From Micro- to Macro-Scale: Spatial Patterns on Habitat-Forming Algae ⁎ Simonetta Fraschetti , Antonio Terlizzi, Stanislao Bevilacqua, Ferdinando Boero
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trends of Aquatic Alien Species Invasions in Ukraine
Aquatic Invasions (2007) Volume 2, Issue 3: 215-242 doi: http://dx.doi.org/10.3391/ai.2007.2.3.8 Open Access © 2007 The Author(s) Journal compilation © 2007 REABIC Research Article Trends of aquatic alien species invasions in Ukraine Boris Alexandrov1*, Alexandr Boltachev2, Taras Kharchenko3, Artiom Lyashenko3, Mikhail Son1, Piotr Tsarenko4 and Valeriy Zhukinsky3 1Odessa Branch, Institute of Biology of the Southern Seas, National Academy of Sciences of Ukraine (NASU); 37, Pushkinska St, 65125 Odessa, Ukraine 2Institute of Biology of the Southern Seas NASU; 2, Nakhimova avenue, 99011 Sevastopol, Ukraine 3Institute of Hydrobiology NASU; 12, Geroyiv Stalingrada avenue, 04210 Kiyv, Ukraine 4Institute of Botany NASU; 2, Tereschenkivska St, 01601 Kiyv, Ukraine E-mail: [email protected] (BA), [email protected] (AB), [email protected] (TK, AL), [email protected] (PT) *Corresponding author Received: 13 November 2006 / Accepted: 2 August 2007 Abstract This review is a first attempt to summarize data on the records and distribution of 240 alien species in fresh water, brackish water and marine water areas of Ukraine, from unicellular algae up to fish. A checklist of alien species with their taxonomy, synonymy and with a complete bibliography of their first records is presented. Analysis of the main trends of alien species introduction, present ecological status, origin and pathways is considered. Key words: alien species, ballast water, Black Sea, distribution, invasion, Sea of Azov introduction of plants and animals to new areas Introduction increased over the ages. From the beginning of the 19th century, due to The range of organisms of different taxonomic rising technical progress, the influence of man groups varies with time, which can be attributed on nature has increased in geometrical to general processes of phylogenesis, to changes progression, gradually becoming comparable in in the contours of land and sea, forest and dimensions to climate impact. -
Epibenthic and Mobile Species Colonisation of a Geotextile Artificial Surf Reef on the South Coast of England
RESEARCH ARTICLE Epibenthic and mobile species colonisation of a geotextile artificial surf reef on the south coast of England Roger J. H. Herbert1☯*, Ken Collins2☯, Jenny Mallinson2, Alice E. Hall1, Josephine Pegg3, Kathryn Ross4, Leo Clarke1, Tom Clements2 1 Bournemouth University, Department of Life and Environmental Sciences, Faculty of Science and Technology, Talbot Campus, Poole, Dorset, United Kingdom, 2 School of Ocean and Earth Science, a1111111111 University of Southampton, National Oceanography Centre, Waterfront Campus, European Way, a1111111111 Southampton, United Kingdom, 3 University Centre Sparsholt, Sparsholt, Winchester, Hampshire, United a1111111111 Kingdom, 4 British Trust for Ornithology, Thetford, Norfolk, United Kingdom a1111111111 ☯ These authors contributed equally to this work. a1111111111 * [email protected] Abstract OPEN ACCESS With increasing coastal infrastructure and use of novel materials there is a need to investi- Citation: Herbert RJH, Collins K, Mallinson J, Hall gate the colonisation of assemblages associated with new structures, how these differ to AE, Pegg J, Ross K, et al. (2017) Epibenthic and mobile species colonisation of a geotextile artificial natural and other artificial habitats and their potential impact on regional biodiversity. The surf reef on the south coast of England. PLoS ONE colonisation of Europe's first artificial surf reef (ASR) was investigated at Boscombe on the 12(9): e0184100. https://doi.org/10.1371/journal. south coast of England (2009±2014) and compared with assemblages on existing natural pone.0184100 and artificial habitats. The ASR consists of geotextile bags filled with sand located 220m Editor: Maura (Gee) Geraldine Chapman, University offshore on a sandy sea bed at a depth of 0-5m. -
EST 1. Species of Aglaophenia Reported from Patagonia, South
EST 1. Species of Aglaophenia reported from Patagonia, South Atlantic, South Africa, Tasmania and New Zealand [Locations marked with * slighly northern to Patagonian region (i.e. 40° S in the western sector)]. Only the last and/or major contributions per locality are given. Patagonia South Atlantic South Africa Tasmania New Zealand Source (respectively) Aglaophenia acacia Allman, 1883 x El Beshbeeshy & Jarms 2011 Aglaophenia acanthocarpa Allman, 1876 x Vervoort & Watson 2003, Alfaro et al. 2004 Aglaophenia antarctica Jäderholm, 1903 x Jäderholm 1903 Aglaophenia ctenata (Totton, 1930) x Vervoort & Watson 2003 Aglaophenia cupressina Lamouroux, 1816 x Millard 1975 Aglaophenia decumbens Bale, 1914 x Hodgson 1950 Aglaophenia difficilis Vervoort & Watson, 2003 x Vervoort & Watson 2003 Aglaophenia digitulus Vervoort & Watson, 2003 x Vervoort & Watson 2003 Aglaophenia divaricata (Busk, 1852) x* x Galea et al. 2014; Watson 1975 Aglaophenia hystrix Vervoort & Watson, 2003 x Vervoort & Watson 2003 Aglaophenia latecarinata Allman, 1877 x Millard 1975 Aglaophenia laxa Allman, 1876 x Vervoort & Watson 2003 Aglaophenia parvula Bale, 1882 x x x Galea 2015; Millard 1975 (as Aglaophenia pluma parvula), Gili et al. 1989; Hodgson 1950 Aglaophenia patagonica d'Orbigny, 1839 x Leloup 1974 Aglaophenia picardi Svoboda, 1979 x Galea 2015 Aglaophenia pluma (Linnaeus, 1758) x Millard 1975 (as Aglaophenia pluma pluma and Aglaophenia pluma dichotoma) Aglaophenia plumosa Bale, 1882 x x Watson 1975; Vervoort & Watson 2003 Aglaophenia sinuosa Bale, 1888 x Vervoort & Watson 2003 Aglaophenia subspiralis Vervoort & Watson, 2003 x Vervoort & Watson 2003 Aglaophenia tasmanica Bale, 1914 x Hodgson 1950 ALFARO, C.A., JEFFS, A.G. & CREESE, R.G. 2004. Bottom-drifting algal/mussel spat associations along a sandy coastal region in northern New Zealand. -
The Evolution of Siphonophore Tentilla for Specialized Prey Capture in the Open Ocean
The evolution of siphonophore tentilla for specialized prey capture in the open ocean Alejandro Damian-Serranoa,1, Steven H. D. Haddockb,c, and Casey W. Dunna aDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520; bResearch Division, Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039; and cEcology and Evolutionary Biology, University of California, Santa Cruz, CA 95064 Edited by Jeremy B. C. Jackson, American Museum of Natural History, New York, NY, and approved December 11, 2020 (received for review April 7, 2020) Predator specialization has often been considered an evolutionary makes them an ideal system to study the relationships between “dead end” due to the constraints associated with the evolution of functional traits and prey specialization. Like a head of coral, a si- morphological and functional optimizations throughout the organ- phonophore is a colony bearing many feeding polyps (Fig. 1). Each ism. However, in some predators, these changes are localized in sep- feeding polyp has a single tentacle, which branches into a series of arate structures dedicated to prey capture. One of the most extreme tentilla. Like other cnidarians, siphonophores capture prey with cases of this modularity can be observed in siphonophores, a clade of nematocysts, harpoon-like stinging capsules borne within special- pelagic colonial cnidarians that use tentilla (tentacle side branches ized cells known as cnidocytes. Unlike the prey-capture apparatus of armed with nematocysts) exclusively for prey capture. Here we study most other cnidarians, siphonophore tentacles carry their cnidocytes how siphonophore specialists and generalists evolve, and what mor- in extremely complex and organized batteries (3), which are located phological changes are associated with these transitions. -
DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1. -
On Some Hydroids (Cnidaria) from the Coast of Pakistan
Pakistan J. Zool., vol. 38(3), pp. 225-232, 2006. On Some Hydroids (Cnidaria) from the Coast of Pakistan NASEEM MOAZZAM AND MOHAMMAD MOAZZAM Institute of Marine Sciences, University of Karachi, Karachi 75270, Pakistan (NM) and Marine Fisheries Department, Government of Pakistan, Fish Harbour, West Wharf, Karachi 74900, Pakistan (MM) Abstract .- The paper deals with the occurrence of eleven species of the hydroids from the coast of Pakistan. All the species are reported for the first time from Pakistan. These species are Hydractinia epidocleensis, Pennaria disticha, Eudendrium capillare, Orthopyxis cf. crenata, Clytia noliformis, C. hummelincki, Dynamena crisioides, D. quadridentata, Sertularia distans, Pycnotheca mirabilis and Macrorhynchia philippina. Key words: Hydroids, Coelenterata, Pakistan, Hydractinia, Pennaria, Eudendrium, Orthopyxis, Clytia, Dynamena, Sertularia, Pycnotheca, Macrorhynchia. INTRODUCTION used in the paper are derived from Millard (1975), Gibbons and Ryland (1989), Ryland and Gibbons (1991). In comparison to other invertebrates, TAXONOMIC ENUMERATION hydroids are one of the least known groups of marine animals from the coast of Pakistan Haque Family BOUGAINVILLIIDAE (1977) reported a few Cnidaria from the Pakistani Genus HYDRACTINIA Van Beneden, 1841 coast including two hydroids i.e. Plumularia flabellum Allman, 1883 (= P. insignis Allman, 1. Hydractinia epidocleensis Leloup, 1931 1883) and Campanularia juncea Allman, 1874 (= (Fig. 1) Thyroscyphus junceus (Allman, 1876) from Keamari and Bhit Island, Karachi, respectively. Ahmed and Hameed (1999), Ahmed et al. (1978) and Haq et al. (1978) have mentioned the presence of hydroids in various habitats along the coast of Pakistan. Javed and Mustaquim (1995) reported Sertularia turbinata (Lamouroux, 1816) from Manora Channel, Karachi. The present paper describes eleven species of Cnidaria collected from the Pakistani coast all of which are new records for Pakistan. -
SCAMIT Newsletter Vol. 15 No. 11 1997 March
March, 1997 SCAMIT Newsletter vol. 15, No. 11 NEXT MEETING: Workshop - The Taxonomy of Benthic Cnidaria GUEST SPEAKER: Moderator - John Ljubenkov DATE: 10-11 April 1997 TIME: 9am - 4pm each day LOCATION: Dancing Coyote Ranch, 20355 Hwy 76, Pauma Valley, California APRIL 10-11 WORKSHOP Our April meeting has been replaced with a two day workshop titled Taxonomy of Benthic Cnidaria emphasizing the fauna of So. California and adjacent regions. Sessions on Hydrozoa and Anthozoa are planned, with particular attention to Polyorchis, corymorphine hydroids and their medusae, Plumularia, burrowing anemones, gorgonians, sea pens and other octocorals. Bring problem specimens, of which there should be no lack. Please contact John @ 619)742-2238 for directions, information, to indicate attendance, or for help arranging accommodations for Polyorchis (from Hyman, 1940. The overnighting. Invertebrates, Volume 1 - Protozoa-Ctenophora) FUNDS FOR THIS PUBLICATION PROVIDED, IN PART, BY THE ARCO FOUNDATION, CHEVRON USA, AND TEXACO INC. SCAMIT Newsletter is not deemed to be a valid publication for formal taxonomic purposes. March, 1997 SCAMIT Newsletter Vol. 15, No. 11 NEW LITERATURE to be a recurrent feature involving several gadoid fishes, with records from 1959, 1970, 1983, and A variety of new papers were distributed at the 19th century European waters. Happily the meeting for member examination. Two dealt with shrimp population recovered within one year in echinoderms, which form the backbone of the most recent episode. Taxonomic Atlas Volume 14, our discussion topic for the meeting. Both concerned holothuroids, Krueger & Cavanaugh (1997) discuss a closer with Rodgers & Bingham (1996) addressing the relationship between two disparate populations; subtidal zonation of the eastern Pacific Cucumaria that of species in the clam genus Solemya and lubrica, and Foster & Hodgson (1996) examining their bacterial symbionts. -
Cnidaria: Hydrozoa) Associated to a Subtropical Sargassum Cymosum (Phaeophyta: Fucales) Bed
ZOOLOGIA 27 (6): 945–955, December, 2010 doi: 10.1590/S1984-46702010000600016 Seasonal variation of epiphytic hydroids (Cnidaria: Hydrozoa) associated to a subtropical Sargassum cymosum (Phaeophyta: Fucales) bed Amanda Ferreira Cunha1 & Giuliano Buzá Jacobucci2 1 Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, Travessa 14, 101, Cidade Universitária, 05508-900 São Paulo, SP, Brazil. E-mail: [email protected] 2 Instituto de Biologia, Universidade Federal de Uberlândia. Rua Ceará, Campus Umuarama, 38402-400 Uberlândia, MG, Brazil. E-mail: [email protected] ABSTRACT. Hydroids are broadly reported in epiphytic associations from different localities showing marked seasonal cycles. Studies have shown that the factors behind these seasonal differences in hydroid richness and abundance may vary significantly according to the area of study. Seasonal differences in epiphytic hydroid cover and richness were evaluated in a Sargassum cymosum C. Agardh bed from Lázaro beach, at Ubatuba, Brazil. Significant seasonal differences were found in total hydroid cover, but not in species richness. Hydroid cover increased from March (early fall) to February (summer). Most of this pattern was caused by two of the most abundant species: Aglaophenia latecarinata Allman, 1877 and Orthopyxis sargassicola (Nutting, 1915). Hydroid richness seems to be related to S. cymosum size but not directly to its biomass. The seasonal differences in hydroid richness and algal cover are shown to be similar to other works in the study region and in the Mediterranean. Seasonal recruitment of hydroid species larvae may be responsible for their seasonal differences in algal cover, although other factors such as grazing activity of gammarid amphipods on S. -
Ferdinando Boero Disteba (Dipartimento Di Scienze E
CV of Ferdinando Boero Contacts: Ferdinando Boero DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche e Ambientali) Università del Salento 73100 Lecce Italy Voice: -39 0832 298619 Handphone: 3332144956 Fax: -39 0832 298702 or 298626 email: [email protected] 1951, February 13th, born in Genova, Italy. Current position: Full Professor of Zoology and Anthropology at the Department of Biological and Environmental Sciences and Technologies of the University of Salento. Associate at the Istituto di Scienze Marine of the National Research Council Appointments 1988-today, responsible of the Museum and Station of Marine Biology of Porto Cesareo. 1990- today, Member, or past member, of the editorial board of the journals: Advances in Limonology and Oceanography Aquatic Biology Aquatic Invasions Cahiers de Biologie Marine Ecology Letters Italian Journal of Zoology (editor in chief since 2008) Journal of Evolutionary Biology F1000 Research Oebalia Thalassia Salentina 1995-today, member of the Council of the "Consorzio Nazionale Interuniversitario per le Scienze del Mare" (National Interuniversity Consortium for Marine Sciences) (CoNISMa). 1995-today, director of the CoNISMA Research Unit of Lecce. 1996-1998, Member of the Academic Senate of the University of Lecce. 1998-2004, Chair of the Littoral Environments Committee of the International Commission for the Scientific Exploration of the Mediterranean Sea. 2007-2013, Chair of the Biological Resources Committee of the International Commission for the Scientific Exploration of the Mediterranean Sea. 1998-2004, Secretary General of the Società Italiana di Ecologia. 2004-2008, Member of the council of the Società Italiana di Ecologia, 2004-today, Member of the council of the Unione Zoologica Italiana. 2000-2008, responsible, with L. -
Hydrozoan Insights in Animal Development and Evolution Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston
Hydrozoan insights in animal development and evolution Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston To cite this version: Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston. Hydrozoan insights in animal development and evolution. Current Opinion in Genetics and Development, Elsevier, 2016, Devel- opmental mechanisms, patterning and evolution, 39, pp.157-167. 10.1016/j.gde.2016.07.006. hal- 01470553 HAL Id: hal-01470553 https://hal.sorbonne-universite.fr/hal-01470553 Submitted on 17 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Current Opinion in Genetics and Development 2016, 39:157–167 http://dx.doi.org/10.1016/j.gde.2016.07.006 Hydrozoan insights in animal development and evolution Lucas Leclère, Richard R. Copley, Tsuyoshi Momose and Evelyn Houliston Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche‐sur‐mer (LBDV), 181 chemin du Lazaret, 06230 Villefranche‐sur‐mer, France. Corresponding author: Leclère, Lucas (leclere@obs‐vlfr.fr). Abstract The fresh water polyp Hydra provides textbook experimental demonstration of positional information gradients and regeneration processes. Developmental biologists are thus familiar with Hydra, but may not appreciate that it is a relatively simple member of the Hydrozoa, a group of mostly marine cnidarians with complex and diverse life cycles, exhibiting extensive phenotypic plasticity and regenerative capabilities. -
Structure of Mediterranean 'Cnidarian Populations In
Homage to Ramon Marga/et,· or, Why there is such p/easure in studying nature 243 (J. D. Ros & N. Prat, eds.). 1991 . Oec% gia aquatica, 10: 243-254 STRUCTURE OF 'CNIDARIAN POPULATIONS IN MEDITERRANEAN SUBLITTORAL BENTHIC COMMUNITIES AS A RESUL T OF ADAPTATION TO DIFFERENT ENVIRONMENTAL CONDITIONS 2 JOSEP-MARIA GILIl & ENRIe BALLESTEROs .• 1 Insti t de Ciencies del Mar (CSIC). Passeig Nacional, s/n. 08039 Barcelona. Spain 2 � Centre d'Estudis Avanc;:atsde Blanes (CSIC). Camí de Santa Barbara, s/n. 17300 Blanes. Spain Received: March 1990 SUMMARY The presence and abundance of Cnidarians, extremely cornmon in Mediterranean sublittoral benthic communities, exerts a profound effect on the entire structure of such communities, although the roles of Anthozoans and Hydrozoans differ in accordance with their different biological characteristics. Structural differences in benthic cnidarian populations were observed in three sublittoral cornmunities located within 100 m of each other yet differing considerably in light intensity and water movement. Species-area and Shannon's diversity-area curves were computed for each community from reticulate samples constituted by 18 subsamples 2 of 289 cm . Species-area curves were fitted to semilogarithmic functions, while diversity-area curves were fitted to Michaelis-Menten functions by the method of least squares. Species richness, species distribution, alpha-diversity, and pattem diversity were estimated from the fitted curves. Patch size for Anthozoans was smaller than that for Hydrozoans in all three communities. Diversity was greatest in the cornmunities with the lowest and with the highest light intensity and water flow levels, but species richness was highest in the intermediate community. -
Final Report
Developing Molecular Methods to Identify and Quantify Ballast Water Organisms: A Test Case with Cnidarians SERDP Project # CP-1251 Performing Organization: Brian R. Kreiser Department of Biological Sciences 118 College Drive #5018 University of Southern Mississippi Hattiesburg, MS 39406 601-266-6556 [email protected] Date: 4/15/04 Revision #: ?? Table of Contents Table of Contents i List of Acronyms ii List of Figures iv List of Tables vi Acknowledgements 1 Executive Summary 2 Background 2 Methods 2 Results 3 Conclusions 5 Transition Plan 5 Recommendations 6 Objective 7 Background 8 The Problem and Approach 8 Why cnidarians? 9 Indicators of ballast water exchange 9 Materials and Methods 11 Phase I. Specimens 11 DNA Isolation 11 Marker Identification 11 Taxa identifications 13 Phase II. Detection ability 13 Detection limits 14 Testing mixed samples 14 Phase III. 14 Results and Accomplishments 16 Phase I. Specimens 16 DNA Isolation 16 Marker Identification 16 Taxa identifications 17 i RFLPs of 16S rRNA 17 Phase II. Detection ability 18 Detection limits 19 Testing mixed samples 19 Phase III. DNA extractions 19 PCR results 20 Conclusions 21 Summary, utility and follow-on efforts 21 Economic feasibility 22 Transition plan 23 Recommendations 23 Literature Cited 24 Appendices A - Supporting Data 27 B - List of Technical Publications 50 ii List of Acronyms DGGE - denaturing gradient gel electrophoresis DMSO - dimethyl sulfoxide DNA - deoxyribonucleic acid ITS - internal transcribed spacer mtDNA - mitochondrial DNA PCR - polymerase chain reaction rRNA - ribosomal RNA - ribonucleic acid RFLPs - restriction fragment length polymorphisms SSCP - single strand conformation polymorphisms iii List of Figures Figure 1. Figure 1.