Geometric Structures and Special Spinor Fields

Total Page:16

File Type:pdf, Size:1020Kb

Geometric Structures and Special Spinor Fields Geometric structures and special spinor fields Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) am Fachbereich der Mathematik und Informatik Philipps-Universit¨atMarburg (Hochschulkennziffer 1180) von Dipl. Math. Jos H¨oll geboren am 13.05.1984 in Herrenberg Erstgutachter: Prof. Dr. habil Ilka Agricola (Universit¨atMarburg) Zweitgutachter: Prof. Dr. Stefan Ivanov (University of Sofia) Eingereicht am 31.07.2014 M¨undliche Pr¨ufungam 17.10.2014 Marburg, 2014 Geometric structures and special spinor fields Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) am Fachbereich der Mathematik und Informatik Philipps-Universit¨atMarburg (Hochschulkennziffer 1180) von Dipl. Math. Jos H¨oll geboren am 13.05.1984 in Herrenberg Erstgutachter: Prof. Dr. habil Ilka Agricola (Universit¨atMarburg) Zweitgutachter: Prof. Dr. Stefan Ivanov (University of Sofia) Eingereicht am 31.07.2014 M¨undliche Pr¨ufungam 17.10.2014 Marburg, 2014 iii Deutsche Zusammenfassung Gegen Ende der 1920er Jahre legte Paul Dirac den Grundstein f¨urdie Entwicklung von Spinoren und dem nat¨urlicher Weise auf ihnen operierenden Differentialoperator, dem Dirac-Operator ([Di28a, Di28b]). Seit diesem Zeitpunkt spielen Spinoren, die spezielle Differentialgleichungen erf¨ulleneine große Rolle in Physik und Mathematik. Es stellte sich heraus, dass spezielle Spinoren nur auf bestimmten Typen von Mannigfaltigkeiten existieren k¨onnen.Es wurden Korresponden- zen zwischen Differenzialgleichungen f¨urSpinoren und Typen von Mannigfaltigkeiten entdeckt. Einige wichtige Zusammenh¨angesind in der folgenden Liste aufgef¨uhrt. • Parallele Spinoren existieren nur auf Ricci-flachen R¨aumen. • Der Index des Dirac-Operators ist gleich dem (rein topologischen) A^ Geschlecht [AS62]. • Parallele Spinoren erfordern Holonomie Sp(n), SU(n), G2 und Spin(7) [Wa89]. • Korrespondenzen zwischen Killing-Spinoren und geometrischen Strukturen [FK89, FK90, Gr90]. Wir werden die im letzten Punkt genannten Killing-Spinoren verallgemeinern, wie es beispiels- weise schon in [FK01, BGM05] getan wurde, um damit neue Zusammenh¨angemit geometrischen Strukturen herzustellen. So korrespondieren zum Beispiel in Dimension 6 die generalisierten Killing-Spinoren, die f¨urden Levi-Civita Zusammenhang r mit einem symmetrischen Endomor- phismus S durch die Gleichung rX ϕ = S(X) · ϕ beschrieben werden, zu halb-flachen SU(3)-Strukturen. Ebenso ergeben sich Korrespondenzen zum Kern des Dirac-Operators, wie sie in der Physik von großem Interesse sind; in [CCD03] wurden beispielsweise die Restriktionen f¨ureben diese Korrespondenz bereits betrachtet. Im ersten Kapitel werden die geometrischen Strukturen eingef¨uhrt,die in dieser Arbeit behandelt werden und die oben genannten Korrespondenzen zu Spinoren untersucht. Im zweiten Kapitel wenden wir uns der Hyperfl¨achentheorie zu. Ein Spinor ϕ auf einer Mannigfaltigkeit M¯ mit Hyperfl¨ache M ⊂ M¯ erf¨ulltf¨urdie zugeh¨origenLevi-Civita Zusammenh¨ange r und r¯ die Gleichung 1 r¯ ϕ = r ϕ − W (X) · ϕ, (1) X X 2 wobei W die Weingarten-Abbildung ist (z.B. [BGM05]). Dies gibt uns die M¨oglichkeit, Zusam- menh¨angevon Spinoren und durch den ersten Teil der Arbeit damit eben auch zwischen geo- metrischen Strukturen auf M und M¯ herzustellen. Die meisten geometrischen Strukturen tragen einen charakteristischen Zusammenhang rc mit Torsion T , der metrisch ist, die Struktur erh¨altund außerdem die gleichen Geod¨atenwie der Levi-Civita Zusammenhang r besitzt. Wir werden diese Zusammnh¨angenutzen, um Korrespon- denzen von geometrischen Strukturen auf Untermannigfaltigkeiten zu schaffen, die nicht durch Spinoren gegeben sind. Generalisierte Killing-Spinoren, wie sie oben beschrieben wurden, und Killing-Spinoren mit Tor- sion, definiert durch die Gleichung rs · X ϕ = αX ϕ (2) f¨urden Zusammenhang rs = r + 2sT , wobei r der Levi-Civita Zusammenhang und T die charakteristische Torsion ist, sind von immer gr¨oßererBedeutung (siehe z.B. [ABBK13, FK01, BGM05]). Wir werden charakteristische Zusammenh¨angenutzen, um solche Spinoren auf M und M¯ zu untersuchen. In Abschnitt 1 des ersten Kapitels werden metrische fast-Kontakt-Strukturen eingef¨uhrt. Hier wird an die Klassifikation solcher Strukturen erinnert und außerdem ein n¨utzliches Kriterium iv f¨urdie Existenz eines charakteristischen Zusammenhangs gegeben. Wir nutzen dieses Kri- terium, um zu zeigen, dass in der Klasse C13467 der Klassifikation von Chinea und Gonzalez ([CG90]) ein charakteristischer Zusammenhang existiert, nicht aber in C2, C5, C9, C10, C11 oder C12 (Theorem 1.3). Als n¨achstes werden in Abschnitt 2 fast-hermitsche Strukturen definiert und ebenfalls deren Klas- sifikation sowie das bekannte Kriterium ([FI02]) zur Existenz charakteristischer Zusammenh¨ange wiederholt. Im speziellen Fall der Dimension 6 werden in Abschnitt 3 SU(3)-Strukturen eingef¨uhrt.Da die Gruppe SU(3) ⊂ Spin(6) der Stabilisator eines Spinors ist, k¨onnenhier Korrespondenzen zwis- chen dem definierenden Spinor und der resultierenden Struktur geschaffen werden. So wird hier die Klassifikation der SU(3)-Strukturen in spinorielle Gleichungen ¨ubersetzt. Es werden Gr¨oßen wie der Nijenhuis-Tensor und der Dirac-Operator betrachtet. So ist beispielsweise das Kodif- ferential der K¨ahlerformdurch den Dirac-Operator D und die klassifizierende 1-Form η gegeben mittels δ!(X) = 2[(Dϕ, X · j · ϕ) − η(X)]: Zudem wird eine sehr interessante Klasse von SU(3)-Zusammenh¨angenbetrachtet sowie eine spinorielle Bedingung f¨urdie Existenz eines charakteristischen Zusammenhangs entwickelt. Ahnlich¨ wie im vorherigen Abschnitt wird in Abschnitt 4 eine Korrespondenz zwischen Spinoren und G2-Strukturen in Dimension 7 geschaffen. Beispielsweise ist ein Spinor der L¨ange1 genau dann im Kern des Dirac-Operators, wenn die zugeh¨orige G2-Struktur aus der Klasse W23 ist. Wie im vorherigen Abschnitt in Dimension 6, werden auch hier an die G2-Geometrie angepasste Zusammenh¨angen¨ahererl¨autert. In Abschnitt 5 werden kurz Spin(7)-Strukturen in Dimension 8 eingef¨uhrt. Da ein Spinor in dieser Dimension jedoch nicht immer die Gruppe Spin(7) als Stabilisator besitzt, kann hier keine Korrespondenz wie in den obigen F¨allengegeben werden. Im zweiten Kapitel liegt der Fokus auf der Hyperfl¨achentheorie. Tr¨agteine Mannigfaltigkeit M¯ mit Hyperfl¨ache M eine bestimmte G-Struktur so l¨asstsich diese in eine andere geometrische Struktur auf M ¨uberf¨uhren.Mittels der Beziehung aus Gleichung (1) und der jeweilig definieren- den Spinoren wird im Fall dim M = 6 und dim M¯ = 7 in Abschnitt 1 eine Korrespondenz zwischen G2-Strukturen und deren SU(3)-Hyperfl¨achen ausgearbeitet. Es werden außerdem verallgemein- erte Killing-Spinoren mit Torsion (eine Verallgemeinerung der Gleichung (2)) eingef¨uhrtund deren Korrespondenzen auf M und M¯ bestimmt. Wir nutzen die Kegelkonstruktion, um aus einer SU(3)-Mannigfaltigkeit eine G2-Mannigfaltigkeit eines bestimmten Typs zu konstruieren. Außerdem werden Beziehungen zwischen generalisierten Killing-Spinoren mit Torsion auf M und M¯ geschaffen. Aus dem oben im Fall der Spin(7)-Struktur erw¨ahnten Grund lassen sich in anderen Dimen- sionen als dim M = 6 und dim M¯ = 7 mittels Spinoren keine Beziehungen f¨urdie von uns betrachteten geometrischen Strukturen auf Hperfl¨achen herstellen. Daher werden in Abschnitt 2 Zusammenh¨angemit Torsion betrachtet. Diese sind im Folgenden ein wichtiges Werkzeug f¨urdie Untersuchung von Korrespondenzen zwischen geometrischen Strukturen auf M und dem Kegel M¯ , selbst wenn diese Strukturen nicht durch Spinoren gegeben sind. In [B¨a93]wird diese Konstruktion benutzt, um eine Beziehung zwischen Riemannschen Killing-Spinoren und der geometrischen Struktur zu schaffen. Wir benutzen diese Zusammenh¨angeaußerdem, um Killing-Spinoren mit Torsion auf Hyperfl¨achen zu betrachten. So wird in Abschnitt 3 auf dem Kegel einer fast-Kontakt-Struktur eine fast-hermitsche Struktur konstruiert und die jeweiligen Klassifikationen mit einander in Beziehung gesetzt. Wir zeigen beispielsweise, dass eine α-Sasaki Struktur zu einer lokal-konform-K¨ahlerStruktur in Beziehung steht oder dass die beiden Nijenhuis-Tensoren die Gleichen sind. Wir benutzen die in Abschnitt 2 geschaffenen Korrespondenzen zwischen Spinoren, um zu zeigen, dass ein Killing-Spinor mit Torsion auf (M; g) einem Spinor ϕ auf dem Kegel (M;¯ g¯) = (M × R; a2r2g + dr2), der die Bedin- v gung 1 r¯ c ϕ + (Xy(@ y!) ^ !)ϕ = 0 X 2r r erf¨ullt,entspricht. Hier ist ! die K¨ahler-Form und r¯ c der charakteristische Zusammenhang auf M¯ . In Abschnitt 3.4 l¨asstsich anhand der Tatsache, dass die aus den 3 fast-Kontakt-Strukturen kon- struierten Zusammenh¨angenicht die selben sind, nicht wie in den ¨ubrigenAbschnitten verfahren und wir belassen es bei einer kurzen Betrachtung der Situation. Im Falle einer G2-Struktur auf einer 7 dimensionalen Mannigfaltigkeit M tr¨agtder Kegel eine Spin(7)-Struktur. Dieser Fall sowie die Korrespondenz der Klassifikationen und der generali- sierten Killing-Spinoren mit Torsion ist in Abschnitt 4 ausgearbeitet. Hier wird beispielsweise bewiesen, dass eine Spin(7)-Struktur der Klasse U1 (bzw. U2) auf dem Kegel eine G2 Struktur auf M induziert, die niemals aus der Klasse W34 (bzw. W13) sein kann. Einen Teil dieser Ergebnisse (im Wesentlichen sind dies die Ergebnisse des Abschnittes 1 aus Kapitel I sowie die Abschnitte 2, 3 und 4 aus Kapitel II) haben wir bereits in [AH13] publiziert. vii Danksagung Zu aller erst gilt mein Dank meiner Betreuerin Ilka Agricola. Sie zeigte mir den Weg zu einer erfolgreichen Promotion und unterst¨utztemich umfassend
Recommended publications
  • Kähler Manifolds and Holonomy
    K¨ahlermanifolds, lecture 3 M. Verbitsky K¨ahler manifolds and holonomy lecture 3 Misha Verbitsky Tel-Aviv University December 21, 2010, 1 K¨ahlermanifolds, lecture 3 M. Verbitsky K¨ahler manifolds DEFINITION: An Riemannian metric g on an almost complex manifiold M is called Hermitian if g(Ix; Iy) = g(x; y). In this case, g(x; Iy) = g(Ix; I2y) = −g(y; Ix), hence !(x; y) := g(x; Iy) is skew-symmetric. DEFINITION: The differential form ! 2 Λ1;1(M) is called the Hermitian form of (M; I; g). REMARK: It is U(1)-invariant, hence of Hodge type (1,1). DEFINITION: A complex Hermitian manifold (M; I; !) is called K¨ahler if d! = 0. The cohomology class [!] 2 H2(M) of a form ! is called the K¨ahler class of M, and ! the K¨ahlerform. 2 K¨ahlermanifolds, lecture 3 M. Verbitsky Levi-Civita connection and K¨ahlergeometry DEFINITION: Let (M; g) be a Riemannian manifold. A connection r is called orthogonal if r(g) = 0. It is called Levi-Civita if it is torsion-free. THEOREM: (\the main theorem of differential geometry") For any Riemannian manifold, the Levi-Civita connection exists, and it is unique. THEOREM: Let (M; I; g) be an almost complex Hermitian manifold. Then the following conditions are equivalent. (i)( M; I; g) is K¨ahler (ii) One has r(I) = 0, where r is the Levi-Civita connection. 3 K¨ahlermanifolds, lecture 3 M. Verbitsky Holonomy group DEFINITION: (Cartan, 1923) Let (B; r) be a vector bundle with connec- tion over M. For each loop γ based in x 2 M, let Vγ;r : Bjx −! Bjx be the corresponding parallel transport along the connection.
    [Show full text]
  • Hermitian Geometry
    1 Hermitian Geometry Simon M. Salamon Introduction These notes are based on graduate courses given by the author in 1998 and 1999. The main idea was to introduce a number of aspects of the theory of complex and symplectic structures that depend on the existence of a compatible Riemannian metric. The present notes deal mostly with the complex case, and are designed to introduce a selection of topics and examples in differential geometry, accessible to anyone with an acquaintance of the definitions of smooth manifolds and vector bundles. One basic problem is, given a Riemannian manifold (M; g), to determine whether there exists an orthogonal complex structure J on M , and to classify all such J . A second problem is, given (M; g), to determine whether there exists an orthogonal almost-complex structure for which the corresponding 2-form ! is closed. The first problem is more tractible in the sense that there is an easily identifiable curvature obstruction to the existence of J , and this obstruction can be interpreted in terms of an auxiliary almost-complex structure on the twistor space of M . This leads to a reasonably complete resolution of the problem in the first non-trivial case, that of four real dimensions. The theory has both local and global aspects that are illustrated in Pontecorvo's classification [89] of bihermitian anti-self-dual 4-manifolds. Much less in known in higher dimensions, and some of the basic classification questions concerning orthogonal complex structures on Riemannian 6-manifolds remain unanswered. The second problem encompasses the so-called Goldberg conjecture.
    [Show full text]
  • Arxiv:1208.0648V1 [Math.DG] 3 Aug 2012 4.6
    CALCULUS AND INVARIANTS ON ALMOST COMPLEX MANIFOLDS, INCLUDING PROJECTIVE AND CONFORMAL GEOMETRY A. ROD GOVER AND PAWEŁ NUROWSKI Abstract. We construct a family of canonical connections and surrounding basic theory for almost complex manifolds that are equipped with an affine connection. This framework provides a uniform approach to treating a range of geometries. In particular we are able to construct an invariant and effi- cient calculus for conformal almost Hermitian geometries, and also for almost complex structures that are equipped with a projective structure. In the latter case we find a projectively invariant tensor the vanishing of which is necessary and sufficient for the existence of an almost complex connection compatible with the path structure. In both the conformal and projective setting we give torsion characterisations of the canonical connections and introduce certain interesting higher order invariants. Contents 1. Introduction 2 1.1. Conventions 4 2. Calculus on an almost complex affine manifold 5 2.1. Almost complex affine connections 5 2.2. Torsion and Integrability 6 2.3. Compatible affine connections 7 3. Almost Hermitian geometry 8 4. Conformal almost Hermitian manifolds 12 4.1. A canonical torsion free connection 12 4.2. Canonical conformal almost complex connections 14 4.3. Compatibility in the conformal setting 15 4.4. Characterising the distinguished connection 16 4.5. The Nearly Kähler Weyl condition 18 arXiv:1208.0648v1 [math.DG] 3 Aug 2012 4.6. The locally conformally almost Kähler condition 18 4.7. The Gray-Hervella types 20 4.8. Higher conformal invariants 20 4.9. Summary 25 5. Projective Geometry 25 5.1.
    [Show full text]
  • RICCI CURVATURES on HERMITIAN MANIFOLDS Contents 1. Introduction 1 2. Background Materials 9 3. Geometry of the Levi-Civita Ricc
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000–000 S 0002-9947(XX)0000-0 RICCI CURVATURES ON HERMITIAN MANIFOLDS KEFENG LIU AND XIAOKUI YANG Abstract. In this paper, we introduce the first Aeppli-Chern class for com- plex manifolds and show that the (1, 1)- component of the curvature 2-form of the Levi-Civita connection on the anti-canonical line bundle represents this class. We systematically investigate the relationship between a variety of Ricci curvatures on Hermitian manifolds and the background Riemannian manifolds. Moreover, we study non-K¨ahler Calabi-Yau manifolds by using the first Aeppli- Chern class and the Levi-Civita Ricci-flat metrics. In particular, we construct 2n−1 1 explicit Levi-Civita Ricci-flat metrics on Hopf manifolds S × S . We also construct a smooth family of Gauduchon metrics on a compact Hermitian manifold such that the metrics are in the same first Aeppli-Chern class, and their first Chern-Ricci curvatures are the same and nonnegative, but their Rie- mannian scalar curvatures are constant and vary smoothly between negative infinity and a positive number. In particular, it shows that Hermitian man- ifolds with nonnegative first Chern class can admit Hermitian metrics with strictly negative Riemannian scalar curvature. Contents 1. Introduction 1 2. Background materials 9 3. Geometry of the Levi-Civita Ricci curvature 12 4. Curvature relations on Hermitian manifolds 22 5. Special metrics on Hermitian manifolds 26 6. Levi-Civita Ricci-flat and constant negative scalar curvature metrics on Hopf manifolds 29 7. Appendix: the Riemannian Ricci curvature and ∗-Ricci curvature 35 References 37 1.
    [Show full text]
  • Complex Geometry
    Complex Geometry Weiyi Zhang Mathematics Institute, University of Warwick March 13, 2020 2 Contents 1 Course Description 5 2 Structures 7 2.1 Complex manifolds . .7 2.1.1 Examples of Complex manifolds . .8 2.2 Vector bundles and the tangent bundle . 10 2.2.1 Holomorphic vector bundles . 15 2.3 Almost complex structure and integrability . 17 2.4 K¨ahlermanifolds . 23 2.4.1 Examples. 24 2.4.2 Blowups . 25 3 Geometry 27 3.1 Hermitian Vector Bundles . 27 3.2 (Almost) K¨ahleridentities . 31 3.3 Hodge theorem . 37 3.3.1 @@¯-Lemma . 42 3.3.2 Proof of Hodge theorem . 44 3.4 Divisors and line bundles . 48 3.5 Lefschetz hyperplane theorem . 52 3.6 Kodaira embedding theorem . 55 3.6.1 Proof of Newlander-Nirenberg theorem . 61 3.7 Kodaira dimension and classification . 62 3.7.1 Complex dimension one . 63 3.7.2 Complex Surfaces . 64 3.7.3 BMY line . 66 3.8 Hirzebruch-Riemann-Roch Theorem . 66 3.9 K¨ahler-Einsteinmetrics . 68 3 4 CONTENTS Chapter 1 Course Description Instructor: Weiyi Zhang Email: [email protected] Webpage: http://homepages.warwick.ac.uk/staff/Weiyi.Zhang/ Lecture time/room: Wednesday 9am - 10am MS.B3.03 Friday 9am - 11am MA B3.01 Reference books: • P. Griffiths, J. Harris: Principles of Algebraic Geometry, Wiley, 1978. • D. Huybrechts: Complex geometry: An Introduction, Universitext, Springer, 2005. • K. Kodaira: Complex manifolds and deformation of complex struc- tures, Springer, 1986. • R.O. Wells: Differential Analysis on Complex Manifolds, Springer- Verlag, 1980. • C. Voisin: Hodge Theory and Complex Algebraic Geometry I/II, Cam- bridge University Press, 2002.
    [Show full text]
  • Metric Contact Manifolds and Their Dirac Operators Christoph Stadtm¨Uller
    Metric contact manifolds and their Dirac operators Christoph Stadtm¨uller Humboldt-Universitat¨ zu Berlin Mathematisch-Naturwissenschaftliche Fakult¨atII Institut f¨urMathematik This is essentially my \Diplomarbeit" (roughly a master thesis), originally submitted in September 2011, with some changes and corrections made since, last changes made on May 31, 2013 Contents Introduction iii 1 Almost-hermitian manifolds 1 1.1 Almost-complex Structures . 1 1.2 Differential forms on almost-hermitian manifolds . 6 1.2.1 The spaces of (p,q)-forms and integrability . 6 1.2.2 TM-valued 2-forms and 3-forms on an almost-hermitian manifold . 8 1.3 Properties of the K¨ahlerform and the Nijenhuis tensor . 17 2 Metric contact and CR manifolds 23 2.1 Contact structures . 23 2.2 CR structures . 30 3 Spinor bundles, connections and geometric Dirac operators 37 3.1 Some algebraic facts on Spinc and spinor representations . 37 3.2 Spin and Spinc structures and their spinor bundles . 44 3.3 Basic properties of connections and geometric Dirac operators . 47 3.4 Spinc structures on almost-complex and contact manifolds . 55 4 Connections on almost-hermitian and metric contact manifolds 65 4.1 Hermitian connections . 65 4.2 Connections on contact manifolds . 71 5 The Hodge-Dolbeault operator and geometric Dirac operators 81 5.1 Dirac operators on almost-hermitian manifolds . 81 5.2 Dirac operators on contact manifolds . 90 Appendix: Principal bundles and connections 101 A.1 Connections on principal bundles . 101 A.2 Reductions and extensions of principal bundles . 103 A.3 The case of frame bundles .
    [Show full text]
  • 6-Dimensional Almost Complex Manifolds
    CONSTRUCTION AND PROPERTIES OF SOME 6-DIMENSIONAL ALMOST COMPLEX MANIFOLDS BY EUGENIO CALABIO 1. Introduction and summary. It is well known that the six-dimensional sphere S6 admits the structure of an almost complex manifold [8; 23, pp. 209-217]. The standard way to exhibit this structure is to imbed S6 as the unit sphere in the Euclidean 7-space A7 and to consider the latter as the space of "purely imaginary" Cayley numbers, then using the multiplicative prop- erties of the Cayley algebra applied to the tangent space at each point of S6. Ehresmann and Libermann [9] and Eckmann and Frolicher [7] showed that this particular almost complex structure is not derivable from a complex analytic one. In the present paper we show (§4) that the algebraic properties of the imaginary Cayley numbers induce an almost complex structure on any ori- ented, differentiable hypersurface 9CCA7 just as in the case of the unit sphere. The necessary and sufficient conditions for the almost complex structure thus obtained in 9Cto be integrable (i.e. derivable from a complex analytic one) are then calculated, and one sees that no closed hypersurface can satisfy these conditions everywhere; there do exist, however, many open hypersurfaces beside the hyperplanes that satisfy the integrability conditions (Theorem 6). In §5 we construct some special examples of hypersurfaces satisfying the integrability condition, with the additional property of being covering spaces (preserving the complex analytic structure under the covering transforma- tions) of compact, complex
    [Show full text]
  • Complex Manifolds and Holomorphic Vector Bundles by L
    Lecture 1 { Complex Manifolds and Holomorphic Vector Bundles by L. Ni A Complex manifold M m is a smooth manifold such that it is covered by holomorphic atlas ! Cn · −1 ('i : Ui ) with local transition mappings 'i 'j being holomorphic. This clearly makes it possible to discuss holomorphic functions, mappings etc. Examples: Cm, Riemann surfaces, complex projective space Pm, etc. Implicit function theorem also leads to the concept of submanifolds (e.g. zero set of a non-critical holomorphic function). More examples via coverings/quotiens and surgeries. In general, a topological manifold can be endowed with extra structures. Hence there are analytic manifolds, algebraic manifolds, topological manifolds, PL-manifolds, etc. The fundamental problem is to classify the simplest ones in each category. One can also ask if a weaker equivalence implies a stronger equivalence, e.g. the Poincar´econjecture. Conjecture (uniqueness): A complex manifold diffeomorphic to Pm must be biholomorphic to it. There is also the famous question: is there a holomorphic structure on S6? The embedding problem, which unites the extrinsic and intrinsic geometry to some degree, is also universal. Whitney(1936): any compact differential manifold of dimension n can be smoothly embed- ded into 2n + 1-dimensional Euclidean space R2n+1. This has motivated several important developments including Nash(1956): any C1 Riemannian manifold (M n; g) can be isomet- rically embedded into some Euclidean space Rd with d = d(n). Unfortunately it fails completely for compact complex manifolds due to that any holomor- phic function on a compact complex manifold must be a constant. On the other hand in this direction there are two important results: Remmert(1956)-Narasimhan(1960)-Bishop(1961, joined UCSD afterwards): every Stein manifold M m can be holomorphically embedded into C2m+1.
    [Show full text]
  • Geometry of Hermitian Manifolds
    2nd Reading April 17, 2012 10:43 WSPC/S0129-167X 133-IJM 1250055 International Journal of Mathematics Vol. 23, No. 6 (2012) 1250055 (40 pages) c World Scientific Publishing Company DOI: 10.1142/S0129167X12500553 GEOMETRY OF HERMITIAN MANIFOLDS KE-FENG LIU∗,†,‡ and XIAO-KUI YANG∗,§ ∗Department of Mathematics, University of California Los Angeles, CA 90095-1555, USA †Center of Mathematical Science Zhejiang University Hangzhou 310027, P. R. China ‡[email protected] §[email protected] Received 20 October 2011 Accepted 2 November 2011 Published 18 April 2012 On Hermitian manifolds, the second Ricci curvature tensors of various metric connections are closely related to the geometry of Hermitian manifolds. By refining the Bochner formulas for any Hermitian complex vector bundle (and Riemannian real vector bundle) with an arbitrary metric connection over a compact Hermitian manifold, we can derive various vanishing theorems for Hermitian manifolds and complex vector bundles by the second Ricci curvature tensors. We will also introduce a natural geometric flow on Hermitian manifolds by using the second Ricci curvature tensor. Keywords: Chern connection; Levi-Civita connection; Bismut connection; second Ricci curvature; vanishing theorem; geometric flow. Mathematics Subject Classification 2010: 53C55, 53C44 Int. J. Math. 2012.23. Downloaded from www.worldscientific.com 1. Introduction It is well-known (see [5]) that on a compact K¨ahler manifold, if the Ricci curvature by CHINESE ACADEMY OF SCIENCES @ BEIJING on 03/15/16. For personal use only. is positive, then the first Betti number is zero; if the Ricci curvature is negative, then there is no holomorphic vector field. The key ingredient for the proofs of such results is the K¨ahler symmetry.
    [Show full text]
  • On the Hermitian Geometry of K-Gauduchon Orthogonal Complex Structures
    On the Hermitian Geometry of k-Gauduchon Orthogonal Complex Structures Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Gabriel Khan, B.A., M.S. Graduate Program in Mathematics The Ohio State University 2018 Dissertation Committee: Fangyang Zheng, Advisor Bo Guan King-Yeung Lam John Lafont c Copyright by Gabriel Khan 2018 Abstract This work deals with various phenomena relating to complex geometry. We are particularly interested in non-K¨ahlerHermitian manifolds, and most of the work here was done to try to understand the geometry of these spaces by understanding the torsion. Chapter 1 introduces some background material as well as various equations and inequalities on Hermitian manifolds. We are focused primarily on the inequalities that are useful for the analysis that we do later in the thesis. In particular, we focus on k-Gauduchon complex structures, which were initially defined by Fu, Wang, and Wu [8]. Chapter 2 discusses the spectral geometry of Hermitian manifolds. In particular, we estimate the real eigenvalues of @@¯ from below. In doing so, we prove a theorem on non-self-adjoint drift Laplace operators with L1 drift. This result is of independent interest, apart from its application to complex geometry. The work in this section is largely based on the Li-Yau estimate [24] as well as an ansatz due to Hamel, Nadirashvili and Russ [12]. Chapter 3 considers orthogonal complex structures to a given Riemannian metric. Much of the work in this section is conjectural in nature, but we believe that this ii is a promising approach to studying Hermitian geometry.
    [Show full text]
  • A Beginner's Guide to Holomorphic Manifolds
    This is page Printer: Opaque this A Beginner’s Guide to Holomorphic Manifolds Andrew D. Hwang This is page i Printer: Opaque this Preface This book constitutes notes from a one-semester graduate course called “Complex Manifolds and Hermitian Differential Geometry” given during the Spring Term, 1997, at the University of Toronto. Its aim is not to give a thorough treatment of the algebraic and differential geometry of holomorphic manifolds, but to introduce material of current interest as quickly and concretely as possible with a minimum of prerequisites. There are several excellent references available for the reader who wishes to see subjects in more depth. The coverage includes standard introductory analytic material on holo- morphic manifolds, sheaf cohomology and deformation theory, differential geometry of vector bundles (Hodge theory, and Chern classes via curva- ture), and some applications to the topology and projective embeddability of K¨ahlerian manifolds. The final chapter is a short survey of extremal K¨ahler metrics and related topics, emphasizing the geometric and “soft” analytic aspects. There is a large number of exercises, particularly for a book at this level. The exercises introduce several specific but colorful ex- amples scattered through “folklore” and “the literature.” Because there are recurrent themes and varying viewpoints in the subject, some of the exercises overlap considerably. The course attendees were mostly advanced graduate students in math- ematics, but it is hoped that these notes will reach a wider audience, in- cluding theoretical physicists. The “ideal” reader would be familiar with smooth manifolds (charts, forms, flows, Lie groups, vector bundles), differ- ential geometry (metrics, connections, and curvature), and basic algebraic topology (simplicial and singular cohomology, the long exact sequence, and ii the fundamental group), but in reality the prerequisites are less strenuous, though a good reference for each subject should be kept at hand.
    [Show full text]
  • Arxiv:1708.07297V1 [Math.DG] 24 Aug 2017 Oncin Aoia Oncin Uvtr,Positivity
    NON-EXISTENCE OF ORTHOGONAL COMPLEX STRUCTURES ON S6 WITH A METRIC CLOSE TO THE ROUND ONE BORIS KRUGLIKOV Abstract. I review several proofs for non-existence of orthogonal complex structures on the six-sphere, most notably by G. Bor and L. Hern´andez-Lamoneda, but also by K. Sekigawa and L. Vanhecke that we generalize for metrics close to the round one. Invited talk at MAM-1 workshop, 27-30 March 2017, Marburg. 1. Introduction In 1987 LeBrun1 [7] proved the following restricted non-existence result for the 6-sphere. Let (M,g) be a connected oriented Riemannian manifold. Denote by (M) the space of almost complex structures J Jg on M that are compatible with the metric (i.e. J ∗g = g) and with the orientation. This is the space of sections of an SO(6)/U(3) fiber bundle, so whenever non-empty it is infinite-dimensional. Associating to J (M) the almost symplectic structure ω(X,Y ) = g(JX,Y ), ∈ Jg X,Y T M, we get a bijection between g(M) and the space of almost Hermitian∈ triples (g,J,ω) on M with fixedJ g. Theorem 1. No J (S6) is integrable (is a complex structure) for ∈Jg0 the standard (round) metric g0. In other words, there are no Hermitian 6 structures on S associated to the metric g0. There are several proofs of this statement, we are going to review some of those. The method of proof of Theorem 1 by Salamon [8] uses arXiv:1708.07297v1 [math.DG] 24 Aug 2017 6 6 the fact that the twistor space of (S ,g0) is (S )= SO(8)/U(4) which is a K¨ahler manifold (it has a complex structureZ because S6 is confor- mally flat, and the metric is induced by g0), and so the holomorphic embedding s : S6 (S6) would induce a K¨ahler structure on S6.
    [Show full text]