Upper Jurassic to Lower Cretaceous Stratigraphic Model for the Eastern

Total Page:16

File Type:pdf, Size:1020Kb

Upper Jurassic to Lower Cretaceous Stratigraphic Model for the Eastern $EVWUDFWVRI/DWH-XUDVVLF²(DUO\&UHWDFHRXV6\VWHPV$UDELDQ3ODWH %RXQGDU\ /\RQ1HXFKDWHO 6HSWHPEHU %XUHDX GH 5HFKHUFKHV *pRORJLTXH HW 0LQLqUHV %XOOHWLQ GHX[LHPHVHULH 6HFWLRQ,9QRS -DVVLP6=DQG-&*RII*HRORJ\RI,UDT'ROLQ3UDJXHDQG0RUDYLDQ0XVHXUH%UQR&]HFK 5HSXEOLFS .UDVKHQLQQRY9$-.+DOO)+LUVFK&%HQMDPLQLDQG$)OH[HU*HRORJLFDO)UDPHZRUNRI WKH/HYDQW9ROXPH&\SUXVDQG6\ULD+LVWRULFDO3URGXFWLRQV+DOOS 0F*XLUH 0' 5% .RHSQLFN -5 0DUNHOOR 0/ 6WRFNWRQ /( :DLWH*6 .RPSDQLN 0-$O 6KDPPHU\ DQG 02 $O$PRXGL ,PSRUWDQFH RI VHTXHQFH VWUDWLJUDSKLF FRQFHSWV LQ GHYHORSPHQW RI UHVHUYRLU DUFKLWHFWXUH LQ 8SSHU -XUDVVLF JUDLQVWRQHV +DGUL\D DQG +DQLID UHVHUYRLUV6DXGL$UDELD3URFHHGLQJVRIWKHWK6RFLHW\RI3HWUROHXP(QJLQHHUV0LGGOH(DVW2LO 6KRZ63(SDSHUS 5RXVVHDX0*'URPDUW-3*DUFLD)$WURSVDQG)*XLOORFKDX-XUDVVLFHYROXWLRQRIWKH $UDELDQ 3ODWIRUP HGJH LQ WKH FHQWUDO 2PDQ 0RXQWDLQV -RXUQDO RI WKH *HRORJLFDO 6RFLHW\ RI /RQGRQYS 5RXVVHDX 0 * 'URPDUW + 'URVWH DQG 3 +RPHZRRG 6WUDWLJUDSKLF RUJDQLVDWLRQ RI WKH -XUDVVLFVHTXHQFHLQ,QWHULRU2PDQ$UDELDQ3HQLQVXOD*HR$UDELDYQRS 6DFKVHQKRIHU5)$%HFKWHO5:'HOOPRXU$)0REDUDNDEDG5*UDW]HUDQG$6DOPDQ 8SSHU -XUDVVLF VRXUFH URFNV LQ WKH 6DE·DWD\Q %DVLQ <HPHQ 'HSRVLWLRQDO HQYLURQPHQW VRXUFH SRWHQWLDODQGK\GURFDUERQJHQHUDWLRQ*HR$UDELDYQRS 6DGRRQL )1 6WUDWLJUDSKLF VHTXHQFH PLFURIDFLHV DQG SHWUROHXP SRWHQWLDO RI WKH <DPDPD )RUPDWLRQ/RZHU&UHWDFHRXV6RXWKHUQ,UDT%XOOHWLQRIWKH$PHULFDQ$VVRFLDWLRQRI3HWUROHXP *HRORJLVWVYS 6HWXGHKQLD $ 7KH 0HVR]RLF VHTXHQFH LQ VRXWKZHVW ,UDQ DQG DGMDFHQW DUHDV -RXUQDO RI 3HWUROHXP*HRORJ\YS 6KDUODQG355$UFKHU'0&DVH\5%'DYLHV6+DOO$+HZDUG$+RUEXU\DQG0'6LPPRQV $UDELDQ 3ODWH 6HTXHQFH 6WUDWLJUDSK\ *HR$UDELD 6SHFLDO 3XEOLFDWLRQ *XOI 3HWUR/LQN %DKUDLQSZLWKFKDUWV 6KDUODQG35'0&DVH\5%'DYLHV0'6LPPRQVDQG2(6XWFOLIIH$UDELDQ3ODWH6HTXHQFH 6WUDWLJUDSK\*HR$UDELDYQRS 6LPPRQV0'356KDUODQG'0&DVH\5%'DYLHVDQG2(6XWFOLIIH$UDELDQ3ODWHVHTXHQFH VWUDWLJUDSK\3RWHQWLDOLPSOLFDWLRQVIRUJOREDOFKURQRVWUDWLJUDSK\*HR$UDELDYQRS 7DQROL 6. 0' $O$MPL + $O$PPDU DQG 1 %DQLN :KHUH WR ÀQG WKH 5HVHUYRLU /DWH 9DODQJLQLDQ8QFRQIRUPLW\DVVRFLDWHGSOD\LQ.XZDLW6HDUFKDQG'LVFRYHU\$UWLFOHS 9DKUHQNDPS9&)DO.DWKHHUL3YDQ/DHU'3RSD35D]LQDQG&*UpODXG5HHYDOXDWLRQRI WKH/DWH-XUDVVLF6WUDWLJUDSK\RI$EX'KDEL²$'LIIHUHQW7DFNRQD&DUERQDWH(YDSRULWH6\VWHP DQG,WV,PSOLFDWLRQIRU([SORUDWLRQ3OD\V6HDUFKDQG'LVFRYHU\$UWLFOHS YDQ%HOOHQ5&+9'XQQLQJWRQ5:HW]HODQG'00RUWRQ/H[LTXH6WUDWLJUDSKLTXH ,QWHUQDWLRQDO$VLH ,UDT SDJHV5HSULQWHGE\SHUPLVVLRQRI&156E\*XOI3HWUR/LQN %DKUDLQ 8SSHU-XUDVVLFWR/RZHU&UHWDFHRXVVWUDWLJUDSKLFPRGHO IRUWKHHDVWHUQ$UDELDQ3ODWH +HQN-'URVWH 6KHOO+HQN'URVWH#VKHOOFRP! 7KH8SSHU-XUDVVLFWR/RZHU&UHWDFHRXVLQWHUYDODORQJWKHHDVWHUQHGJHRIWKH$UDELDQ3ODWHLVD VWUDWLJUDSKLF SX]]OH ZLWK PDQ\ PLVVLQJ SLHFHV ,Q WKH 8QLWHG $UDE (PLUDWHV 8$( DQG 6DXGL $UDELDWKLVLQWHUYDOFRQWDLQVWKHSUROLÀF$UDEUHVHUYRLUVVHDOHGE\WKH+LWKDQK\GULWH7KHVHZHUH WKHPDLQWDUJHWRIWKHÀUVWH[SORUDWLRQZHOOLQQRUWKHUQ2PDQEXWXQIRUWXQDWHO\WKLVUHVHUYRLUVHDO SDLUZDVIRXQGWREHDEVHQWDQGWKHZHOOZDVDEDQGRQHGDVDKXJHO\GLVDSSRLQWLQJGU\KROH,W EHFDPHDSSDUHQWWKDWLQ2PDQ0LGGOH-XUDVVLFVKDOORZZDWHUFDUERQDWHVDUHRYHUODLQE\GHHSZDWHU GHSRVLWVRISRRUO\GHÀQHG/DWH-XUDVVLF²(DUO\&UHWDFHRXVDJH 7KHQDWXUHRIWKHODWHUDOFKDQJHKDVEHHQDSRLQWRIGLVFXVVLRQIRUPDQ\\HDUV,QWKHVXEVXUIDFH VWUDWLJUDSKLF WKLQQLQJ RI WKH 8SSHU -XUDVVLF WRZDUGV WKH HDVW KDV EHHQ REVHUYHG ZKLOH LQ WKH Downloaded from http://pubs.geoscienceworld.org/geoarabia/article-pdf/18/2/197/4570627/eage_2012_workshop_2.pdf by guest on 29 September 2021 on 29 September 2021 by guest Downloaded from http://pubs.geoscienceworld.org/geoarabia/article-pdf/18/2/197/4570627/eage_2012_workshop_2.pdf $EVWUDFWVRI/DWH-XUDVVLF²(DUO\&UHWDFHRXV6\VWHPV$UDELDQ3O West SAUDI ARABIA OMAN East Lekhwair Zakum-Chrysalidina Habshan Oman Yamama Habshan Manifa UAE Sulaiy Asab Salil Rayda Hith-Arab Arab D ‘Mender’ Aphanitic Limestone Hanifa DWH Jubaila Tuwaiq Uwainat 0.05° Carbonate shoals Arid lagoonal carbonates 0.1° Hemi-pelagic carbonates Humid lagoonal carbonates 200 m 1° Argillaceous hemi-pelagic Evaporites carbonates Source rocks 100 km )LJXUH:HOOFRUUHODWLRQSDQHOIRU0LGGOH-XUDVVLFWR/RZHU&UHWDFHRXVLQHDVWHUQ6DXGL$UDELDDQG2PDQ on 29 September 2021 by guest Downloaded from http://pubs.geoscienceworld.org/geoarabia/article-pdf/18/2/197/4570627/eage_2012_workshop_2.pdf West East Chronostratigraphy LEKHWAIR OMAN GTS2004 KIDAN SHAYBAH HIGH MOUNTAINS Ma Nahr Umr Khafji Marker Limestone L Hassanat Aptian Shu’aiba Bab Mbr Shu’aiba Shu’aiba E Biyadh Upper Kharaib Barremian L Early E Lower Kharaib Hauterivian Lekhwair CRETACEOUS Buwaib Habshan Chrysalidina bed Salil Valanginian Habshan Yamama Berriasian Habshan Sulaiy Hith Manifa Rayda Tithonian Asab submarine onlap 150 Mender Arab Jubaila Aphanitic Limestone $EVWUDFWVRI/DWH-XUDVVLF²(DUO\&UHWDFHRXV6\VWHPV$UDELDQ3O Kimmeridgian Hanifa Oxfordian Hadriya reservoir Tuwaiq Dhruma Hisyan mbr Callovian Upper Fadhili Reservoir/upper Araej Uwainat mbr Bathonian Lower Fadhili Reservoir Dhruma Lower Araej Bajocian Upper Mafraq Aalenian Approx. 100 km JURASSIC Toarcian Upper Mafraq Lower Mafraq Pliensbachian Marrat Early Middle Late Sinemurian Carbonate shoals Arid lagoonal carbonates Coastal/fluvial sands Hemi-pelagic carbonates Lagoonal carbonates Inner shelf shale/marls Hettangian Source rocks 200 Argillaceous hemi-pelagic Evaporites carbonates )LJXUH6FKHPDWLFFKURQRVWUDWLJUDSKLFFURVVVHFWLRQIRUWKH-XUDVVLFWR0LGGOH&UHWDFHRXVIURPHDVWHUQ6DXGL$UDELDWR2PDQ DWH $EVWUDFWVRI/DWH-XUDVVLF²(DUO\&UHWDFHRXV6\VWHPV$UDELDQ3ODWH RXWFURSVRIWKH2PDQ0RXQWDLQVWKHUHLVHYLGHQFHRIHURVLRQDQGWUXQFDWLRQRIWKH0LGGOH-XUDVVLF ,QWHUSUHWDWLRQVZHUHKDPSHUHGE\ GLIIHUHQFHVLQDQGLQFRQVLVWHQWXVHRIVWUDWLJUDSKLFQRPHQFODWXUHDFURVVSROLWLFDOERXQGDULHV VKDUS ODWHUDO FKDQJHV LQ VWUDWLJUDSK\ GXH WR WKH SUHVHQFH RI GHSRVLWLRQDO ZHGJHV DQG PRVW LPSRUWDQWO\ YHU\SRRUELRVWUDWLJUDSKLFDJHFRQWURO )XUWKHUPRUH FRUUHODWLRQV DUH KDPSHUHG E\ WKH IDFW WKDW WKH RQO\ KRUL]RQV WKDW FDQ EH FRUUHODWHG FRQÀGHQWO\RQDUHJLRQDOVFDOH =DNXP&KU\VDOLGLQDDQGWRS'KUXPD DUHTXLWHVRPHGLVWDQFHDERYH DQGEHORZWKHLQWHUYDORILQWHUHVW 6HYHUDOPRGHOVKDYHEHHQSURSRVHG ODWHUDOIDFLHVFKDQJHWRFRQGHQVHGGHHSZDWHUIDFLHV ODWHVW-XUDVVLFXSOLIWDQGVXEDHULDOHURVLRQIROORZHGE\GURZQLQJRU VXEPDULQHHURVLRQDVVRFLDWHGZLWKEORFNIDXOWLQJ 5HFHQWELRVWUDWLJUDSKLFGDWDFRPELQHGZLWKVHLVPLFREVHUYDWLRQVDOORZHGWKHFRQVWUXFWLRQRIDQHZ VWUDWLJUDSKLFPRGHOZKLFKZLOOKHOSWRGHÀQHWKHVWUDWLJUDSKLFWUDSSLQJSRWHQWLDOZLWKLQWKLVLQWHUYDO 7KH /RZHU WR 0LGGOH -XUDVVLF VWDUWV ZLWK DQ RYHUDOO WUDQVJUHVVLYH VHTXHQFH RI ÁXYLDO WR FRDVWDO VLOLFLFODVWLFV DQG VKDOORZPDULQH WR ODJRRQDO FDUERQDWHV ZKLFK RQODS WKH XSOLIWHG HDVWHUQ SODWH PDUJLQLQ2PDQ7KLVLVRYHUODLQE\DFRPSOH[RIFDUERQDWHVDQGVKRDOVWKDWSURJUDGHGWRZDUGVWKH ZHVWLQWRWKH5XE·$O.KDOL%DVLQ 7KHWUXQFDWLRQRIWKH0LGGOH-XUDVVLFFDUERQDWHSODWIRUPLVUHODWHGWRXSOLIWDQGVXEDHULDOH[SRVXUH RIWKHHDVWHUQSODWHPDUJLQDWWKHHQGRIWKH0LGGOH-XUDVVLF$NDUVWLFVXUIDFHZLWKH[WUDFODVWVKDV EHHQUHFRJQLVHGLQFRUHV7KH7XZDLTDQG'KUXPDIRUPDWLRQVDUHSURJUHVVLYHO\WUXQFDWHGWRZDUGV WKHHDVWDWOHDVWVRPHPKDVEHHQUHPRYHG7KHVXUIDFHLVRYHUODLQE\´DSKDQLWLFµOLPHVWRQHV LQWHUEHGGHG PDVVLYH DQG ODPLQDWHG OLPH PXGVWRQHV GHSRVLWHG E\ ORZGHQVLW\ WXUELGLWHV LQ DQ RIIVKRUHVHWWLQJZLWKUDUHVNHOHWDOGHEULVFDOFLVSKHUHVDQGVKHOOIUDJPHQWV7KLVVXJJHVWVWKDWXSOLIW ZDVIROORZHGE\PDMRUFROODSVHRIWKHHDVWHUQPDUJLQRIWKH$UDELDQ3ODWHDQGWKHGHYHORSPHQWRI GURZQLQJXQFRQIRUPLW\RYHUODLQE\GHHSZDWHUFRQGHQVHGVHGLPHQWV7KHFROODSVHDVZHOODVWKH SUHFHGLQJXSOLIWPD\EHUHODWHGWRWKHLQLWLDWLRQRIWKHWUDQVIRUPIDXOWPDUJLQORFDWHGRIIVKRUHHDVWHUQ 2PDQLQWKH$UDELDQ6HDRULVRVWDWLFVDJJLQJRIWKHXQGHUO\LQJ7ULDVVLFWR/RZHU-XUDVVLFLQWHULRU SODWIRUP FDUERQDWHV %LRVWUDWLJUDSK\ VXJJHVW DQ (DUO\ .LPPHULGJLDQ DJH IRU WKLV XQFRQIRUPLW\ PXFKROGHUWKDQWKHEDVH&UHWDFHRXVDVKDVEHHQVXJJHVWHGLQRWKHUVWXGLHV )ROORZLQJWKHHDUO\/DWH-XUDVVLFÁRRGLQJHYHQWVHLVPLFVKRZVWKDWDVWDFNHGFRPSOH[RIHDVWZDUG SURJUDGLQJFDUERQDWHSODWIRUPVZDVHVWDEOLVKHGLQ6DXGL$UDELDDQGWKH8$(FRQVLVWLQJRIWKH$UDE +LWK$VDEDQGWKH6XODL\<DPDPDIRUPDWLRQVZKLOHLQQRUWKHUQ2PDQGHSRVLWLRQWRRNSODFHLQD GHHSEDVLQDOVHWWLQJ7KHUHDUHVRPHLQGLFDWLRQVRQVHLVPLFDQGLQZHOOFRUUHODWLRQVWKDWWKHLQLWLDWLRQ RIWKLVSODWIRUPPD\KDYHEHHQWULJJHUHGE\DVKDOORZLQJHYHQWGXHWRVWUXFWXUDOXSOLIWLQWKHHDVWHUQ 8$(DQG6DXGL$UDELD:HVWZDUGRIWKHSODWIRUPPDUJLQDGHHSHULQWUDVKHOIEDVLQZDVLQLWLDOO\ SUHVHQWZKHUHGXULQJDEDVHOHYHOIDOOWKH$UDEDQG+LWKHYDSRULWHVZHUHGHSRVLWHG7KHXSSHU SDUWVRIWKH8SSHU-XUDVVLFSODWIRUPLQWHULRUFRQVLVWRIVKDOORZPDULQHWRLQWHUWLGDOFDUERQDWHVZLWK ORFDOO\HYDSRULWHVRIWKH6XODL\DQG<DPDPD ,WZDVRQO\E\(DUO\&UHWDFHRXVWLPHVWKDWWKHSODWIRUPUHDFKHG1RUWK2PDQZLWKGHSRVLWLRQRIWKH 6DOLO+DEVKDQIRUPDWLRQV8QOLNHWKH-XUDVVLFSODWIRUPVPRUHDUJLOODFHRXVKHPLSHODJLFFDUERQDWHV 6DOLO)RUPDWLRQ IRUPWKHORZHUSDUWRIWKHVORSHDQGWKHEDVLQDOVHGLPHQWVLQIURQWRIWKH+DEVKDQ RROLWHPDUJLQ$OVRWKHWLPHHTXLYDOHQWODJRRQDOGHSRVLWVRIWKH=DNXP/HNKZDLU)RUPDWLRQVKRZ PRUHFODVWLFLQÁXHQFHDQGDEVHQFHRIHYDSRULWHV7KLVVXJJHVWVDFOLPDWLFFKDQJHIURPDQRYHUDOO DULGVHWWLQJGXULQJWKH-XUDVVLFWRDKXPLGVHWWLQJLQWKH&UHWDFHRXV'XULQJWKH(DUO\&UHWDFHRXV WKLVSODWIRUPSURJUDGHGPRUHWKDQNPWRWKHHDVWWRDSRVLWLRQRIDSSUR[LPDWHO\WKHSUHVHQWGD\ QRUWKHUQ2PDQFRDVWOLQH6HLVPLFVKRZVDVSHFWDFXODUV\VWHPRIODWHUDOO\VWDFNHGEHOWVRIFOLQRIRUP VHWVVHSDUDWHGE\GLVFRQWLQXLWLHV Downloaded from http://pubs.geoscienceworld.org/geoarabia/article-pdf/18/2/197/4570627/eage_2012_workshop_2.pdf by guest on 29 September 2021 Downloaded from http://pubs.geoscienceworld.org/geoarabia/article-pdf/18/2/197/4570627/eage_2012_workshop_2.pdf by guest on 29 September 2021 $EVWUDFWVRI/DWH-XUDVVLF²(DUO\&UHWDFHRXV6\VWHPV$UDELDQ3ODWH (YLGHQFHRIJODFLRHXVWDV\GXULQJWKH/DWH%HUULDVLDQWR/DWH9DODQJLQLDQ 5HFRUGLQWKH/HNKZDLU+DEVKDQ6DOLOSURJUDGLQJJHRPHWULHV 5D\GD%DVLQ6XOWDQDWHRI2PDQ (PPDQXHO'XMRQFTXR\ 0DHUVN2LOHPPDQXHOGXMRQFTXR\#PDHUVNRLOFRP! SUHYLRXVO\8QLYHUVLW\RI%RUGHDX[)UDQFH 3KLOLSSH5D]LQ 8QLYHUVLW\RI%RUGHDX[
Recommended publications
  • The Valanginian to Aptian Stages - Current Definitions and Outstanding Problems
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at 4‘>3 Zitteliana 10 493-500 München, I. Juli 1983 ISSN 0373 9627 The Valanginian to Aptian stages - current definitions and outstanding problems Compiled by PETER FRANKLIN RAWSON») Willi 3 tables ABSTRACT Current definitions of the Valanginian to Aptian Stages are tion potential. The I’re-Albian Stages Working Croup is in­ reviewed and some of the outstanding problems outlined. Fi­ stigating study of selected sections in various parts of the nal recommendations on stage boundaries can be made only world to provide an integrated framework ol biostraligraphy after much more strat¡(graphical work has been completed, as and event stratigraphy. the eventual boundaries must have good international correla­ KURZFASSUNG Lin Überblick über die gängigen Definitionen der Stufen barsein. Die Prc-Albian Stagcs Working Group regt an, ms vom Valangin bis zum Apt wird gegeben und einige wichtige gewählte Profile in verschiedenen Peilen der Welt zu unterst! Probleme hervorgehoben. Lndgülligc Empfehlungen zu Stu­ ehen, um so den allgemeinen Rahmen liii eine Ncudelinition fengrenzen sind z. Zt. noch nicht möglich. Dazu sind noch der Stufen auf der Grundlage der Biostraligraphie und der weitere stratigraphische Untersuchungen erforderlich, denn Lvenl-Straiigraphic zu schaffen. die fcstzulcgendcn Grenzen müssen international korrelier­ I. INTRODUCTION This review has been compiled on behalf of the Prc-Albian boundaries and to improve the usage of stage names in re­ Stages Working Group of the Subcommission on Cretaceous gions away from stratotype sections." Stratigraphy. The primary role of the working group is to cla ­ Thus our fundamental philosophy is first to make objective rify, and to improve where necessary, the definition and correlations between regions and only then to redefine stages boundaries of the Valanginian to Aptian Stages.
    [Show full text]
  • Norwegian Seaway: a Key Area for Understanding Late Jurassic to Early Cretaceous Paleoenvironments
    CORE Metadata, citation and similar papers at core.ac.uk Provided by OceanRep PALEOCEANOGRAPHY, VOL. 18, NO. 1, 1010, doi:10.1029/2001PA000625, 2003 The Greenland-Norwegian Seaway: A key area for understanding Late Jurassic to Early Cretaceous paleoenvironments Jo¨rg Mutterlose,1 Hans Brumsack,2 Sascha Flo¨gel,3 William Hay,3 Christian Klein,1 Uwe Langrock,4 Marcus Lipinski,2 Werner Ricken,5 Emanuel So¨ding,3 Ru¨diger Stein,4 and Oliver Swientek5 Received 22 January 2001; revised 24 April 2002; accepted 9 July 2002; published 26 February 2003. [1] The paleoclimatology and paleoceanology of the Late Jurassic and Early Cretaceous are of special interest because this was a time when large amounts of marine organic matter were deposited in sediments that have subsequently become petroleum source rocks. However, because of the lack of outcrops, most studies have concentrated on low latitudes, in particular the Tethys and the ‘‘Boreal Realm,’’ where information has been based largely on material from northwest Germany, the North Sea, and England. These areas were all south of 40°N latitude during the Late Jurassic and Early Cretaceous. We have studied sediment samples of Kimmeridgian (154 Ma) to Barremian (121 Ma) age from cores taken at sites offshore mid-Norway and in the Barents Sea that lay in a narrow seaway connecting the Tethys with the northern polar ocean. During the Late Jurassic-Early Cretaceous these sites had paleolatitudes of 42–67°N. The Late Jurassic-Early Cretaceous sequences at these sites reflect the global sea-level rise during the Volgian-Hauterivian and a climatic shift from warm humid conditions in Volgian times to arid cold climates in the early Hauterivian.
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • Valanginian Occurrence of Pelomedusoides Turtles in Northern South America: Revision of This Hypothesis Based on a New Fossil Remain
    Valanginian occurrence of Pelomedusoides turtles in northern South America: revision of this hypothesis based on a new fossil remain Edwin-Alberto Cadena Facultad de Ciencias Naturales, Grupo de Investigación Paleontología Neotropical Tradicional y Molecular (PaleoNeo), Universidad del Rosario, Bogotá, Colombia Smithsonian Tropical Research Institute, Panama City, Panama ABSTRACT Pelomedusoides constitutes the most diverse group of Mesozoic and Cenozoic side-necked turtles. However, when it originated is still being poorly known and controversial. Fossil remains from the Early Cretaceous (Valanginian) Rosa Blanca Formation of Colombia were described almost a decade ago as potentially belonging to Podocnemidoidea (a large subclade inside Pelomedusoides) and representing one of the earliest records of this group of turtles. Here, I revise this hypothesis based on a new fragmentary specimen from the Rosa Blanca Formation, represented by a right portion of the shell bridge, including the mesoplastron and most of peripherals 5 to 7. The equidimensional shape of the mesoplatron allows me to support its attribution as belonging to Pelomedusoides, a group to which the previously podocnemidoid material is also attributed here. Although the Valanginian pelomesudoid material from Colombia is still too fragmentary as to be considered the earliest indisputable record of the Pelomedusoides clade, their occurrence is at least in agreement with current molecular phylogenetic hypotheses that suggest they split from Chelidae during the Jurassic and should
    [Show full text]
  • U-Pb Geochronology and Paleogeography of the Valanginian– Hauterivian Neuquén Basin: Implications for Gondwana-Scale
    Research Paper GEOSPHERE U-Pb geochronology and paleogeography of the Valanginian– Hauterivian Neuquén Basin: Implications for Gondwana-scale GEOSPHERE, v. 17, no. 1 source areas https://doi.org/10.1130/GES02284.1 E. Schwarz1,*, E.S. Finzel2,*, G.D. Veiga1, C.W. Rapela1, C. Echevarria3,*, and L.A. Spalletti1 1Centro de Investigaciones Geológicas (Universidad Nacional de La Plata–Consejo Nacional de Investigaciones Científicas y Técnicas [CONICET]), Diagonal 113 #256 B1904DPK, La Plata, Argentina 13 figures; 2 tables; 1 set of supplemental files 2Earth and Environmental Science Department, University of Iowa, 115 Trowbridge Hall, Iowa City, Iowa 52242, USA 3Pampa Energía S.A. Gerencia Tight, Dirección de E&P, J.J. Lastra 6000, 8300 Neuquén, Argentina CORRESPONDENCE: [email protected] ABSTRACT starting in the mid-continent region of south- Early Cretaceous was the Neuquén Basin, which CITATION: Schwarz, E., Finzel, E.S., Veiga, G.D., western Gondwana and by effective sorting, was during that time was a backarc basin separated Rapela, C.W., Echevarria, C., and Spalletti, L.A., Sedimentary basins located at the margins bringing fine-grained or finer caliber sand to the from the proto–Pacific Ocean (i.e., to the west) by 2021, U-Pb geochronology and paleogeography of the of continents act as the final base level for con- Neuquén Basin shoreline. This delivery system was a discontinuous volcanic arc (Howell et al., 2005). Valanginian–Hauterivian Neuquén Basin: Implications for Gondwana-scale source areas: Geosphere, v. 17, tinental-scale catchments that are sometimes probably active (though not necessarily continu- This marine basin was bounded by the Sierra no.
    [Show full text]
  • Paleogeographic Maps Earth History
    History of the Earth Age AGE Eon Era Period Period Epoch Stage Paleogeographic Maps Earth History (Ma) Era (Ma) Holocene Neogene Quaternary* Pleistocene Calabrian/Gelasian Piacenzian 2.6 Cenozoic Pliocene Zanclean Paleogene Messinian 5.3 L Tortonian 100 Cretaceous Serravallian Miocene M Langhian E Burdigalian Jurassic Neogene Aquitanian 200 23 L Chattian Triassic Oligocene E Rupelian Permian 34 Early Neogene 300 L Priabonian Bartonian Carboniferous Cenozoic M Eocene Lutetian 400 Phanerozoic Devonian E Ypresian Silurian Paleogene L Thanetian 56 PaleozoicOrdovician Mesozoic Paleocene M Selandian 500 E Danian Cambrian 66 Maastrichtian Ediacaran 600 Campanian Late Santonian 700 Coniacian Turonian Cenomanian Late Cretaceous 100 800 Cryogenian Albian 900 Neoproterozoic Tonian Cretaceous Aptian Early 1000 Barremian Hauterivian Valanginian 1100 Stenian Berriasian 146 Tithonian Early Cretaceous 1200 Late Kimmeridgian Oxfordian 161 Callovian Mesozoic 1300 Ectasian Bathonian Middle Bajocian Aalenian 176 1400 Toarcian Jurassic Mesoproterozoic Early Pliensbachian 1500 Sinemurian Hettangian Calymmian 200 Rhaetian 1600 Proterozoic Norian Late 1700 Statherian Carnian 228 1800 Ladinian Late Triassic Triassic Middle Anisian 1900 245 Olenekian Orosirian Early Induan Changhsingian 251 2000 Lopingian Wuchiapingian 260 Capitanian Guadalupian Wordian/Roadian 2100 271 Kungurian Paleoproterozoic Rhyacian Artinskian 2200 Permian Cisuralian Sakmarian Middle Permian 2300 Asselian 299 Late Gzhelian Kasimovian 2400 Siderian Middle Moscovian Penn- sylvanian Early Bashkirian
    [Show full text]
  • 2009 Geologic Time Scale Cenozoic Mesozoic Paleozoic Precambrian Magnetic Magnetic Bdy
    2009 GEOLOGIC TIME SCALE CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST. HIST. ANOM. ANOM. (Ma) CHRON. CHRO HOLOCENE 65.5 1 C1 QUATER- 0.01 30 C30 542 CALABRIAN MAASTRICHTIAN NARY PLEISTOCENE 1.8 31 C31 251 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 70.6 254 2A PIACENZIAN 32 C32 L 630 C2A 3.6 WUCHIAPINGIAN PLIOCENE 260 260 3 ZANCLEAN 33 CAMPANIAN CAPITANIAN 5 C3 5.3 266 750 NEOPRO- CRYOGENIAN 80 C33 M WORDIAN MESSINIAN LATE 268 TEROZOIC 3A C3A 83.5 ROADIAN 7.2 SANTONIAN 271 85.8 KUNGURIAN 850 4 276 C4 CONIACIAN 280 4A 89.3 ARTINSKIAN TONIAN C4A L TORTONIAN 90 284 TURONIAN PERMIAN 10 5 93.5 E 1000 1000 C5 SAKMARIAN 11.6 CENOMANIAN 297 99.6 ASSELIAN STENIAN SERRAVALLIAN 34 C34 299.0 5A 100 300 GZELIAN C5A 13.8 M KASIMOVIAN 304 1200 PENNSYL- 306 1250 15 5B LANGHIAN ALBIAN MOSCOVIAN MESOPRO- C5B VANIAN 312 ECTASIAN 5C 16.0 110 BASHKIRIAN TEROZOIC C5C 112 5D C5D MIOCENE 320 318 1400 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 326 6 C6 APTIAN 20 120 1500 CALYMMIAN E 20.4 6A C6A EARLY MISSIS- M0r 125 VISEAN 1600 6B C6B AQUITANIAN M1 340 SIPPIAN M3 BARREMIAN C6C 23.0 345 6C CRETACEOUS 130 M5 130 STATHERIAN CARBONIFEROUS TOURNAISIAN 7 C7 HAUTERIVIAN 1750 25 7A M10 C7A 136 359 8 C8 L CHATTIAN M12 VALANGINIAN 360 L 1800 140 M14 140 9 C9 M16 FAMENNIAN BERRIASIAN M18 PROTEROZOIC OROSIRIAN 10 C10 28.4 145.5 M20 2000 30 11 C11 TITHONIAN 374 PALEOPRO- 150 M22 2050 12 E RUPELIAN
    [Show full text]
  • The Valanginian Olcostephaninae Haug, 1910 (Ammonoidea) from the Andean Lower Cretaceous Chañarcillo Basin, Northern Chile Andean Geology, Vol
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Amaro Mourgues, Francisco; Bulot, Luc G.; Frau, Camille The Valanginian Olcostephaninae Haug, 1910 (Ammonoidea) from the Andean Lower Cretaceous Chañarcillo Basin, Northern Chile Andean Geology, vol. 42, núm. 2, mayo, 2015, pp. 213-236 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173938242004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Geology 42 (2): 213-236. May, 2015 Andean Geology doi: 10.5027/andgeoV42n2-a04 www.andeangeology.cl The Valanginian Olcostephaninae Haug, 1910 (Ammonoidea) from the Andean Lower Cretaceous Chañarcillo Basin, Northern Chile *Francisco Amaro Mourgues1, 2, Luc G. Bulot3, Camille Frau4 1 IRD-LMTG Observatoire Midi-Pyrénées, 14 Avenue Edouard Belin, 31400 Toulouse, France. 2 Servicio Nacional de Geología y Mineraía, Sección Paleontología y Estratigrafía, Tiltil 1993, Ñuñoa, Santiago, Chile. 3 UMR CNRS 7730 CEREGE, Aix-Marseille Université, Case 67, 3 Place V. Hugo, 13331 Marseille Cédex 03, France. [email protected] 4 9bis Chemin des Poissoniers, 13600 La Ciotat, France. [email protected] * Permanent adress: TERRA IGNOTA. Heritage & Geosciences Consulting, Dr. Cádiz 726, Ñuñoa, Santiago, Chile. [email protected] ABSTRACT. Ammonites of the genus Santafecites Etayo-Serna and subgenus Olcostephanus (Viluceras) Aguirre- Urreta and Rawson are described for the first time from Chile. The succession of Olcostephaninae from the Chañarcillo Basin of northern Chile is described in the light of new collections and revision of historical material.
    [Show full text]
  • Correlations of Hauterivian and Barremian (Early Cretaceous) Stage Boundaries to Polarity Chrons
    EPSL ELSEVIER Earth and Planetary Science Letters 134 (1995) 125-140 Correlations of Hauterivian and Barremian (Early Cretaceous) stage boundaries to polarity chrons J.E.T. Channell a F. Cecca b, E. Erba c a Department of Geology, University of Florida, Gainesville, FL 32611, USA b Servizio Geologico Nazionale, Largo S. Susanna 13, O0187Rome, Italy c Dipartimento di Seienze della Terra, Universith degli Studi di Milano, 20133 Milan, Italy Received 27 March 1995; accepted 5 June 1995 Abstract Recent ammonite finds in Italian Maiolica limestones allow direct correlation of Hauterivian and Barremian ammonite zones (stage boundaries) to polarity chrons. At Laghetto and Alpetto (Lombardy, Italy), Lower Aptian ammonites occur just above polarity zone M0 and below the Selli Level, and Upper Barremian ammonites occur in polarity zone Mln. These correlations are consistent with the Barremian/Aptian boundary being close to older boundary of (polarity chron) CM0. The uppermost Hauterivian ammonite (Faraoni) guide level has been correlated to CM4 at Bosso (Umbria-Marche), confirming the recent correlation of the Hauterivian/Barremian boundary to CM4. At Monte Acuto (Umbria-Marche), ammonites spanning the Valanginian/Hauterivian boundary interval, and the last appearance of the nannofossil T. verenae, occur close to the CMll/CMlln boundary. The Valanginian/Hauterivian boundary has previously been placed between the first appearance of L. bollii and the last appearance of T. verenae, or between CM10 and CMll. The published Polaveno (Lombardy) magnetostratigraphy for the CM3-CMll interval has now been extended to CM16. This 260 m section, recording the CM3-CM16 interval, is the most complete single-section record of Cretaceous M-sequence polarity chrons.
    [Show full text]
  • INTERNATIONAL CHRONOSTRATIGRAPHIC CHART International Commission on Stratigraphy V 2020/03
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2020/03 numerical numerical numerical numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age GSSP GSSP GSSP GSSP EonothemErathem / Eon System / Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) Eonothem / EonErathem / Era System / Period GSSA age (Ma) present ~ 145.0 358.9 ±0.4 541.0 ±1.0 U/L Meghalayan 0.0042 Holocene M Northgrippian 0.0082 Tithonian Ediacaran L/E Greenlandian 0.0117 152.1 ±0.9 ~ 635 U/L Upper Famennian Neo- 0.129 Upper Kimmeridgian Cryogenian M Chibanian 157.3 ±1.0 Upper proterozoic ~ 720 0.774 372.2 ±1.6 Pleistocene Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian 1000 L/E Callovian Quaternary 166.1 ±1.2 Gelasian 2.58 382.7 ±1.6 Stenian Bathonian 168.3 ±1.3 Piacenzian Middle Bajocian Givetian 1200 Pliocene 3.600 170.3 ±1.4 387.7 ±0.8 Meso- Zanclean Aalenian Middle proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 Calymmian 7.246 Toarcian Devonian Tortonian 182.7 ±0.7 Emsian 1600 11.63 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Proterozoic Neogene Sinemurian Langhian 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- Burdigalian Hettangian proterozoic 2050 20.44 201.3 ±0.2 419.2 ±3.2 Rhyacian Aquitanian Rhaetian Pridoli 23.03 ~ 208.5 423.0 ±2.3 2300 Ludfordian 425.6 ±0.9 Siderian Mesozoic Cenozoic Chattian Ludlow
    [Show full text]
  • Early Cretaceous (Valanginian) Sea Lilies (Echinodermata, Crinoidea) from Poland
    1661-8726/09/010077-12 Swiss J. Geosci. 102 (2009) 77–88 DOI 10.1007/s00015-009-1312-6 Birkhäuser Verlag, Basel, 2009 Early Cretaceous (Valanginian) sea lilies (Echinodermata, Crinoidea) from Poland MARIUSZ A. SALAMON Key words: Crinoidea, isocrinids, Early Cretaceous, Poland, taxonomy, palaeobiogeography ABSTRACT Valanginian strata in central epicratonic Poland have recently yielded crinoids, the southernmost Tethyan regions of Poland (Pieniny Klippen Belt and Tatra not previously recorded from the area. The fauna comprises isocrinids (Bala- Mountains). The current study demonstrates their occurrence in central epi- nocrinus subteres, B. gillieroni, “Isocrinus?” lissajouxi), millericrinids (Apiocrin- cratonic Poland, and suggests that many Jurassic to Cretaceous stalked crinoid ites sp.) and comatulids (Comatulida indet.). For comparison, a few samples taxa (mainly isocrinids) predominated in the shallow-water settings of this area. of isocrinids from Valanginian strata of Hungary (Tethyan province) were Thus, the hypothesis of migration (at least from mid-Cretaceous onwards) to also analysed. The isocrinids, cyrtocrinids and roveacrinids (sensu Rasmussen deep-water areas, as a response to an increase of the number of predators dur- 1978 inclusive of Saccocoma sp.) were already known from the Valanginian of ing the Mesozoic marine revolution, seems not to be universally applicable. Introduction The present study documents Early Cretaceous crinoids from the Polish part of the Tethyan Realm, which are more nu- Current knowledge of the Early Cretaceous crinoids from extra- merous and taxonomically diverse than previously assumed. In Carpathian Poland is very limited. Pisera (1984) recorded only particular this study 1) characterises the crinoid assemblages roveacrinids (Styracocrinus peracutus) and comatulids (Gleno- from epicratonic and Tethyan Poland, and 2) discusses their pa- tremites sp.) from the Barremian-Cenomanian of northern Po- laeobiogeography and palaeoecology.
    [Show full text]
  • International Chronostratigraphic Chart
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2018/07 numerical numerical numerical Eonothem numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age GSSP GSSP GSSP GSSP EonothemErathem / Eon System / Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) / Eon Erathem / Era System / Period GSSA age (Ma) present ~ 145.0 358.9 ± 0.4 541.0 ±1.0 U/L Meghalayan 0.0042 Holocene M Northgrippian 0.0082 Tithonian Ediacaran L/E Greenlandian 152.1 ±0.9 ~ 635 Upper 0.0117 Famennian Neo- 0.126 Upper Kimmeridgian Cryogenian Middle 157.3 ±1.0 Upper proterozoic ~ 720 Pleistocene 0.781 372.2 ±1.6 Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian Callovian 1000 Quaternary Gelasian 166.1 ±1.2 2.58 Bathonian 382.7 ±1.6 Stenian Middle 168.3 ±1.3 Piacenzian Bajocian 170.3 ±1.4 Givetian 1200 Pliocene 3.600 Middle 387.7 ±0.8 Meso- Zanclean Aalenian proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 7.246 Toarcian Devonian Calymmian Tortonian 182.7 ±0.7 Emsian 1600 11.63 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Proterozoic Neogene Sinemurian Langhian 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- 2050 Burdigalian Hettangian 201.3 ±0.2 419.2 ±3.2 proterozoic 20.44 Mesozoic Rhaetian Pridoli Rhyacian Aquitanian 423.0 ±2.3 23.03 ~ 208.5 Ludfordian 2300 Cenozoic Chattian Ludlow 425.6 ±0.9 Siderian 27.82 Gorstian
    [Show full text]