Measuring the Economic Impact of the Space Sector Key Indicators and Options to Improve Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
UK Space Agency Civil Space Strategy 2012-2016
UK Space Agency Civil Space Strategy An executive agency of the Department of Business, Innovation UK SPACE AGENCY Polaris House, North Star Avenue, Swindon, Wiltshire, SN2 1SZ Tel +44(0)207 215 5000 Email [email protected] Web www.bis.gov.uk/ukspaceagency CIVIL SPACE STRATEGY 2012-2016 The UK Space Agency To lead and sustain the growth of the UK Space Sector Foreword A strategy is more than simply words. A strategy demonstrates that we are carefully considering the options available to us; that we have an eye on the long-term, and most importantly, that we are committed to action. We are currently celebrating the 50th anniversary of the UK’s first foray into space, recognizing the pioneers who first ventured into unknown scientific territory with the Ariel-1 satellite. In the intervening half-century, space has become part of our lives. We use its technology to navigate our streets, access the internet and communicate around the globe. And UK space expertise has cemented Britain at the forefront of the exploration of our Universe. We have landed the Huygens probe on Titan, flown by Halley’s comet with the Giotto mission, probed the mysteries of the Universe with Herschel and Planck, and advanced our understanding of planet Earth through the Envisat and Cryosat missions. Today, space continues to be a key sector for Britain’s future. Its economic contribution to the UK economy is impressive. Total space-related turnover was £9.1 billion in 2010/11 (compared to £7.5 billion in 2008/09). This represents a real growth of 15.6% since 2008/09. -
The Economic Impact of Physics Research in the UK: Satellite Navigation Case Study
The economic impact of physics research in the UK: Satellite Navigation Case Study A report for STFC November 2012 Contents Executive Summary................................................................................... 3 1 The science behind satellite navigation......................................... 4 1.1 Introduction ................................................................................................ 4 1.2 The science................................................................................................ 4 1.3 STFC’s role in satellite navigation.............................................................. 6 1.4 Conclusions................................................................................................ 8 2 Economic impact of satellite navigation ........................................ 9 2.1 Introduction ................................................................................................ 9 2.2 Summary impact of GPS ........................................................................... 9 2.3 The need for Galileo................................................................................. 10 2.4 Definition of the satellite navigation industry............................................ 10 2.5 Methodological approach......................................................................... 11 2.6 Upstream direct impacts .......................................................................... 12 2.7 Downstream direct impacts..................................................................... -
Euclid Space Telescope's Near-Infrared Instrument Ready to Draw a 3-D Map of Galaxies of the Distant Universe
NISP Press Release Euclid space telescope’s Near-Infrared instrument ready to draw a 3-D map of galaxies of the distant Universe ESA’s Euclid mission to study more than a billion galaxies is a step closer to launch as its two instruments are now built and fully tested, including the complex near Near-Infrared Spectrometer and Photometer (NISP) instrument delivered by an international consortium coordinated by France, with partners from Italy, Germany, Spain, Denmark, Norway and the United States. Once Euclid is launched from French Guiana in 2022, the NISP instrument will feed the world largest near infrared wide field camera put into space and will deliver near-infrared photometry, spectra and redshifts of tens of million distant galaxies providing a detailed description of the 3-dimensional structure of the universe, and its evolution as function of look back time. Euclid has a 1.2-metre mirror telescope that is designed to work at both visible and near- infrared wavelengths. It will collect light from distant cosmic objects and feed it into NISP and the second instrument, the VISible instrument (VIS), both working in parallel and observing the exact same regions of the sky at each exposure of the telescope. Euclid will survey the 3-D distribution of galaxies and dark matter and map the geometry of the Universe with the aim of making accurate measurements of the mysterious Dark Matter and Dark Energy, which make up most of the cosmos. No-one yet knows what Dark Energy is, and Euclid will be the yet most powerful tool for cosmologists and astronomers looking to find out. -
ESTEC White Paper Spinning in and Spinning Off: Ways to Strengthen the Ties Between ESTEC and the Dutch Knowledge Infrastructure
ESTEC White Paper Spinning in and spinning off: Ways to strengthen the ties between ESTEC and the Dutch knowledge infrastructure The High Tech Systems and Materials top team More information can be obtained from: Office top team High Tech Systems and Materials Boerhaavelaan 40 Postbus 190 2700 AD Zoetermeer The Netherlands www.htsm.nl www.hollandhightech.nl Projectmanagement DB Huisstijlmedia Design Bruikman Reclame, Den Haag The Hague, May 2012 ESTEC White Paper Spinning in and spinning off: Ways to strengthen the ties between ESTEC and the Dutch knowledge infrastructure by the High Tech Systems and Materials top team Table of contents Summary and conclusions . 3 1. The role of ESTEC in the Netherlands . .5 . 1 .1 The space industry in a global context . 5 1 .2 The Netherlands from a European perspective . 6. 1 .3 ESTEC’s position in Europe and the Netherlands . 8 1 .4 Looking ahead: the risks and rewards of the budgetary outlook . 9 2. Spinning in and off: stronger linkages between ESTEC and the Netherlands . 11 . 2 .1 Economic and societal applications from space data . 11 2 .2 Technology transfer and valorization . 13 2 .3 Stronger ties between academia, research institutes and ESTEC . 15 2 .4 Sharing and maintaining research facilities . 16 . 2 .5 Improving ESTEC’s visibility in the Dutch knowledge infrastructure . 17 Appendix 1: Technology crossovers from space to other roadmaps in the top sector HTSM and other . 18 . Appendix 2: Acknowledgements . 20 . Appendix 3: Top team High Tech Systems and Materials . 21. 2 | ESTEC White Paper High Tech Systems and Materials Top Team Summary and conclusions In the Proposal for an Innovation Contract for the Top Sector High Tech Systems and Materials (HTSM) (December 2011, see www .htsm .nl), the HTSM top team concludes that ESTEC, the European Space Agency (ESA) technology and research site in the Netherlands, is an important contributor to this top sector’s innovation ecosystem . -
History of Space Commercialization
Commercial Market Outreach Plan for the International Space Station Report presented to: NASA Headquarters Report presented by: Equals Three Communications® and Booz Allen Hamilton February, 2002 THIS PAGE BLANK 2 Table of Contents Preface............................................................................................................ 7 Organization of the Report ....................................................................... 8 Executive Summary ..................................................................................... 11 Overview ................................................................................................ 11 Communication Strategy ........................................................................ 12 Target Industries ..................................................................................... 14 Target Audiences ................................................................................... 15 The Communication Program ................................................................ 15 Preparatory Steps .................................................................................. 20 Chapter 1: Background ................................................................................ 25 Commercial Development of Space ....................................................... 25 Space Commercialization and the ISS ................................................... 27 Policies and Procedures ....................................................................... -
A Space Industry Perspective: Tech Trends 2019
Tech Trends 2019 l Deloitte Insights Tech Trends 2019 Space industry perspective Space technologies have a long history with disruption. The last decade has seen widespread change— for example, governments and other public entities historically played a driving role in space research and services, yet tomorrow’s disruptive space technologies increasingly will be driven by commercial forces. And the future will bring additional disruption in the areas of human spaceflight, in-space manufacturing, and next-generation communications. The combination of emerging technologies, new operating models, Organizations should look beyond the digital frontier—toward and other innovative concepts can accelerate the diffusion of space a future state in which transformation occurs across all mission technologies across multiple economies and sectors: intelligent portfolios and operating organizations. interfaces that integrate launch-range data into the National Airspace System; blockchain applications that validate remote As industry and government leaders work to reshape their sensing data; AI and machine learning applied to space science organizations, acquisition processes, and missions to take advantage missions. These and other advances can help produce substantial of new digital capabilities, they will require fresh, focused, sector- value that extends beyond any one organization. relevant insights. Begin here, with this report that provides a timely perspective on Deloitte’s Technology Trends 2019: Beyond the digital In the face of the changes ahead, it is not enough to simply plan frontier, focused specifically on the trends affecting the operators for digital transformation and assume that success will follow. and users of space systems. Macro technology forces at work Nine technology forces (cloud, analytics, Getting started Trends in action experience, blockchain, cognitive, digital • Learn from history. -
Rivista Elettronica Di Diritto, Economia, Management
Rivista elettronica di Diritto, Economia, Management Numero 1 - 2021 Parte prima: Atti del convegno “Cooperazione spaziale internazionale: limiti e prospettive”, organizzato il 12 gennaio 2021 dal Centro Studi Geopolitica.info in collaborazione con UnitelmaSapienza, CEMAS Sapienza e con il patrocinio scientifico di Fondazione Roma Sapienza. Inquadra il QR-CODE per il download degli altri numeri Parte seconda: articoli sul PNRR, identità e profilo, customer della Rivista satisfaction, outsourcing per l’archiaviazione dei documenti informatici, diritto di accesso ad internet o al ciberspazio, smart contratcts, cloud, regolazione e competizione, lavoro agile o smartworking e protezione dei dati personali. FONDATA E DIRETTA DA DONATO A. LIMONE I ISSN 2039-4926 Direttore responsabile Donato A. Limone Comitato scientifico Estanislao Arana García, Catedrático de Derecho administrativo de la Universidad de Granada (Spagna); Piero Bergamini (Comitato Direttivo del Club degli Investitori di Torino); Francesco Capriglione (professore di diritto degli intermediari e dei mercati finanziari, Luiss, Roma); Mario Carta (Professore di diritto dell’Unione europea dell’Università degli Studi di Roma Unitelma Sapienza); Enzo Chilelli (esperto di sanità e di informatica pubblica); Claudio Clemente (Banca d’Italia); Fabrizio D’Ascenzo (professore ordinario, preside della Facoltà di Economia, Univer- sità “La Sapienza”); Angelo Del Favero (“Health and Welfare School”, Università degli Studi di Roma “Unitelma Sapienza”); Luigi Di Viggiano (Università del Salento; esperto di scienza dell'amministrazione digitale); Jorge Eduardo Douglas Price, ordinario di Teoria generale del diritto; Direttore del Centro di Studi Istituzionali Patagónico (CEIP), Facoltà di Giurisprudenza e Scienze Sociali dell'Università Nazionale di Comahue (Argentina); Vincenzo Mongillo (ordi- nario di diritto penale, Università degli studi di Roma, Unitelma Sapienza); Maria Rita Fiasco (consulente, Vice Presidente Assinform); Donato A. -
United Kingdom of Great Britain and Northern Ireland
SPACE DEBRIS MITIGATION STANDARDS UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND National mechanism: Outer Space Act 1986 (OSA) Description: The Outer Space Act is the legal basis for the regulation of activities in outer space (including the launch and operation of space objects) carried out by persons connected with the United Kingdom. The Act confers licensing and other powers on the Secretary of State acting through the UK Space Agency. The Act ensures compliance with UK obligations under the international conventions covering the use of outer space to which the UK is a signatory. Under the legislation of the OSA, the Secretary of State shall not grant a licence unless he is satisfied that the activities authorised by the licence will not jeopardise public health or the safety of persons or property, will be consistent with the international obligations of the United Kingdom, and will not impair the national security of the United Kingdom. Further the Secretary of State requires the licensee to conduct his operations in such a way as to prevent the contamination of outer space or adverse changes in the environment of the Earth, and to avoid interference with activities of others in the peaceful exploration and use of outer space. The Secretary of State requires the licensee to insure himself against liability incurred in respect of damage or loss suffered by third parties, in the United Kingdom or elsewhere, as a result of the activities authorised by the licence. Further the licensee shall indemnify Her Majesty’s government in the United Kingdom against any claims brought against the government in respect of damage or loss arising out of activities carried on by him to which this Act applies. -
Space for Agriculture Development and Food Security Use of Space Technology Within the United Nations System
UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS Space for Agriculture Development and Food Security Use of Space Technology within the United Nations System UNITED NATIONS Contents Foreword 1 Background 2 United Nations Office for Outer Space Affairs (UNOOSA) 3 THEMATIC AREAS Agricultural research and development 5 Biodiversity 7 Desertification 8 Drought 11 Floods 14 Fisheries and aquaculture 17 Irrigation and water 18 Land-use mapping 21 Managing, mitigating and preparing for disasters 24 Monitoring agricultural production 26 Vegetation fires 28 Weather monitoring and forecasting 30 Acronyms and abbreviations 31 Contributors 32 COPYRIGHT • DISCLAIMER page i www.unoosa.org UNITED NATIONS CONVENTIONS, ENTITIES AND PROGRAMMES RELATED TO APPLICATIONS OF SPACE TECHNOLOGY FOR AGRICULTURE Convention on Biological Diversity (CBD) 6 Convention to Combat Desertification (UNCCD) 6 Economic Commission for Africa (ECA) 9 Economic Commission for Latin America and the Caribbean (ECLAC) 10 Economic and Social Commission for Asia and the Pacific (ESCAP) 12 Economic and Social Commission for Western Asia (ESCWA) 13 Food and Agriculture Organization of the United Nations (FAO) 15 International Atomic Energy Agency (IAEA) 16 United Nations Educational, Scientific and Cultural Organization (UNESCO) 19 United Nations Environment Programme (UNEP) 20 United Nations Office for Disaster Reduction (UNISDR) 22 United Nations Institute for Training and Research/Operational Satellite Applications Programme (UNITAR/UNOSAT) 23 United Nations Platform for Space-based Information for Disaster Management and Emergency Response (UN-SPIDER) 25 United Nations Programme on Space Applications 27 World Food Programme (WFP) 29 World Meteorological Organization (WMO) 29 page ii Foreword Food security and proper nutrition have become pressing global challenges, and the interrelated targets of ending hunger, achieving food security and improved nutrition, and promoting sustainable agriculture have been recognized collectively as a core sustainable development goal. -
INTERNATIONAL Call for Papers & Registration of Interest
ORGANIZED BY: HOSTED BY: st 71 INTERNATIONAL ASTRONAUTICAL CONGRESS 12–16 October 2020 | Dubai, United Arab Emirates Call for Papers & Registration of Interest Second Announcement SUPPORTED BY: Inspire, Innovate & Discover for the Benefit of Humankind IAC2020.ORG Contents 1. Message from the International Astronautical Federation (IAF) 2 2. Message from the Local Organizing Committee 2 3. Message from the IPC Co-Chairs 3 4. Messages from the Partner Organizations 4 5. International Astronautical Federation (IAF) 5 6. International Academy of Astronautics (IAA) 10 7. International Institute of Space Law (IISL) 11 8. Message from the IAF Vice President for Technical Activities 12 9. IAC 2020 Technical Sessions Deadlines Calendar 49 10. Preliminary IAC 2020 at a Glance 50 11. Instructions to Authors 51 Connecting @ll Space People 12. Space in the United Arab Emirates 52 www.iafastro.org IAF Alliance Programme Partners 2019 1 71st IAC International Astronautical Congress 12–16 October 2020, Dubai 1. Message from the International Astronautical Federation (IAF) 3. Message from the International Programme Committee (IPC) Greetings! Co-Chairs It is our great pleasure to invite you to the 71st International Astronautical Congress (IAC) to take place in Dubai, United Arab Emirates On behalf of the International Programme Committee, it is a great pleasure to invite you to submit an abstract for the 71st International from 12 – 16 October 2020. Astronautical Congress IAC 2020 that will be held in Dubai, United Arab Emirates. The IAC is an initiative to bring scientists, practitioners, engineers and leaders of space industry and agencies together in a single platform to discuss recent research breakthroughs, technical For the very first time, the IAC will open its doors to the global space community in the United Arab Emirates, the first Arab country to advances, existing opportunities and emerging space technologies. -
Space Debris
IADC-11-04 April 2013 Space Debris IADC Assessment Report for 2010 Issued by the IADC Steering Group Table of Contents 1. Foreword .......................................................................... 1 2. IADC Highlights ................................................................ 2 3. Space Debris Activities in the United Nations ................... 4 4. Earth Satellite Population .................................................. 6 5. Satellite Launches, Reentries and Retirements ................ 10 6. Satellite Fragmentations ................................................... 15 7. Collision Avoidance .......................................................... 17 8. Orbital Debris Removal ..................................................... 18 9. Major Meetings Addressing Space Debris ........................ 20 Appendix: Satellite Break-ups, 2000-2010 ............................ 22 IADC Assessment Report for 2010 i Acronyms ADR Active Debris Removal ASI Italian Space Agency CNES Centre National d’Etudes Spatiales (France) CNSA China National Space Agency CSA Canadian Space Agency COPUOS Committee on the Peaceful Uses of Outer Space, United Nations DLR German Aerospace Center ESA European Space Agency GEO Geosynchronous Orbit region (region near 35,786 km altitude where the orbital period of a satellite matches that of the rotation rate of the Earth) IADC Inter-Agency Space Debris Coordination Committee ISRO Indian Space Research Organization ISS International Space Station JAXA Japan Aerospace Exploration Agency LEO Low -
Applying the Microspace Philosophy at the Norwegian Space Agency
Applying the Microspace Philosophy at the Norwegian Space Agency Tyler Jones Engineer – Project Department [email protected] Overview • Space and Systems Engineering • A Few Words on “New Space” • Microspace Philosophy and «Big Space» • Microspace Project Structure and Phases • Application to AIS satellite system Space? Systems Engineering? Why space? Systems engineering? • A global perspective‐ the • Holistic approach‐ Technical Process ultimate high ground and Management Process • A clear view of the heavens‐ • Elicit and analyze user needs unobscured by the atmosphere • Determine requirements • A free‐fall environment‐ enables • Mission design advanced material development • Design synthesis • Abundant resources‐ solar energy and extraterrestrial • System validation materials • Lifecycle and stakeholder • The Final Frontier considerations A Few Words on «New Space» New Space refers to the emergence of private spaceflight companies and ventures that operate more or less independent of governments and traditional major contractors. • Commercially motivated, not political or socioeconomically • Private rather than governmental finance • Faster, Better, Cheaper ∵ Commercial ∴ Microspace «Big Space» Systems Engineering Global Navigation Satellite System 30x 700 kg satellites Engineering Reviewing Testing 1999 initial contract 18 years 2017 IOC Microspace Philosophy Reduce the development, platform, launch, and operations costs of useful satellite systems • Streamline large procurement processes to an “appropriate” level • Replace expensive space grade parts with industrial grade parts (COTS) • Heavy on‐board redundancy is replaced by multi‐platform redundancy • Extensive component and sub‐component test campaigns are replaced by integrated system test • Accepting the technical limitations, lifetime and risk associated with this design philosophy A 700 kg mission and acquisition program doesn’t scale to a 7 kg satellite! Microspace Systems Enginering 0/ A B C D E F ? Mission/ MD RFI MRR Function 1.