2nd Reading April 17, 2012 10:43 WSPC/S0129-167X 133-IJM 1250055 International Journal of Mathematics Vol. 23, No. 6 (2012) 1250055 (40 pages) c World Scientific Publishing Company DOI: 10.1142/S0129167X12500553 GEOMETRY OF HERMITIAN MANIFOLDS KE-FENG LIU∗,†,‡ and XIAO-KUI YANG∗,§ ∗Department of Mathematics, University of California Los Angeles, CA 90095-1555, USA †Center of Mathematical Science Zhejiang University Hangzhou 310027, P. R. China ‡
[email protected] §
[email protected] Received 20 October 2011 Accepted 2 November 2011 Published 18 April 2012 On Hermitian manifolds, the second Ricci curvature tensors of various metric connections are closely related to the geometry of Hermitian manifolds. By refining the Bochner formulas for any Hermitian complex vector bundle (and Riemannian real vector bundle) with an arbitrary metric connection over a compact Hermitian manifold, we can derive various vanishing theorems for Hermitian manifolds and complex vector bundles by the second Ricci curvature tensors. We will also introduce a natural geometric flow on Hermitian manifolds by using the second Ricci curvature tensor. Keywords: Chern connection; Levi-Civita connection; Bismut connection; second Ricci curvature; vanishing theorem; geometric flow. Mathematics Subject Classification 2010: 53C55, 53C44 Int. J. Math. 2012.23. Downloaded from www.worldscientific.com 1. Introduction It is well-known (see [5]) that on a compact K¨ahler manifold, if the Ricci curvature by CHINESE ACADEMY OF SCIENCES @ BEIJING on 03/15/16. For personal use only. is positive, then the first Betti number is zero; if the Ricci curvature is negative, then there is no holomorphic vector field. The key ingredient for the proofs of such results is the K¨ahler symmetry.