Structural and Biochemical Studies of the Human Two Pore Domain Potassium Channel K2P1
STRUCTURAL AND BIOCHEMICAL STUDIES OF THE HUMAN TWO PORE DOMAIN POTASSIUM CHANNEL K2Pl by Alexandria Nuesa Miller A Dissertation Presented to the Faculty ofthe Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy New York, NY April, 2013 ~y;} c;, ZD/3 s~ Date Dissertation Mentor Copyright by Alexandria N. Miller 2013 ABSTRACT Potassium (K+) channels are the largest family of ion channels in eukaryotes with over 70 genes in humans. They have diverse functional roles including controlling the firing duration and frequency of actions potentials in neurons and regulating water retention in the kidneys. K+ channels are highly-selective for K+ over other monovalent cations, can conduct K+ at rates approaching 108 ions per second and, like other ion channels, switch between conductive (open) and non-conductive (closed) states through a process called gating. + Two pore domain (K2P) potassium channels, originally called K background or leak channels, represent a subclass of K+ channels that function to establish and maintain the resting potential in eukaryotic cells. This process primes cells for diverse responses such as action potentials in excitatory cells and cell signaling cascades, which can direct growth and motility in non-excitable cell types. K2P channels have been shown to be gated by a range of cell stimuli and pharmacological agents including temperature, pH, polyunsaturated fatty acids, mechanical stress, and anesthetics. Not surprisingly, it is proposed that they are involved in physiological processes such as pain perception and anesthetic modulation. Structural studies of K2P channels would not only provide insight into how K2P channels are gated by these stimuli, but also may suggest strategies for the generation of K2P specific drugs.
[Show full text]