Structural and Biochemical Studies of the Human Two Pore Domain Potassium Channel K2P1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Membrane Topology of the C. Elegans SEL-12 Presenilin
Neuron, Vol. 17, 1015±1021, November, 1996, Copyright 1996 by Cell Press Membrane Topology of the C. elegans SEL-12 Presenilin Xiajun Li* and Iva Greenwald*²³ [this issue of Neuron]; Thinakaran et al., 1996). In the *Integrated Program in Cellular, Molecular, Discussion, we examine the amino acid sequence in and Biophysical Studies light of the deduced topology. ² Department of Biochemistry and Molecular Biophysics Results ³ Howard Hughes Medical Institute Columbia University Sequence analysis suggests that SEL-12 and human College of Physicians and Surgeons presenilins have ten hydrophobic regions (Figure 1). In New York, New York 10032 this study, we provide evidence that a total of eight of these hydrophobic regions function as transmembrane domains in vivo. Below, we use the term ªhydrophobic Summary regionº to designate a segment of the protein with the potential to span the membrane, as inferred by hydro- Mutant presenilins cause Alzheimer's disease. Pre- phobicity analysis, and ªtransmembrane domainº to senilins have multiple hydrophobic regions that could designate a hydrophobic region that our data suggest theoretically span a membrane, and a knowledge of actually spans a membrane. the membrane topology is crucial for deducing the mechanism of presenilin function. By analyzing the activity of b-galactosidase hybrid proteins expressed Strategy in C. elegans, we show that the C. elegans SEL-12 We constructed transgenes encoding hybrid SEL- presenilin has eight transmembrane domains and that 12::LacZ proteins, in which LacZ was placed after each there is a cleavage site after the sixth transmembrane of ten hydrophobic regions identified by hydrophobicity domain. We examine the presenilin sequence in view analysis (see Figure 1). -
Pain Research Product Guide | Edition 2
Pain Research Product Guide | Edition 2 Chili plant Capsicum annuum A source of Capsaicin Contents by Research Area: • Nociception • Ion Channels • G-Protein-Coupled Receptors • Intracellular Signaling Tocris Product Guide Series Pain Research Contents Page Nociception 3 Ion Channels 4 G-Protein-Coupled Receptors 12 Intracellular Signaling 18 List of Acronyms 21 Related Literature 22 Pain Research Products 23 Further Reading 34 Introduction Pain is a major public health problem with studies suggesting one fifth of the general population in both the USA and Europe are affected by long term pain. The International Association for the Study of Pain (IASP) defines pain as ‘an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage’. Management of chronic pain in the clinic has seen only limited progress in recent decades. Treatment of pain has been reliant on, and is still dominated by two classical medications: opioids and non-steroidal anti-inflammatory drugs (NSAIDs). However, side effects such as dependence associated with opioids and gastric ulceration associated with NSAIDs demonstrates the need for new drug targets and novel compounds that will bring in a new era of pain therapeutics. Pain has been classified into three major types: nociceptive pain, inflammatory pain and neuropathic or pathological pain. Nociceptive pain involves the transduction of painful stimuli by peripheral sensory nerve fibers called nociceptors. Neuropathic pain results from damage or disease affecting the sensory system, and inflammatory pain represents the immunological response to injury through inflammatory mediators that contribute to pain. Our latest pain research guide focuses on nociception and the transduction of pain to the spinal cord, examining some of the main classical targets as well as emerging pain targets. -
Ion Channels
UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. -
Inward Rectifier Potassium Current in Dopaminergic Periglomerular Cells of Mouse Olfactory Bulb
UNIVERSITY OF INSUBRIA Varese A Thesis submitted for the degree of Philosophiæ Doctor (Ph.D.) in Experimental and Clinical Physiology XXVI cycle Inward Rectifier Potassium Current in Dopaminergic Periglomerular Cells of Mouse Olfactory Bulb Tutor Dr Elena Bossi Co-tutor Prof. Ottorino Belluzzi Coordinator Prof. Daniela Negrini Ph.D. Student Dr. Mirta Borin Academic Year 2012-2013 CONTENTS Abbreviations and Acronyms Abstract Chapter 1 INTRODUCTION 1.1 The Main Olfactory System 3 1.1.1 Neuronal Replacement in the Adult Olfactory System 5 1.2 Olfactory Bulb 7 1.2.1 Synaptic Processing within the Olfactory Bulb 8 1.3 Periglomerular Cells 11 1.3.1 TH- and GABA-positive JG cells 13 1.3.2 Electrophysiological Characterisation of TH-positive PG Cells 14 1.4 Kir Channels 16 1.4.1 Architecture of Kir channels 17 1.4.2 Ion selectivity 19 1.4.3 Inward rectification 20 1.4.4 Cytoplasmic regulatory factor 24 1.5 Inward rectifier family members 29 1.5.1 Classical Kir channels 29 1.5.2 G-protein gated Kir channels (GIRK) 30 1.5.3 ATP-sensitive K+ channels 32 1.5.4 K+-transport channels 34 Chapter 2 MATERIAL AND METHODS 2.1 Animals 36 2.2 Slice Preparation 36 2.3 Recording Condition 38 2.4 Electrophysiological Experimental Set-up 40 2.5 Solutions 41 2.6 Analysis of Current Recordings 42 2.7 Statistical Analysis 43 Chapter 3 RESULTS 3.1 Identification and Basic Properties 44 3.1.1 Hyperpolarizing Step: Two Current Components 44 3.1.2 Barium Sensitivity 46 3.1.3 Ba2+ and Cs+ Voltage Dependent Block 47 3.1.4 Potassium and Voltage Dependence of IKir 48 3.1.5 -
Hypercholesterolemia Effect on Potassium Channels
We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 5,400 134,000 165M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com Chapter 5 Hypercholesterolemia Effect on Potassium Channels Anna N. Bukiya and Avia Rosenhouse-Dantsker Additional information is available at the end of the chapter http://dx.doi.org/10.5772/59761 1. Introduction Cholesterol is a major lipid component of the plasma membrane in mammalian cells consti‐ tuting up to 45 mol % with respect to other lipids [1, 2]. Yet, even a limited increase in blood and/or tissue cholesterol of up to 2-3 fold above the physiological level is cytotoxic [1-3] and is associated with the development of cardiovascular disease [4-6]. The underlying source for the effect of cholesterol on cellular functions is its ability to alter the function of multiple membrane proteins including ion channels (see, for example, reviews [7-9]). In recent years, high cholesterol diet has been shown to affect the function of multiple ion channels. In this chapter we focus on the effect of dietary-induced increase in blood and tissue cholesterol levels on potassium channels. Potassium channels are among the largest and most complex types of ion channels. -
Regulation of Cardiac Voltage Gated Potassium Currents in Health and Disease
REGULATION OF CARDIAC VOLTAGE GATED POTASSIUM CURRENTS IN HEALTH AND DISEASE DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Arun Sridhar, M.S. ****** The Ohio State University 2007 Dissertation Committee: Dr. Cynthia A. Carnes, Pharm.D, PhD Approved By: Dr. Robert L. Hamlin, DVM, PhD ______________________ Dr. Sandor Gyorke, PhD Advisor Dr. Mark T. Ziolo, PhD Graduate Program in Biophysics ABSTRACT Cardiovascular disease (CVD) is a major cause of mortality and morbidity worldwide. CVD accounts for more deaths than all forms of cancer in the United States. Hypertension, Heart Failure and Atrial Fibrillation are the most common diagnosis, hospitalization cause and the sustained cardiac arrhythmia respectively in the US. Sudden cardiac death is the one of the most common causes of cardiovascular mortality after myocardial infarction, and a common cause of death in heart failure patients. This has been attributed to the development of ventricular tachyarrhythmias. In addition, most forms of acquired CVD have been shown to produce electrophysiological changes due to very close interactions between structure, signaling pathways and ion channels. Due to the increased public heath burden caused by CVD, a high impetus has been placed on identifying novel therapeutic targets via translational research. Identification of novel therapeutic targets to treat heart failure and sudden death is underway and is still in a very nascent stage. In addition, ion channel blockers, more specifically “atrial-specific” ion channel blockers have proposed to be a major therapeutic target to treat atrial fibrillation without the risk of ventricular pro- arrhythmia. -
Alphafold2 Transmembrane Protein Structure Prediction Shines
bioRxiv preprint doi: https://doi.org/10.1101/2021.08.21.457196; this version posted August 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 AlphaFold2 transmembrane protein structure prediction shines 2 3 Tamás Hegedűs1,2,*, Markus Geisler3, Gergely Lukács4, Bianka Farkas1,5 4 5 6 7 8 1 Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, HU 9 2 TKI, Eötvös Loránd Research Network, Budapest, HU 10 3 Department of Biology, University of Fribourg, Fribourg, Switzerland 11 4 Department of Physiology and Biochemistry, McGill University, Montréal, Quebec, Canada 12 5 Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, HU 13 14 15 16 17 *Correspondence: Tamás Hegedűs 18 email: [email protected] 19 20 21 22 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.21.457196; this version posted August 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 23 Abstract 24 Transmembrane (TM) proteins are major drug targets, indicated by the high percentage of prescription 25 drugs acting on them. For a rational drug design and an understanding of mutational effects on protein 26 function, structural data at atomic resolution are required. -
Routes for Potassium Ions Across Mitochondrial Membranes: a Biophysical Point of View with Special Focus on the ATP-Sensitive K+ Channel
biomolecules Review Routes for Potassium Ions across Mitochondrial Membranes: A Biophysical Point of View with Special Focus on the ATP-Sensitive K+ Channel Yevheniia Kravenska , Vanessa Checchetto and Ildiko Szabo * Department of Biology, University of Padova, 35131 Padova, Italy; [email protected] (Y.K.); [email protected] (V.C.) * Correspondence: [email protected] Abstract: Potassium ions can cross both the outer and inner mitochondrial membranes by means of multiple routes. A few potassium-permeable ion channels exist in the outer membrane, while in the inner membrane, a multitude of different potassium-selective and potassium-permeable channels mediate K+ uptake into energized mitochondria. In contrast, potassium is exported from the matrix thanks to an H+/K+ exchanger whose molecular identity is still debated. Among the K+ channels of the inner mitochondrial membrane, the most widely studied is the ATP-dependent potassium channel, whose pharmacological activation protects cells against ischemic damage and neuronal injury. In this review, we briefly summarize and compare the different hypotheses regarding the molecular identity of this patho-physiologically relevant channel, taking into account the electrophysiological characteristics of the proposed components. In addition, we discuss the characteristics of the other channels sharing localization to both the plasma membrane and mitochondria. Citation: Kravenska, Y.; Checchetto, V.; Szabo, I. Routes for Potassium Ions Keywords: mitochondria; ion channels; electrophysiology; -
Venom‑Derived Peptide Modulators of Cation‑Selective Channels : Friend, Foe Or Frenemy
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Venom‑derived peptide modulators of cation‑selective channels : friend, foe or frenemy Bajaj, Saumya; Han, Jingyao 2019 Bajaj, S., & Han, J. (2019). Venom‑Derived Peptide Modulators of Cation‑Selective Channels: Friend, Foe or Frenemy. Frontiers in Pharmacology, 10, 58‑. doi:10.3389/fphar.2019.00058 https://hdl.handle.net/10356/88522 https://doi.org/10.3389/fphar.2019.00058 © 2019 Bajaj and Han. This is an open‑access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Downloaded on 30 Sep 2021 04:20:36 SGT fphar-10-00058 February 23, 2019 Time: 18:29 # 1 MINI REVIEW published: 26 February 2019 doi: 10.3389/fphar.2019.00058 Venom-Derived Peptide Modulators of Cation-Selective Channels: Friend, Foe or Frenemy Saumya Bajaj*† and Jingyao Han† Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore Ion channels play a key role in our body to regulate homeostasis and conduct electrical signals. With the help of advances in structural biology, as well as the discovery of numerous channel modulators derived from animal toxins, we are moving toward a better understanding of the function and mode of action of ion channels. -
Towards Therapeutic Applications of Arthropod Venom K+-Channel Blockers in CNS Neurologic Diseases Involving Memory Acquisition and Storage
Hindawi Publishing Corporation Journal of Toxicology Volume 2012, Article ID 756358, 21 pages doi:10.1155/2012/756358 Review Article Towards Therapeutic Applications of Arthropod Venom K+-Channel Blockers in CNS Neurologic Diseases Involving Memory Acquisition and Storage Christiano D. C. Gati,1, 2 Marcia´ R. Mortari,1 and Elisabeth F. Schwartz1 1 Departamento de Ciˆencias Fisiologicas,´ Instituto de Ciˆencias Biologicas,´ Universidade de Bras´ılia, 70910-900 Bras´ılia, DF, Brazil 2 Universidade Catolica´ de Bras´ılia, 71966-700 Bras´ılia, DF, Brazil Correspondence should be addressed to Elisabeth F. Schwartz, [email protected] Received 29 December 2011; Accepted 8 February 2012 Academic Editor: Yonghua Ji Copyright © 2012 Christiano D. C. Gati et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Potassium channels are the most heterogeneous and widely distributed group of ion channels and play important functions in all cells, in both normal and pathological mechanisms, including learning and memory processes. Being fundamental for many diverse physiological processes, K+-channels are recognized as potential therapeutic targets in the treatment of several Central Nervous System (CNS) diseases, such as multiple sclerosis, Parkinson’s and Alzheimer’s diseases, schizophrenia, HIV-1-associated dementia, and epilepsy. Blockers of these channels are therefore potential candidates for the symptomatic treatment of these neuropathies, through their neurological effects. Venomous animals have evolved a wide set of toxins for prey capture and defense. These compounds, mainly peptides, act on various pharmacological targets, making them an innumerable source of ligands for answering experimental paradigms, as well as for therapeutic application. -
Supporting Information SI Materials and Methods Mice And
Supporting Information SI Materials and Methods Mice and Treatments. C57BL/6J mice and ROSA26-CreERT2 mice were purchased from the Jackson Laboratory, and Alk1floxed/floxed mice (1) were transferred to KAIST. To knock down Alk1 in a tamoxifen-dependent manner, Alk12fl/2fl mice were intercrossed with ROSA26-CreERT2 mice. Tamoxifen (0.2 mg; Sigma-Aldrich) dissolved in corn oil (Sigma-Aldrich) was injected into the peritoneal cavity of mouse pups on postnatal day 4 (P4) and P6. All animals were bred in a specific pathogen-free animal facility, and were fed a standard diet (PMI Lab Diet) ad libitum with free access to water. Bmp9 KO mice were generated as previously reported (2). All experimental protocols were performed in accordance with the policies of the Animal Ethics Committee of the University of Tokyo and KAIST. Model of Chronic Aseptic Peritonitis. We used 5-week-old Balb/c mice obtained from Sankyo Laboratories. The model of chronic aseptic peritonitis has been described previously (3-5). To induce peritonitis, we intraperitoneally administered 2 ml of 3% thioglycollate medium (BBL thioglycollate medium, BD Biosciences) to Balb/c mice every 2 days for 2 weeks. The adenovirus encoding lacZ or BMP9 was also intraperitoneally administered twice per week during the same period. Mice were then sacrificed, and their diaphragms were excised and prepared for immunostaining as described previously (3). Fluorescent signals were visualized, and digital images were obtained using a Zeiss LSM 510 confocal microscope equipped with argon and helium-neon lasers (Carl Zeiss). LYVE-1-positive lymphatic vessels were observed using a 20× objective lens and analyzed using LSM Image Browser (Carl Zeiss) and ImageJ software. -
An Update on Novel Mechanisms of Primary Aldosteronism
M-C ZENNARO and others Novel mechanisms of primary 224:2 R63–R77 Review aldosteronism An update on novel mechanisms of primary aldosteronism Correspondence 1,2,3 1,2 1,2,3 Maria-Christina Zennaro , Sheerazed Boulkroun and Fabio Fernandes-Rosa should be addressed to M-C Zennaro 1INSERM, UMRS_970, Paris Cardiovascular Research Center – PARCC, 56, rue Leblanc, 75015 Paris, France Email 2University Paris Descartes, Sorbonne Paris Cite´ , Paris, France maria-christina.zennaro@ 3Assistance Publique-Hoˆ pitaux de Paris, Hoˆ pital Europe´ en Georges Pompidou, Service de Ge´ ne´ tique, Paris, France inserm.fr Abstract Primary aldosteronism (PA) is the most common and curable form of secondary Key Words hypertension. It is caused in the majority of cases by either unilateral aldosterone " primary aldosteronism overproduction due to an aldosterone-producing adenoma (APA) or by bilateral adrenal " aldosterone producing hyperplasia. Recent advances in genome technology have allowed researchers to unravel adenoma part of the genetic abnormalities underlying the development of APA and familial " bilateral adrenal hyperplasia hyperaldosteronism. Recurrent somatic mutations in genes coding for ion channels (KCNJ5 " potassium channels and CACNA1D) and ATPases (ATP1A1 and ATP2B3) regulating intracellular ionic homeostasis " calcium channels and cell membrane potential have been identified in APA. Similar germline mutations of " ATPase KCNJ5 were identified in a severe familial form of PA, familial hyperaldosteronism type 3 " phenotypic variability (FH3),