Automatic Identification and Dynamic Monitoring of Open-Pit Mines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lithofacies Palaeogeography of the Late Permian Wujiaping Age in the Middle and Upper Yangtze Region, China
Journal of Palaeogeography 2014, 3(4): 384-409 DOI: 10.3724/SP.J.1261.2014.00063 Lithofacies palaeogeography and sedimentology Lithofacies palaeogeography of the Late Permian Wujiaping Age in the Middle and Upper Yangtze Region, China Jin-Xiong Luo*, You-Bin He, Rui Wang School of Geosciences, Yangtze University, Wuhan 430100, China Abstract The lithofacies palaeogeography of the Late Permian Wujiaping Age in Middle and Upper Yangtze Region was studied based on petrography and the “single factor analysis and multifactor comprehensive mapping” method. The Upper Permian Wujiaping Stage in the Middle and Upper Yangtze Region is mainly composed of carbonate rocks and clastic rocks, with lesser amounts of siliceous rocks, pyroclastic rocks, volcanic rocks and coal. The rocks can be divided into three types, including clastic rock, clastic rock-limestone and lime- stone-siliceous rock, and four fundamental ecological types and four fossil assemblages are recognized in the Wujiaping Stage. Based on a petrological and palaeoecological study, six single factors were selected, namely, thickness (m), content (%) of marine rocks, content (%) of shallow water carbonate rocks, content (%) of biograins with limemud, content (%) of thin- bedded siliceous rocks and content (%) of deep water sedimentary rocks. Six single factors maps of the Wujiaping Stage and one lithofacies palaeogeography map of the Wujiaping Age were composed. Palaeogeographic units from west to east include an eroded area, an alluvial plain, a clastic rock platform, a carbonate rock platform where biocrowds developed, a slope and a basin. In addition, a clastic rock platform exists in the southeast of the study area. Hydro- carbon source rock and reservoir conditions were preliminarily analyzed based on lithofacies palaeogeography. -
A New Species of Triaenophora (Scrophulariaceae) from China
A New Species of Triaenophora (Scrophulariaceae) from China Xiao-Dong Li and Jian-Qiang Li Herbarium (HIB), Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, People's Republic of China. [email protected]; [email protected] (for correspondence) Yanyan Zan Shennongjia National Natural Reserve, Hubei 442421, People's Republic of China ABSTRACT. A new species of Triaenophora Soler- Perennial herbs, 10±60 cm tall, leaves and stems eder, T. shennongjiaensis X. D. Li, Y. Y. Zan & J. with sparse non-glandular and dense glandular Q. Li (Scrophulariaceae), is described and illus- hairs; roots pale yellow, ¯eshy, brittle; stem very trated from Shennongjia National Natural Reserve, short; leaves in a basal rosette, oblong to elliptic, Hubei Province, China. The new species is related 8±20 3 5±10 cm, densely glandular or pilose on to T. rupestris (Hemsley) Solereder, from which it both surfaces, base subcordate to cuneate, margins differs in having densely glandular leaves, dentate dentate, apex obtuse; petioles 3±6 cm long. In¯o- bract margins, and pale yellow petals that are re- rescence racemose, main raceme suberect, lateral tuse or rarely obtuse at their apices. racemes prostrate, bracts in lower parts resembling Key words: China, Scrophulariaceae, Triaeno- basal leaves, 20±50 cm long, compact, 12- to 54- phora. ¯owered; bracts similar to leaves but smaller, ob- long, margins dentate; pedicels 5±25 mm long; Triaenophora Solereder (Scrophulariaceae) was bracteoles 2 at middle of pedicels, linear, opposite, separated from the genus Rehmannia Liboschitz ex 3±20 mm long. Flower with calyx cylindrical, tube Fischer & C. A. Meyer, on the basis of its three- 5±8 mm long, erect, 5-lobed with each lobe 3- lobed calyx (Solereder, 1909). -
Genomic Surveillance: Inside China's DNA Dragnet
Genomic surveillance Inside China’s DNA dragnet Emile Dirks and James Leibold Policy Brief Report No. 34/2020 About the authors Emile Dirks is a PhD candidate in political science at the University of Toronto. Dr James Leibold is an Associate Professor and Head of the Department of Politics, Media and Philosophy at La Trobe University and a non-resident Senior Fellow at ASPI. Acknowledgements The authors would like to thank Danielle Cave, Derek Congram, Victor Falkenheim, Fergus Hanson, William Goodwin, Bob McArthur, Yves Moreau, Kelsey Munro, Michael Shoebridge, Maya Wang and Sui-Lee Wee for valuable comments and suggestions with previous drafts of this report, and the ASPI team (including Tilla Hoja, Nathan Ruser and Lin Li) for research and production assistance with the report. ASPI is grateful to the Institute of War and Peace Reporting and the US State Department for supporting this research project. What is ASPI? The Australian Strategic Policy Institute was formed in 2001 as an independent, non-partisan think tank. Its core aim is to provide the Australian Government with fresh ideas on Australia’s defence, security and strategic policy choices. ASPI is responsible for informing the public on a range of strategic issues, generating new thinking for government and harnessing strategic thinking internationally. ASPI International Cyber Policy Centre ASPI’s International Cyber Policy Centre (ICPC) is a leading voice in global debates on cyber and emerging technologies and their impact on broader strategic policy. The ICPC informs public debate and supports sound public policy by producing original empirical research, bringing together researchers with diverse expertise, often working together in teams. -
Hubei Shennongjia
ASIA / PACIFIC HUBEI SHENNONGJIA CHINA Laojunshan Component of the property - © IUCN Bruce Jefferies China - Hubei Shennongjia WORLD HERITAGE NOMINATION – IUCN TECHNICAL EVALUATION HUBEI SHENNONGJIA (CHINA) – ID 1509 IUCN RECOMMENDATION TO WORLD HERITAGE COMMITTEE: To inscribe the property under natural criteria. Key paragraphs of Operational Guidelines: Paragraph 77: Nominated property meets World Heritage criteria. Paragraph 78: Nominated property meets integrity and protection and management requirements. 1. DOCUMENTATION S. and Hong Qian. Global Significance of Plant Diversity in China. In The Plants of China: A a) Date nomination received by IUCN: 16 March Companion to the Flora of China (2015). Huang, J. H., 2015 Chen, J.H., Ying, J.S., and Ke‐Ping M. Features and distribution patterns of Chinese endemic seed plant b) Additional information officially requested from species. Journal of Systematics and Evolution 49, no. and provided by the State Party: On 6 September 2 (2011): 81-94. Li, Y. (2004). The effect of forest 2015, the State Party responded to issues which arose clear-cutting on habitat use in Sichuan snub-nosed during the course of the IUCN field evaluation mission. monkey (Rhinopithecus roxellana) in Shennongjia The letter, with accompanying maps, addressed a Nature Reserve, China. Primates 45.1 69-72.. López- range of issues and confirmed extensions to the Pujol, J., et al. (2011). Mountains of Southern China as nominated area and buffer zone in the Badong County “plant museums” and “plant cradles”: evolutionary and area. Following the IUCN World Heritage Panel a conservation insights. Mountain Research and progress report was sent to the State Party on 16 Development,31(3), 261-269. -
Analysis of the Spatial-Temporal Change of the Vegetation Index in the Upper Reach of Han River Basin in 2000–2016
Innovative water resources management – understanding and balancing interactions between humankind and nature Proc. IAHS, 379, 287–292, 2018 https://doi.org/10.5194/piahs-379-287-2018 Open Access © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Analysis of the spatial-temporal change of the vegetation index in the upper reach of Han River Basin in 2000–2016 Jinkai Luan1, Dengfeng Liu1,2, Lianpeng Zhang1, Qiang Huang1, Jiuliang Feng3, Mu Lin4, and Guobao Li5 1State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, School of Water Resources and Hydropower, Xi’an University of Technology, Xi’an 710048, China 2Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717, USA 3Shanxi Provincal Water and Soil Conservation and Ecological Environment Construction Center, Taiyuan 030002, China 4School of statistics and Mathematics, Central University of Finance and Economics, Beijing 100081, China 5Work team of hydraulic of Yulin City, Yulin 719000, China Correspondence: Dengfeng Liu ([email protected]) Received: 29 December 2017 – Revised: 25 March 2018 – Accepted: 26 March 2018 – Published: 5 June 2018 Abstract. Han River is the water source region of the middle route of South-to-North Water Diversion in China and the ecological projects were implemented since many years ago. In order to monitor the change of vegetation in Han River and evaluate the effect of ecological projects, it is needed to reveal the spatial-temporal change of the vegetation in the upper reach of Han River quantitatively. The study is based on MODIS/Terra NDVI remote sensing data, and analyzes the spatial-temporal changes of the NDVI in August from 2000 to 2016 at pixel scale in the upper reach of Han River Basin. -
Dear Editor and Reviewers
1. Page 3652, lines 10-16: The table containing the site information is well-done, but within the manuscript it would be good to include the elevation range of the sampling sites. >> Revised as suggested - the elevation of all sampling sites was added to the table. The elevation ranges from 169 m to 661m above sea level. 2. P. 3652, l. 19: Is there any idea of the inter-annual variation in rainfall or temperature in this region? Perhaps error of some type here. Also, are there any present temperature/rainfall trends seen during this time period? >> Yes, we have added the inter-annual variation and presented rainfall and air temperature in this region based on seven meteorological stations located in the respective counties in this region (Shiyan City, Danjiangkou City, Yun County, Yunxi County, Fang County, Zhuxi County and Zhushan County) from 1961 to 2009. This information is given in the publication of Zhu et al., 2010. The data show that there is little interannual variation in rainfall and temperature for these sites (coefficient of variations of 5% and 1%). Present temperature / rainfall trends were (not) observed in the experiment year. All this information was added to the M+M section of the revised version. 3. P. 3652, l. 22: Where did the measure of sunshine hours come from? >> It comes from the reference of Zhu et al., 2010. We added this citation to the reference list. 4. P. 3653, l. 4-8: The description of the site selection process is lacking. How did “experienced staff members” select this sites? Where the selections random? Soil type and elevation have the potential to greatly influence the outcomes of these findings, the manner in which these site characteristics were consider in selecting study sites is crucial and thus this area of the manuscript needs further explication. -
Yichang to Badong Expressway Project
IPP307 v2 World Bank Financed Highway Project Yiba Expressway in Hubei·P. R. China YBE_05 Public Disclosure Authorized Public Disclosure Authorized Yichang to Badong Expressway Project Social Assessment Report Final Public Disclosure Authorized Public Disclosure Authorized The World Bank Financed Project Office of HPCD Social Survey Research Center of Peking University 22 September 2008 1 Preface Entrusted by the World Bank Financed Project Execution Office (PEO) under the Hubei Provincial Communications Department (HPCD), the Social Survey Research Center of Peking University (SSRCPKU) conducted an independent assessment on the “Project of the Stretch from Yichang to Badong of the Highway from Shanghai to Chengdu”. The Yiba stretch of the highway from Shanghai to Chengdu is lying in the west of Hubei Province which is at the joint of middle reaches and upper reaches of the Yangtze River. The project area administratively belongs to Yiling District Yichang City, Zigui County, Xingshang County and Badong County of Shien Tujia & Miao Autonomous Prefecture. It adjoins Jianghan Plain in the east, Chongqing City in the west, Yangtze River in the south and Shengnongjia Forest, Xiangfan City etc in the north. The highway, extending 173 km, begins in Baihe, connecting Jingyi highway, and ends up in Badong County in the joint of Hubei and Sichuan, joining Wufeng highway in Chongqing. Under the precondition of sticking to the World Bank’s policy, the social assessment is going to make a judgment of the social impact exerted by the project, advance certain measures, and in the meanwhile bring forward supervision and appraisement system. During July 1st and 9th, 2007, the assessment team conducted the social investigation in Yiling District Yichang City, Zigui County, XingshanCounty and Badong County. -
Quantitative Standard of Eco-Compensation for the Water Source Area in the Middle Route of the South-To-North Water Transfer Project in China
Front. Environ. Sci. Engin. China 2011, 5(3): 459–473 DOI 10.1007/s11783-010-0288-9 RESEARCH ARTICLE Quantitative standard of eco-compensation for the water source area in the middle route of the South-to-North Water Transfer Project in China Zhanfeng DONG1,2, Jinnan WANG (✉)2 1 State Key Laboratory of Pollution Control & Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China 2 Chinese Academy for Environmental Planning, Beijing 100012, China © Higher Education Press and Springer-Verlag Berlin Heidelberg 2011 Abstract The Middle Route Project(MRP) of the South- Water Transfer Scheme (SNWT) is a massive inter-basin to-North Water Transfer Scheme (SNWT) in China will water diversion project in China, aiming to optimize the require a very large financial expenditure to ensure the allocation of water resources spatially and to mitigate the water supply and the associated water quality to northern increasingly tense situation of water resources in two China. An eco-compensation mechanism between the provinces (Henan and Hebei) and two municipalities water service source areas and its beneficiaries is essential. (Beijing and Tianjin) in northern China. The Danjiangkou This paper establishes an analytic framework of eco- Reservoir Area (DRA) which lies mainly in Shiyan City, compensation standard for the protection of the water Hubei Province, is the source of the MRP. According to the source area, including both the calculation of eco- first-phase scheme of the MRP, after it is completed in compensation based on opportunity cost method (OCM) 2014, the water quality in the DRA should be guaranteed and calculation of the burden sharing of eco-compensation above water class II of Chinese Surface Water Standard between the water source area and the external water (GB 3838-2002) throughout the year and the annually reception area based on the deviation square method diverted water volume of 9.50Â109 m3. -
Allocation Efficiency, Influencing Factors And
International Journal of Environmental Research and Public Health Article Allocation Efficiency, Influencing Factors and Optimization Path of Rural Land Resources: A Case Study in Fang County of Hubei Province, China Bin Yang 1, Zhanqi Wang 1,*, Bo Zhang 2 and Di Zhang 1 1 School of Public Administration, China University of Geosciences (Wuhan), Wuhan 430074, China; [email protected] (B.Y.); [email protected] (D.Z.) 2 Department of Geography, University of Connecticut, Storrs, CT 06269, USA; [email protected] * Correspondence: [email protected]; Tel.: +86-27-6784-8562 Received: 12 July 2020; Accepted: 12 August 2020; Published: 14 August 2020 Abstract: Land resource allocation efficiency (LRAE) is a significant indicator in weighing regional socioeconomic development. The study of LRAE can provide useful references for optimizing the layout of rural land use and conducting village planning against the background of rural revitalization strategy. Taking Fang County of Hubei Province as an example, we constructed an efficiency measurement index system based on economic, social, and ecological objectives. The slack-based measure with undesirable output (SBM-Undesirable) model and geodetector model were used to evaluate the rural LRAE, influencing factors and optimization paths from 2011 to 2017. The results suggest that: (1) the rural LRAE in Fang County shows a steady upward trend, with an average increasing rate of 9.204%. The townships in the north and south of the study area have a low LRAE value, and townships in the central area have a high LRAE value. The number of villages at low or medium-low LRAE is decreasing, and the number of villages with medium-high or high LRAE continued to increase from 2011 to 2017. -
<I>Ceriporia</I> (<I>Basidiomycota</I
ISSN (print) 0093-4666 © 2011. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON Volume 116, pp. 457–468 April–June 2011 doi: 10.5248/116.457 Notes on Ceriporia (Basidiomycota, Polyporales) in China Bi-Si Jia & Bao-Kai Cui* Institute of Microbiology, P.O. Box 61, Beijing Forestry University, Beijing 100083, China *Correspondence to: [email protected] Abstract — The 16 species recorded from China in the genus Ceriporia were studied. Among them Ceriporia nanlingensis is new to science, and C. davidii, C. mellea and C. totara are new to the Chinese fungal flora. These four species are described and illustrated from the Chinese materials, and a key to accepted species of Chinese Ceriporia is supplied. Key words — lignicolous, poroid, fungi, Phanerochaetaceae, taxonomy Introduction Ceriporia Donk is a polypore genus, characterized by its annual growth habit, resupinate basidiocarps with variable colors of poroid surface, a monomitic hyphal system with simple septa on generative hyphae (clamps present in some species only), hyaline, thin-walled and usually cylindrical to oblong- ellipsoid basidiospores, and causing a white rot (Gilbertson & Ryvarden 1986; Núñez & Ryvarden 2001; Pieri & Rivoire 1997; Ryvarden & Gilbertson 1993). Ceriporia species have a wide distribution, and 32 species have been accepted worldwide. During the last 10 years, Chinese polypores have been examined, with 12 Ceriporia species recorded from different provinces of China (Cui et al. 2008; Dai et al. 2002, 2003, 2004, 2007a, b, 2009; Dai & Penttilä 2006; Li et al. 2007, 2008; Wang et al. 2009; Yuan & Dai 2006; Yuan et al. 2008). However, many unidentified specimens were kept in our herbarium, after checking most of the type materials of the genus, one species new to science and three species new to Chinese mycota were found. -
Genetic Diversity in Kiwifruit Polyploid Complexes: Insights Into Cultivar Evaluation, Conservation, and Utilization
Tree Genetics & Genomes (2014) 10:1451–1463 DOI 10.1007/s11295-014-0773-6 ORIGINAL PAPER Genetic diversity in kiwifruit polyploid complexes: insights into cultivar evaluation, conservation, and utilization Dawei Li & Yifei Liu & Xinwei Li & Jingyun Rao & Xiaohong Yao & Caihong Zhong Received: 14 November 2013 /Revised: 22 June 2014 /Accepted: 30 June 2014 /Published online: 6 July 2014 # Springer-Verlag Berlin Heidelberg 2014 Abstract Understanding the extent and partitioning of crop morphology and genetic backgrounds. Based on these find- genetic diversity is necessary for conserving and utilizing their ings, strategies were proposed for the conservation and utili- genetic potentials for breeding. In the present study, zation of the current kiwifruit genetic resources for future fluorescence-labeled amplified fragment length polymor- breeding programs. phism markers were used to characterize the genetic diversity and relationships of 79 cultivars and also of 122 F1 hybrids Keywords Kiwifruit cultivars . Genetic diversity . which resulted from six kiwifruit interploid crosses. A high Polyploidy . Interploid cross . Conservation level of mean genetic diversity was detected (Hj > 0.22) for all cultivars investigated, without significant differences among diploids (2x), tetraploids (4x), and hexaploids (6x). This sug- Introduction gested that no significant genetic erosion occurred in these cultivars, which were directly selected from natural resources Crop genetic diversity is the raw material for breeding new or created from crosses. The Unweighted Pair Group Method crop varieties in response to the needs of diverse agricultural with Arithmetic Mean analysis of the genetic dissimilarity systems (Brussaard et al. 2010). Domestication or plant breed- between cultivars showed three main groups mostly based ing per se can be harmful for maintaining crop diversity on their three ploidy levels. -
World Bank Financed Hubei Yichang Three Gorges Modern Logistics Center Infrastructure Project
SFG2362 G.H.P.Z.J.Z. No. 2606 Public Disclosure Authorized World Bank Financed Hubei Yichang Three Gorges Modern Logistics Center Infrastructure Project Public Disclosure Authorized Environmental and Social Impact Assessment Report (For Appraisal) Public Disclosure Authorized Public Disclosure Authorized Central-Southern Safety & Environment Technology Institute Co. Ltd. July, 2016 World Bank Financed Hubei Yichang Three Gorges Modern Name of the Project Logistics Center Infrastructure Project Central-Southern Safety & Environment Technology Institute Assessed by Co. Ltd. Legal representative QIAN Bin Task Team leader LIU Zhe Vice-Task Team Leader SHE Jian Team Member KOU Xueyong, LUO Feng, ZHANG Qi Reviewed and Approved by: ZHANG Bin Table of Contents 1 INTRODUCTION ......................................................................................................................... - 1 - 1.1 BACKGROUND ................................................................................................................................ - 1 - 1.2 REGULATORY AND LEGAL FRAMEWORK .......................................................................................... - 1 - 1.2.1 Laws and regulations .................................................................................................................- 1 - 1.2.2 Administration regulations ........................................................................................................- 3 - 1.2.3 Technical specifications ..............................................................................................................-