, respectively resembles the equations for a hyperbola (xy = 1) and parabola (x2 = y) in rectangular coordinates. The hyperbolic spiral is also called reciprocal spiral be- cause it is the inverse curve of Archimedes’ spiral, with inversion center at the origin. The inversion curve of any Archimedean spirals with re- spect to a circle as center is another Archimedean spiral, scaled by the square of the radius of the circle. -
APS March Meeting 2012 Boston, Massachusetts
APS March Meeting 2012 Boston, Massachusetts http://www.aps.org/meetings/march/index.cfm i Monday, February 27, 2012 8:00AM - 11:00AM — Session A51 DCMP DFD: Colloids I: Beyond Hard Spheres Boston Convention Center 154 8:00AM A51.00001 Photonic Droplets Containing Transparent Aqueous Colloidal Suspensions with Optimal Scattering Properties JIN-GYU PARK, SOFIA MAGKIRIADOU, Department of Physics, Harvard University, YOUNG- SEOK KIM, Korea Electronics Technology Institute, VINOTHAN MANOHARAN, Department of Physics, Harvard University, HARVARD UNIVERSITY TEAM, KOREA ELECTRONICS TECHNOLOGY INSTITUTE COLLABORATION — In recent years, there has been a growing interest in quasi-ordered structures that generate non-iridescent colors. Such structures have only short-range order and are isotropic, making colors invariant with viewing angle under natural lighting conditions. Our recent simulation suggests that colloidal particles with independently controlled diameter and scattering cross section can realize the structural colors with angular independence. In this presentation, we are exploiting depletion-induced assembly of colloidal particles to create isotropic structures in a milimeter-scale droplet. As a model colloidal particle, we have designed and synthesized core-shell particles with a large, low refractive index shell and a small, high refractive index core. The remarkable feature of these particles is that the total cross section for the entire core-shell particle is nearly the same as that of the core particle alone. By varying the characteristic length scales of the sub-units of such ‘photonic’ droplet we aim to tune wavelength selectivity and enhance color contrast and viewing angle. 8:12AM A51.00002 Curvature-Induced Capillary Interaction between Spherical Particles at a Liquid Interface1 , NESRIN SENBIL, CHUAN ZENG, BENNY DAVIDOVITCH, ANTHONY D. -
From Spiral to Spline: Optimal Techniques in Interactive Curve Design
From Spiral to Spline: Optimal Techniques in Interactive Curve Design Raphael Linus Levien Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2009-162 http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-162.html December 3, 2009 Copyright © 2009, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. From Spiral to Spline: Optimal Techniques in Interactive Curve Design by Raphael Linus Levien A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering–Electrical Engineering and Computer Sciences in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY Committee in charge: Professor Carlo S´equin, Chair Professor Jonathan Shewchuk Professor Jasper Rine Fall 2009 From Spiral to Spline: Optimal Techniques in Interactive Curve Design Copyright © 2009 by Raphael Linus Levien Abstract From Spiral to Spline: Optimal Techniques in Interactive Curve Design by Raphael Linus Levien Doctor of Philosophy in Engineering–Electrical Engineering and Computer Sciences University of California, Berkeley Professor Carlo S´equin, Chair A basic technique for designing curved shapes in the plane is interpolating splines. The designer inputs a sequence of control points, and the computer fits a smooth curve that goes through these points. -
Racing Line Optimization
Racing Line Optimization by Ying Xiong B.E., Computer Science Shanghai Jiao Tong University (2009) Submitted to the School of Engineering in partial fulfillment of the requirements for the degree of Master of Science in Computation for Design and Optimization at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2010 © Massachusetts Institute of Technology 2010. All rights reserved. Signature of Author . Computation for Design and Optimization, School of Engineering July 30, 2010 Certified by . Gilbert Strang Professor of Mathematics Thesis Advisor Accepted by . Karen Willcox Associate Professor of Aeronautics and Astronautics Co-Director, Computation for Design and Optimization Program 1 Contents Abstract ........................................................................................................................................... 4 1. Introduction ............................................................................................................................. 5 2. Problem formulation ................................................................................................................ 9 2.1 Problem formulation for two-dimensional racing tracks ................................................. 10 2.2 Problem formulation for three-dimensional tracks .......................................................... 12 2.2.1 Force analysis ........................................................................................................ 13 2.2.2 Three-dimensional constraints ............................................................................. -
Dynamics of Self-Organized and Self-Assembled Structures
This page intentionally left blank DYNAMICS OF SELF-ORGANIZED AND SELF-ASSEMBLED STRUCTURES Physical and biological systems driven out of equilibrium may spontaneously evolve to form spatial structures. In some systems molecular constituents may self-assemble to produce complex ordered structures. This book describes how such pattern formation processes occur and how they can be modeled. Experimental observations are used to introduce the diverse systems and phenom- ena leading to pattern formation. The physical origins of various spatial structures are discussed, and models for their formation are constructed. In contrast to many treatments, pattern-forming processes in nonequilibrium systems are treated in a coherent fashion. The book shows how near-equilibrium and far-from-equilibrium modeling concepts are often combined to describe physical systems. This interdisciplinary book can form the basis of graduate courses in pattern forma- tion and self-assembly. It is a useful reference for graduate students and researchers in a number of disciplines, including condensed matter science, nonequilibrium sta- tistical mechanics, nonlinear dynamics, chemical biophysics, materials science, and engineering. Rashmi C. Desai is Professor Emeritus of Physics at the University of Toronto, Canada. Raymond Kapral is Professor of Chemistry at the University of Toronto, Canada. DYNAMICS OF SELF-ORGANIZED AND SELF-ASSEMBLED STRUCTURES RASHMI C. DESAI AND RAYMOND KAPRAL University of Toronto CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521883610 © R.