Almond and Dairy Desserts with Baru Regulates Gastrointestinal Transit in Rats

Total Page:16

File Type:pdf, Size:1020Kb

Almond and Dairy Desserts with Baru Regulates Gastrointestinal Transit in Rats Received: 23 April 2019 | Revised: 18 June 2019 | Accepted: 30 July 2019 DOI: 10.1111/jfpp.14167 ORIGINAL ARTICLE Baru (Dipteryx alata Vogel) almond and dairy desserts with baru regulates gastrointestinal transit in rats Pollyanna Nogueira da Cruz1 | Loyane Almeida Gama2 | Madileine Francely Américo2 | Paula Becker Pertuzatti1,2 1Engenharia de Alimentos, Instituto de Ciências Exatas e da Terra, Universidade Abstract Federal de Mato Grosso, Barra do Garças, The present study aimed to verify the antioxidant capacity in vitro of baru almond, Brazil evaluate the effect of baru intake on gastrointestinal transit and biochemical profile 2Programa de Pós‐Graduação em Imunologia e Parasitologia Básicas e in rats and based on such results characterize the chemical composition of a baru‐ Aplicadas, Instituto de Ciências Biológicas enriched dairy dessert and analyze its effect in vivo. It was observed that traditional e da Saúde, Universidade Federal de Mato Grosso, Barra do Garças, Brazil dairy desserts hastened the gastric emptying and delayed intestinal transit. Ingestion of dairy dessert with baru slowed gastric emptying and avoided the delay of intestinal Correspondence Paula Becker Pertuzatti, Engenharia de transit time. After baru consumption, the biochemical profile was extremely favora‐ Alimentos, Instituto de Ciências Exatas e da ble with reduced triglycerides and very low‐density lipoprotein, and increased high‐ Terra, Universidade Federal de Mato Grosso, Av. Valdon Varjão 6900, Barra do Garças density lipoprotein‐c. The results show that baru almond is a good source of lipids, 78600‐000, MT, Brazil. fibers, and antioxidants (1,179 mg GAE kg−1 sample by ABTS and 8,342 mg GAE kg−1 Email: [email protected] sample by ferric tripyridyltriazine). The dairy desserts with the highest content of Funding information baru normalized gastrointestinal transit compared to traditional dessert, and im‐ Conselho Nacional de Desenvolvimento Científico e Tecnológico, Grant/Award proved biochemical parameters in rats. Number: 407220/2016‐0; Fundação de Pratical applications Amparo à Pesquisa do Estado de Mato Grosso; Universidade Federal de Mato In our work, we have developed a new dairy dessert with a Brazilian almond called Grosso Baru. The manuscript is significant because it demonstrates the presence of lipids, fibers, and antioxidants in high levels in baru almond and the health benefits associ‐ ated with the intake of these compounds in dairy desserts. 1 | INTRODUCTION & Mohanty, 2000). According to Beres et al. (2016), antioxidant dietary fiber constituents obtained from fruits usually has better functional New product ideas derive from tracking global trends that apply to each quality than dietary fiber from grains because of a higher concentra‐ region, with manufacturers combining innovation and tradition in de‐ tion of bioactive compounds, such as phenolics. However, the gastro‐ veloping new products (Dabija, Codinâ, Ropciuc, & Stroe, 2019). In this intestinal digestive process could affect the bioaccessibility of bioactive context, baru almond has a great importance in Brazil and has generated compounds (Ng & See, 2019) and there are no reports about the impact recent scientific interest due to its nutritional composition, especially of baru ingestion on gastrointestinal transit using experimental model. dietary fibers, which can improve dairy products functionality, creating Gastrointestinal transit can be quantified in rats, by measuring functional foods with health benefits (Bento, Cominetti, Simões Filho, the movement of charcoal, dye, and radiopaque markers (Baggio, & Naves, 2014; Fernandes, Freitas, Czeder, & Naves, 2010; Karaca, Freitas, Rieck, & Marques, 2003). For this procedure, a large number Saydam, & Güven, 2019; Raninen, Lappi, Mykkänen, & Poutanen, 2011; of animals are killed in order to determine the propulsion of such Takemoto, Okada, Garbelotti, Tavares, & Aued‐Pimentel, 2001). markers within the gut at predetermined time intervals (Baggio Dietary fiber is essential in the human diet, since it plays an import‐ et al., 2003). For following up gastrointestinal transit during baru in‐ ant role in disease prevention and health maintenance (Nayak, Pattnaik, take in the same animal, alternative methodologies are necessary. J Food Process Preserv. 2019;43:e14167. wileyonlinelibrary.com/journal/jfpp © 2019 Wiley Periodicals, Inc. | 1 of 8 https://doi.org/10.1111/jfpp.14167 2 of 8 | DA CRUZ ET AL. Alternate current biosusceptometry (ACB) is an inexpensive, radi‐ TABLE 1 Matrix of the experimental design for the addition ation‐free, and noninvasive method previously employed as a reli‐ of different chocolate and baru concentrations in dairy desserts able technique to record gastrointestinal transit and contractility in formulation rodents (Dall'Agnol et al., 2017; Mendonça, Gama, Hauschildt, Corá, Coded levels & Américo, 2019). of independent Non‐coded levels of inde‐ On the other hand, there are literature references about antiox‐ Assays variables pendent variables idant capacity of baru (Siqueira et al., 2012). However, to the best Factorial points X1 X2 Chocolate (%) Baru (%) of our knowledge there are very few studies involving the antioxi‐ 1 −1 −1 5.45 2.04 dant capacity analyzed by ABTS and FRAP methods. It is believed 2 1 −1 12.55 2.04 that these studies can contribute to increased interest about this 3 −1 1 5.45 11.96 Brazilian cerrado fruit. The use of baru almond in dairy desserts, 4 1 1 12.55 11.96 the evaluation of dessert effect on gastrointestinal transit, and bio‐ Axial points chemical profile in rats can create a technological alternative to the 5 −1.41 0 4 7 functional enrichment of dairy desserts. This provides economic, nu‐ 6 1.41 0 14 7 tritional, and environmental benefits. The aims of this study were (a) 7 0 −1.41 9 0 to characterize the chemical composition of baru almond, including its antioxidant capacity in vitro; (b) to produce a dairy dessert with 8 0 1.41 9 14 chocolate and baru; and (c) to evaluate its effects on gastrointestinal Central points transit and biochemical profile in rats. 9 0 0 9 7 10 0 0 9 7 11 0 0 9 7 2 | MATERIALS AND METHODS 2.1 | Chemicals and reagents 5 ppm, roasted in the oven at 140°C for 60 min, crushed in a stain‐ The chemicals, 2,4,6‐tris(2‐pyridyl)‐s‐triazine (TPTZ, 99%), 2,2’‐ less steel industrial blender and the mixing of ingredients, in the fol‐ azinobis (3‐ethyl‐benzothiazoline‐6‐sulphonate) (ABTS, 99%), lowing concentration was performed: milk (43%), sugar (18%), table and galic acid, were purchased from Sigma‐Aldrich (Steinheim, cream (17%), guar gum (0.5%), potassium sorbate (0.08%), chocolate Germany). (Table 1), and baru almond (Table 1), then the mixture was pasteur‐ ized between 70 and 80°C for 20–40 s. Immediately after pasteuri‐ zation, the desserts were blended to reduce fat globules size and 2.2 | Sample thus make the emulsion thin and stable, viscous, sweet, and brown. The fruits in natura were obtained in the city of Pontal do Araguaia Subsequently, they were cooled to 4°C and then stored in glass (MT/Brazil) (coordinates: 15° 50′ 39″ S and 52° 0′ 13″ W, and alti‐ packaging until analyzed. tude of 319 m). The ingredients used in dairy desserts formulation were: baru, milk, sugar, table cream, guar gum, potassium sorbate, 2.5 | Physicochemical analyses and chocolate. All raw materials were conserved by refrigeration until the date of analyses. Physicochemical analyses were carried out in the baru almonds and dairy desserts following the procedures described by AOAC (2001). 2.3 | Experimental design The effects of two independent variables on dairy dessert process‐ 2.6 | Determination of the antioxidant capacity ing were investigated: chocolate and baru. This study used a central in vitro composite rotational design (CCRD) 22 (Table 1) with 11 experimen‐ tal trials, including three true replicates at the center point. The re‐ Extracts were prepared by the method described by Pertuzatti sponses assessed to determine the best dairy dessert to test in vivo et al. (2014). were: physicochemical and antioxidant assays. The free radical capture ABTS was done as described by Re et al. (1999), in which the absorbance at 734 nm was measured and the reduction of ferric tripyridyltriazine (FRAP) was measured by 2.4 | Dairy desserts processing the method of Benzie and Strain (1996), in which the absorbance at For the preparation of dairy desserts, first the fruits were opened 593 nm was measured. Both results were expressed as mg galic acid and the baru almond was obtained and washed with active chlorine equivalent (GAE). DA CRUZ ET AL. | 3 of 8 TABLE 2 Average values of physicochemical parameters in dairy desserts and baru almond Assays pH Acidity (%) Moisture (%) Ashes (%) Lipids (%) Fiber (%) Baru almond 5.96 ± 0.01 15.98 ± 0.28 7.16 ± 0.04 2.94 ± 0.01 43.60 ± 0.07 13.98 ± 0.48 1 6.76 ± 0.01c 2.30 ± 0.16f 44.7 ± 2.22b 0.75 ± 0.02g 8.97 ± 0.45h 0.69 ± 0.03cd 2 6.80 ± 0.01b 3.74 ± 0.11bc 31.44 ± 0.24e 1.08 ± 0.01cd 9.79 ± 0.33g 1.32 ± 0.34bcd 3 6.45 ± 0.01h 3.97 ± 0.16ab 28.87 ± 1.28e 1.09 ± 0.03c 11.36 ± 0.13ef 1.94 ± 0.34b 4 6.52 ± 0.01g 2.45 ± 0.10f 23.76 ± 0.81f 1.31 ± 0.01ª 12.74 ± 0.32b 2.41 ± 0.73ª 5 6.53 ± 0.01fg 2.59 ± 0.11ef 39.43 ± 0.63c 0.85 ± 0.02f 12.64 ± 0.51bc 1.42 ± 0.15bc 6 6.64 ± 0.01d 3.95 ± 0.65ab 24.14 ± 0.57f 1.17 ± 0.02b 10.88 ± 0.18f 1.57 ± 0.05b 7 6.93 ± 0.01a 2.44 ± 0.05f 50.08 ± 0.46ª 0.89 ± 0.02f 12.14 ± 0.06bcd 0.54 ± 0.21d 8 6.55 ± 0.01f 4.42 ± 0.21ª 23.38 ± 0.45f 1.23 ± 0.01b 13.92 ± 0.07ª 2.69 ± 0.03ª 9 6.60 ± 0e 2.96 ± 0.03def 34.77 ± 0.62d 1.02 ± 0.03de 11.87 ± 0.06de 1.42 ± 0.07bc 10 6.60 ± 0.02e 3.33 ± 0.03bcd 35.48 ± 0.49d 1.03 ± 0.03cde 11.90 ± 0.10cde 1.40 ± 0.04bc 11 6.61 ± 0.02e 3.14 ± 0.12cde 34.75 ± 1.04d 0.99 ± 0.03e 11.93 ± 0.07cde 1.44 ± 0.01bc Note: Averages followed by different lowercases on the same column differ significantly p ≤ .05 by the Tukey’s test.
Recommended publications
  • Bioactive Compounds in Nuts and Edible Seeds: Focusing on Brazil Nuts and Baru Almond of the Amazon and Cerrado Brazilian Biomes
    Review Article SM Journal of Bioactive Compounds in Nuts and Nutrition and Edible Seeds: Focusing on Brazil Nuts Metabolism and Baru Almond of the Amazon and Cerrado Brazilian Biomes Egea MB1*, Lima DS1, Lodete AR1 and Takeuchi K1,2* 1Science and Technology, Goiano Institute of Education, Brazil 2Faculty of Nutrition, Federal University of Mato Grosso, Brazil Article Information Abstract Received date: Oct 09, 2017 The biodiversity of the Amazon and Cerrado biomes is extremely important for the populations that inhabit Accepted date: Nov 14, 2017 these areas, through the extractive collection of non-timber forest products such as fruits, nuts and edible seeds, which generate income and employment. Brazil nut (Bertholletia excelsa) is native from South America being Published date: Nov 20, 2017 found in the Amazon biome and baru almond (Dipteryx alata Vog.) is native from the Cerrado biome; these are part of the group of oleaginous that can be classified as true nuts and edible seeds, respectively. Both *Corresponding author are important sources of micronutrients that have been associated with several benefits to human health due to the presence of high levels of biologically active compounds such as minerals and vitamins. Minerals act Egea MB, Science and Technology, mostly as cofactors in various reactions, selenium has high availability in Brazil nuts and from selenocysteine Goiano Institute of Education, Brazil, and its enzymes, it exerts functions in the human body as an antioxidant, regulator of thyroid hormones and Tel: +55 64 36205636; protection of cardiovascular diseases. Among vitamins, tocopherol is a precursor to vitamin E, present in both Brazil nut and baru almond, being found in the form of α-tocopherol and having a role in the prevention of various Email: [email protected] diseases, including: cancer, diabetes, cataracts and cardiovascular and cerebrovascular diseases.
    [Show full text]
  • Redalyc.Nutritional Quality and Bioactive Compounds of Partially
    Ciência e Tecnologia de Alimentos ISSN: 0101-2061 [email protected] Sociedade Brasileira de Ciência e Tecnologia de Alimentos Brasil Silva SIQUEIRA, Ana Paula; Bertoldo PACHECO, Maria Teresa; Veloso NAVES, Maria Margareth Nutritional quality and bioactive compounds of partially defatted baru almond flour Ciência e Tecnologia de Alimentos, vol. 35, núm. 1, enero-marzo, 2015, pp. 127-132 Sociedade Brasileira de Ciência e Tecnologia de Alimentos Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=395940120019 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative a Food Science and Technology ISSN 0101-2061 DDOI http://dx.doi.org/10.1590/1678-457X.6532 Nutritional quality and bioactive compounds of partially defatted baru almond flour Ana Paula Silva SIQUEIRA¹, Maria Teresa Bertoldo PACHECD², Maria Margareth Veloso NAVES3* Abstract This study aimed to investigate the nutritional quality and bioactive potential of partially defatted baru Dipteryx( alataVog.) almond flour (BAF). The flour’s proximate and mineral compositions, total phenolic, tocopherols and carotenoids contents, antioxidant capacity, trypsin inhibitor and amino acid analyses were performed. An experiment was conducted with 24 male Wistar rats in order to evaluate the flour’s protein quality. BAF has high protein, fiber and mineral contents (iron, zinc, magnesium and copper), and it is a source of calcium. BAF presented relevant amounts of total phenolics (625 mg/100g) and good antioxidant capacity (130 µmol/Trolox eq).
    [Show full text]
  • Tocopherols and Fatty Acid Profile in Baru Nuts (Dipteryx Alata Vog.), Raw and Roasted: Important Sources in Nature That Can Prevent Diseases
    Food Science and Nutrition Technology ISSN: 2574-2701 Tocopherols and Fatty Acid Profile in Baru Nuts (Dipteryx Alata Vog.), Raw and Roasted: Important Sources in Nature that Can Prevent Diseases 1,3* 2 3 3 Lemos MRB , Zambiazi RC , de Almeida EMS and de Alencar ER Research Article Volume 1 Issue 2 1University of Brasilia, UnB, Brazil Received Date: July 11, 2016 2Federal University of Pelotas, UFPel, Brazil Published Date: July 25, 2016 3University of Brasilia, UnB-Brazil *Corresponding author: Miriam Rejane Bonilla Lemos (First author), Health Sciences Post graduation Program, Health Sciences Faculty, University of Brasília, Brasília, DF, PO Box 70910900, Brazil– PGCS-FS, University Campus Darcy Ribeiro- North wing, Zip code: 70.910.900 – Brasília-DF/Brazil, E-mail: [email protected] . Abstract Brazil has extensive biodiversity in their biomes, where the Cerrado, vegetation of the Brazilian interior, contributes a nutritional and medicinal potential still unexplored. The reduced risk of cardiovascular disease and secondary complications, which stand out with a higher incidence rate and prevalence on the world stage, have been positively associated with the consumption of fruits, vegetables and rich oil seeds of antioxidants. This protective potential is attributed to the presence of bioactive compounds that exert antioxidant activity, preventing risks to biological systems. Studies have shown that the constituents of plant foods have recognized ability to chelate divalent metals involved in the production of Reactive Oxygen Species (ROS), which can prevent damage to the organism and the onset of diseases. Recent studies have shown that daily supplementation with Baru nuts [Dipteryx alata Vog.] reduced oxidative stress induced by iron in rats protecting biological systems from the harmful effects of free radicals.
    [Show full text]
  • Demographic History and the Low Genetic Diversity in Dipteryx Alata (Fabaceae) from Brazilian Neotropical Savannas
    Heredity (2013) 111, 97–105 & 2013 Macmillan Publishers Limited All rights reserved 0018-067X/13 www.nature.com/hdy ORIGINAL ARTICLE Demographic history and the low genetic diversity in Dipteryx alata (Fabaceae) from Brazilian Neotropical savannas RG Collevatti1, MPC Telles1, JC Nabout2, LJ Chaves3 and TN Soares1 Genetic effects of habitat fragmentation may be undetectable because they are generally a recent event in evolutionary time or because of confounding effects such as historical bottlenecks and historical changes in species’ distribution. To assess the effects of demographic history on the genetic diversity and population structure in the Neotropical tree Dipteryx alata (Fabaceae), we used coalescence analyses coupled with ecological niche modeling to hindcast its distribution over the last 21 000 years. Twenty-five populations (644 individuals) were sampled and all individuals were genotyped using eight microsatellite loci. All populations presented low allelic richness and genetic diversity. The estimated effective population size was small in all populations and gene flow was negligible among most. We also found a significant signal of demographic reduction in most cases. Genetic differentiation among populations was significantly correlated with geographical distance. Allelic richness showed a spatial cline pattern in relation to the species’ paleodistribution 21 kyr BP (thousand years before present), as expected under a range expansion model. Our results show strong evidences that genetic diversity in D. alata is the outcome of the historical changes in species distribution during the late Pleistocene. Because of this historically low effective population size and the low genetic diversity, recent fragmentation of the Cerrado biome may increase population differentiation, causing population decline and compromising long-term persistence.
    [Show full text]
  • Bioactive Compounds and Chemical Composition Of
    a OSSN 0101-2061 (Print) Food Science and Technology OSSN 1678-457X (Dnline) DDO: https://doi.org/10.1590/fst.19417 Bioactive compounds and chemical composition of Brazilian Cerrado fruits’ wastes: pequi almonds, murici, and sweet passionfruit seeds Ana Cristina Moreira Andrade ARAÚJD1, Evandro Galvão Tavares MENEZES1, André William Costa TERRA1, Bruna Dliveira DOAS1, Érica Resende de DLOVEORA1*, Fabiana QUEORDZ1 Abstract Pequi, murici and sweet passionfruit are typical fruits from Brazilian Cerrado, which stand out for their sensory attributes such as color, flavor and aroma, in addition to their high nutritional value. Their seeds are by-products from the industrial processing of juices, pulps, jellies, and others, and have great exploitation potential due to their high oil content and the presence of bioactive compounds. The present work aimed to evaluate the chemical composition of pequi almonds, and of murici and sweet passionfruit seeds, and also to quantify the total phenolic compounds, carotenoids, anthocyanins and antioxidant activity by the scavenging activity of •DPPH method. Concerning the chemical composition, pequi almonds presented the highest concentration of lipids (50%), followed by sweet passionfruit (30%) and murici seeds (15%). The almonds from pequi fruit showed the greatest content of protein (33.3%) followed by sweet passionfruit seeds (15%), which presented the highest amount of fiber (41.3%). Murici seeds exhibited the highest content of carbohydrates (46.4%). Pequi almonds had the greatest content of the following minerals, potassium, magnesium, sulfur, manganese, zinc, copper, iron, and sodium, and anthocyanins (14.4 mg CYG/100 g d.b.). Sweet passionfruit seeds presented the greatest amount of calcium, and also had the highest carotenoid content (9 mg/100 g d.b.).
    [Show full text]
  • Occurrence of Aetalion Reticulatum (Linnaeus) (Hemiptera
    doi:10.12741/ebrasilis.v13.e930 e-ISSN 1983-0572 Publication of the project Entomologistas do Brasil www.ebras.bio.br Creative Commons License v4.0 (CC-BY) Copyright © Author(s) Article Full Open Access Scientific Note Occurrence of Aetalion reticulatum (Linnaeus) (Hemiptera: Aethalionidae) on Dipteryx alata Vogel (Fabaceae) in Minas Gerais, Brazil Jaqueline da Silva Souza & Jardel Boscardin Universidade Federal de Uberlândia - Instituto de Ciências Agrárias. EntomoBrasilis 13: e930 (2020) Edited by: Abstract. The baruzeiro or baru (Dipteryx alata Vogel) is a tree species native to Brazil that is known William Costa Rodrigues for its production of edible nuts with high nutritional value. However, little is known about the insects associated with this forest species. Therefore, this study aims to document the occurrence Article History: of leafhoppers on baruzeiro trees in the state of Minas Gerais, southeastern Brazil. We therefore Received: 02.ix.2020 examined baruzeiro plants in an afforestation plot at the Universidade Federal de Uberlândia Accepted: 14.xi.2020 (18°43’33”S; 47°31’31”W) in August 2020, located in the municipality of Monte Carmelo, Minas Gerais. Published: 14.xii.2020 The leafhopper species was identified as Aetalion reticulatum (Linnaeus) (Hemiptera: Aethalionidae). Corresponding author: The ant species Camponotus crassus Mayr (Hymenoptera: Formicidae) was found to feed on the honeydew released by leafhoppers, demonstrating facultative mutualism between the species. This Jardel Boscardin is the first report ofA. reticulatum on D. alata in Minas Gerais. [email protected] Funding agencies: Keywords: Cerrado of Minas Gerais; Fabaceae; facultative mutualism; honeydew-producing leafhopper; sucking insect. Without funding declared he baruzeiro or baru (Dipteryx alata Vogel; Fabaceae) Federal.
    [Show full text]
  • Lowland Vegetation of Tropical South America -- an Overview
    Lowland Vegetation of Tropical South America -- An Overview Douglas C. Daly John D. Mitchell The New York Botanical Garden [modified from this reference:] Daly, D. C. & J. D. Mitchell 2000. Lowland vegetation of tropical South America -- an overview. Pages 391-454. In: D. Lentz, ed. Imperfect Balance: Landscape Transformations in the pre-Columbian Americas. Columbia University Press, New York. 1 Contents Introduction Observations on vegetation classification Folk classifications Humid forests Introduction Structure Conditions that suppport moist forests Formations and how to define them Inclusions and archipelagos Trends and patterns of diversity in humid forests Transitions Floodplain forests River types Other inundated forests Phytochoria: Chocó Magdalena/NW Caribbean Coast (mosaic type) Venezuelan Guayana/Guayana Highland Guianas-Eastern Amazonia Amazonia (remainder) Southern Amazonia Transitions Atlantic Forest Complex Tropical Dry Forests Introduction Phytochoria: Coastal Cordillera of Venezuela Caatinga Chaco Chaquenian vegetation Non-Chaquenian vegetation Transitional vegetation Southern Brazilian Region Savannas Introduction Phytochoria: Cerrado Llanos of Venezuela and Colombia Roraima-Rupununi savanna region Llanos de Moxos (mosaic type) Pantanal (mosaic type) 2 Campo rupestre Conclusions Acknowledgments Literature Cited 3 Introduction Tropical lowland South America boasts a diversity of vegetation cover as impressive -- and often as bewildering -- as its diversity of plant species. In this chapter, we attempt to describe the major types of vegetation cover in this vast region as they occurred in pre- Columbian times and outline the conditions that support them. Examining the large-scale phytogeographic regions characterized by each major cover type (see Fig. I), we provide basic information on geology, geological history, topography, and climate; describe variants of physiognomy (vegetation structure) and geography; discuss transitions; and examine some floristic patterns and affinities within and among these regions.
    [Show full text]
  • Landscape and Climate Influence the Patterns of Genetic Diversity and Inbreeding in Cerrado Plant Species
    Landscape and climate influence the patterns of genetic diversity and inbreeding in Cerrado plant species Luciana Cristina Vitorino, Mateus Neri Oliveira Reis, Layara Alexandre Bessa, Ueric José Borges de Souza and Fabiano Guimarães Silva Table S1. Species or subspecies, number of microsatellite locus and reference article used to obtain the genetic parameters: Observed Heterozygosity (HO), Expected Heterozygosity (HE), Allelic Richness (AR), and inbreeding coefficients (Fis) for Cerrado plant populations. Number of Species or Subspecies locus Reference Ribeiro, Priciane Cristina Correa, et al. "Transferability and characterization of nuclear microsatellite markers in Annona coriacea 10 populations of Annona coriacea (Annonaceae), a tree from the Brazilian Cerrado." Brazilian Journal of Botany 37.3 (2014): 353- 356. Collevatti, Rosane G., et al. "Contrasting spatial genetic structure in Annona crassiflora populations from fragmented 10 and pristine savannas." Plant systematics and evolution Annona crassiflora 300.7 (2014): 1719-1727. Pereira, M. F., et al. "Development of microsatellite markers 10 in Annona crassiflora Mart., a Brazilian Cerrado fruit tree species." Molecular ecology resources 8.6 (2008): 1329-1331. Ferreira-Ramos, Ronai, et al. "Microsatellite markers for Aspidosperma polyneuron (Apocynaceae), an endangered Aspidosperma polyneuron 16 tropical tree species." American journal of botany 98.11 (2011): e300-e302. Crispim, Bruno do Amaral, et al. "Relationship between genetic variability and land use and land cover in Campomanesia adamantium 7 populations of Campomanesia adamantium (Myrtaceae)." Diversity 10.4 (2018): 106. Collevatti, Rosane G., et al. "Short-distance pollen dispersal Caryocar brasiliense 10 and high self-pollination in a bat-pollinated neotropical tree." Tree Genetics & Genomes 6.4 (2010): 555-564. Antiqueira, Lia Maris Orth Ritter, et al.
    [Show full text]
  • 70Th EAAE Seminar Gueneau Et Al Reviewed Version
    70th EAAE Seminar - May 15-17, 2019 - Montpellier, France Governance of food chains and consumption dynamics: what are the impacts on food security and sustainability? Biodiversity-based supply chains of the Cerrado biome: opportunities and obstacles Stéphane Guéneau (CIRAD/UFMA); Janaina Deane de Abreu Sá Diniz (UnB/PPG-MADER); Tayline Walverde Bispo (UnB/CDS); Sabina Dessartre Mendonça (ICMBio) Abstract Agribusiness expansion has led to the conversion of almost half of the Brazilian Cerrado native vegetation area in monoculture, pastures and wood plantations. Although family- farming activities based on the collection of native fruits and plants could represent an alternative to the expanding high-impact agribusinesses in the Cerrado, their supply chains are poorly documented. We analyzed the obstacles that rural communities face to develop Cerrado biodiversity–based supply chains. Data was gathered in semi-structured interviews with agro-extractivists and other actors of the supply chain, during visits to farms and local markets between 2015 and 2018. The Cerrado Biodiversity-based supply chains present a high diversity of food products, but only some of them belong to a local food heritage and few generate significant cash incomes and have a high potential for trade. The development of these supply chains requires public policies that could address market access issues by focusing on marketing, legislation requirements, transportation and processes management. Key words: supply chain; Cerrado; biodiversity-based; agroextractivism. Introduction Covering nearly a quarter of Brazil's territory, the Cerrado biome is the second largest biome in Latin America. Located in the Center-West region of Brazil, this mosaic of different habitats - from open dry forest and woodland savannah to shrub land and open grassland - has a remarkable biodiversity (Klink and Machado 2005).
    [Show full text]
  • Edible Seeds and Nuts Grown in Brazil As Sources of Protein for Human Nutrition
    Food and Nutrition Sciences, 2012, 3, 857-862 857 http://dx.doi.org/10.4236/fns.2012.36114 Published Online June 2012 (http://www.SciRP.org/journal/fns) Edible Seeds and Nuts Grown in Brazil as Sources of Protein for Human Nutrition Jullyana B. Freitas1,2, Daniela C. Fernandes1, Ludmila P. Czeder1, Jean Carlos R. Lima1, Amanda G. O. Sousa3, Maria Margareth V. Naves4* 1Faculty of Agronomy and Food Engineering, Federal University of Goiás (UFG), Goiânia, Brazil; 2Department of Academic Areas I, Federal Institute of Education, Science and Technology (IFG), Goiânia, Brazil; 3Department of Nursing, Nutrition and Physiotherapy, University Pontifical Catholic of Goiás (PUC-GO), Goiânia, Brazil; 4Experimental Nutrition Laboratory, Faculty of Nutrition, Fed- eral University of Goiás (UFG), Goiânia, Brazil. Email: *[email protected] Received April 3rd, 2012; revised May 3rd, 2012; accepted May 12th, 2012 ABSTRACT Edible seeds and nuts can contribute to an adequate intake of protein, particularly in vegetable-based diets. However, there are relatively few reports with insufficient data regarding the protein quality of these foods, especially of edible seeds and nuts from Brazil. The aim of this study was to investigate the chemical composition and in vivo protein qual- ity of two edible seeds (baru almond and peanut) and two nuts (Brazil nut and cashew nut) grown in Brazil. The proxi- mate composition and the amino acid profile were analyzed. The true protein digestibility and the protein quality of these foods were evaluated by bioassay with male weanling Wistar rats over a period of 14 days, and the Protein Di- gestibility Corrected Amino Acid Score (PDCAAS) was estimated.
    [Show full text]
  • Shihuahuaco» Dipteryx Ferrea (Ducke) Ducke EN LA AMAZONÍA PERUANA, MEDIANTE MARCADORES MICROSATÉLITES
    Revista del Instituto de Investigaciones de la Amazonía Peruana EVALUACIÓN DE LA VARIABILIDAD GENÉTICA DE «shihuahuaco» Dipteryx ferrea (Ducke) Ducke EN LA AMAZONÍA PERUANA, MEDIANTE MARCADORES MICROSATÉLITES , David ALDANA , 1 2 , 1 Rossana DIAZ SORIA , Eurídice 2N. HONORIO CORONADO 2 , Dennis DEL CASTILLO TORRES1 , Gabriel HIDALGO PIZANGO1 1 Carlos ANGULO CHAVEZ1 , Eduardo MEJÍA DE3 LOAYZA , Diana CASTRO-RUIZ1 Mayra FLORES1 Instituto SILVA de, Jean-FrançoisInvestigaciones de la RENNOAmazonía Peruana, Carmen (IIAP), GARCÍA-DÁVILALaboratorio de Biología y Genética Molecular (LBGM), Carretera Iquitos-Nauta km 4.5, San Juan Bautista, Iquitos, Perú. Correo electrónico: [email protected] 2 Instituto de Investigaciones de la Amazonía Peruana (IIAP), Programa de investigación en manejo integral del bosque y servicios ambientales (PROBOSQUES), Av. Abelardo Quiñonez km 2.5, San Juan Bautista, Iquitos, Perú. 3 Institut de Recherche pour le Developpement (IRD), UR-DIADE, Montpellier, Francia. RESUMEN Se evaluó la variabilidad genética del shihuahuaco, Dipteryx ferrea, en siete poblaciones naturales en la Amazonía peruana mediante el análisis de nueve loci microsatélites. Los resultados muestran una alta diversidad genética evidenciada alélica,en el elevado respectivamente). polimorfismo El (total análisis alelos de =componentes 135, media de principales alelos por muestra locus = 15una ± fuerte6 alelos) superposición y riqueza alélica entre (Macuya las poblaciones, = 11 e Iñapari que sumado = 8, máxima a los reducidosy mínima riquezavalores elevada semejanza genética entre las poblaciones. El dendrograma elaborado ende basedistancia a la genéticadistancia interpoblacionalgenética de Shared (valores Allele, entre muestra 0.07 quea 0.10), las poblaciones revela una se encuentran conformando tres agrupaciones genéticas principales, la primera constituida por Manu e Iñapari (grupo A, bootstrap = 91%), la segunda por Contamana y Macuya (grupo B, 60%), y la tercera por Tamaya, Santa Clara e Inuya (grupo C, 100%).
    [Show full text]
  • Climate Change and Impacts on Family Farming in the North and Northeast of Brazil
    WORKING PAPER working paper number 141 may, 2016 ISSN 1812-108x Climate change and impacts on family farming in the North and Northeast of Brazil Haroldo Machado Filho, United Nations Development Programme (UNDP) Cássia Moraes, consultant Paula Bennati, consultant Renato de Aragão Rodrigues, Brazilian Agricultural Research Corporation (Embrapa) Marcela Guilles, consultant Pedro Rocha, consultant Amanda Lima, United Nations Development Programme (UNDP) Isadora Vasconcelos, United Nations Development Programme (UNDP) Investing in rural people International Policy Centre for Inclusive Growth (IPC-IG) Working Paper No.141 Climate change and impacts on family farming in the North and Northeast of Brazil Haroldo Machado Filho; Cássia Moraes; Paula Bennati; Renato de Aragão Rodrigues; Marcela Guilles; Pedro Rocha; Amanda Lima and Isadora Vasconcelos This publication is a result of a partnership between the International Policy Centre for Inclusive Growth (IPC-IG), the United Nations Development Programme (UNDP), the Institute for Applied Economic Research (Ipea) and the International Fund for Agricultural Development (IFAD). Copyright© 2016 International Policy Centre for Inclusive Growth United Nations Development Programme The International Policy Centre for Inclusive Growth is jointly supported by the United Nations Development Programme and the Government of Brazil. Rights and Permissions All rights reserved. The text and data in this publication may be reproduced as long as the source is cited. Reproductions for commercial purposes are forbidden. The International Policy Centre for Inclusive Growth disseminates the ndings of its work in progress to encourage the exchange of ideas about development issues. The papers are signed by the authors and should be cited accordingly. The ndings, interpretations, and conclusions that they express are those of the authors and not necessarily those of the United Nations Development Programme or the Government of Brazil.
    [Show full text]