Interplanetary Conditions Causing Intense Geomagnetic Storms (Dst 100 Nt) During Solar Cycle 23 (1996–2006) E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analysis of Geomagnetic Storms in South Atlantic Magnetic Anomaly (SAMA)
Analysis of geomagnetic storms in South Atlantic Magnetic Anomaly (SAMA) Júlia Maria Soja Sampaio, Elder Yokoyama, Luciana Figueiredo Prado Copyright 2019, SBGf - Sociedade Brasileira de Geofísica Moreover, Dst and AE indices may vary according to the This paper was prepared for presentation during the 16th International Congress of the geomagnetic field geometry, such as polar to intermediate Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 19-22 August 2019. latitudinal field variations. In this framework, fluctuations Contents of this paper were reviewed by the Technical Committee of the 16th in the geomagnetic field can occur under the influence of International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or the South Atlantic Magnetic Anomaly (SAMA). The SAMA storage of any part of this paper for commercial purposes without the written consent is a region of minimum geomagnetic field intensity values of the Brazilian Geophysical Society is prohibited. ____________________________________________________________________ at the Earth’s surface (Figure 1), and its dipole intensity is decreasing along the past 1000 years (Terra-Nova et. al., Abstract 2017). Geomagnetic storm is a major disturbance of Earth’s In this study we will compare the behavior of the types of magnetosphere resulted from the interaction of solar wind geomagnetic storms basis on AE and Dst indices. and the Earth’s magnetic field. This disturbance depends of the Earth magnetic field geometry, and varies in terms of intensity from the Poles to the Equator. This disturbance is quantified through geomagnetic indices, such as the Dst and the AE indices. -
On Magnetic Storms and Substorms
ILWS WORKSHOP 2006, GOA, FEBRUARY 19-24, 2006 On magnetic storms and substorms G. S. Lakhina, S. Alex, S. Mukherjee and G. Vichare Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai-410218, India Abstract. Magnetospheric substorms and storms are indicators of geomagnetic activity. Whereas the geomagnetic index AE (auroral electrojet) is used to study substorms, it is common to characterize the magnetic storms by the Dst (disturbance storm time) index of geomagnetic activity. This talk discusses briefly the storm-substorms relationship, and highlights some of the characteristics of intense magnetic storms, including the events of 29-31 October and 20-21 November 2003. The adverse effects of these intense geomagnetic storms on telecommunication, navigation, and on spacecraft functioning will be discussed. Index Terms. Geomagnetic activity, geomagnetic storms, space weather, substorms. _____________________________________________________________________________________________________ 1. Introduction latitude magnetic fields are significantly depressed over a Magnetospheric storms and substorms are indicators of time span of one to a few hours followed by its recovery geomagnetic activity. Where as the magnetic storms are which may extend over several days (Rostoker, 1997). driven directly by solar drivers like Coronal mass ejections, solar flares, fast streams etc., the substorms, in simplest terms, are the disturbances occurring within the magnetosphere that are ultimately caused by the solar wind. The magnetic storms are characterized by the Dst (disturbance storm time) index of geomagnetic activity. The substorms, on the other hand, are characterized by geomagnetic AE (auroral electrojet) index. Magnetic reconnection plays an important role in energy transfer from solar wind to the magnetosphere. Magnetic reconnection is very effective when the interplanetary magnetic field is directed southwards leading to strong plasma injection from the tail towards the inner magnetosphere causing intense auroras at high-latitude nightside regions. -
Statistical Properties of Superactive Regions During Solar Cycles 19–23⋆
A&A 534, A47 (2011) Astronomy DOI: 10.1051/0004-6361/201116790 & c ESO 2011 Astrophysics Statistical properties of superactive regions during solar cycles 19–23 A. Q. Chen1,2,J.X.Wang1,J.W.Li2,J.Feynman3, and J. Zhang1 1 Key Laboratory of Solar Activity of Chinese Academy of Sciences, National Astronomical Observatories, Chinese Academy of Sciences, PR China e-mail: [email protected]; [email protected] 2 National Center for Space Weather, China Meteorological Administration, PR China 3 Helio research, 5212 Maryland Avenue, La Crescenta, USA Received 26 February 2011 / Accepted 20 August 2011 ABSTRACT Context. Each solar activity cycle is characterized by a small number of superactive regions (SARs) that produce the most violent of space weather events with the greatest disastrous influence on our living environment. Aims. We aim to re-parameterize the SARs and study the latitudinal and longitudinal distributions of SARs. Methods. We select 45 SARs in solar cycles 21–23, according to the following four parameters: 1) the maximum area of sunspot group, 2) the soft X-ray flare index, 3) the 10.7 cm radio peak flux, and 4) the variation in the total solar irradiance. Another 120 SARs given by previous studies of solar cycles 19–23 are also included. The latitudinal and longitudinal distributions of the 165 SARs in both the Carrington frame and the dynamic reference frame during solar cycles 19–23 are studied statistically. Results. Our results indicate that these 45 SARs produced 44% of all the X class X-ray flares during solar cycles 21–23, and that all the SARs are likely to produce a very fast CME. -
THEMIS Observations of a Hot Flow Anomaly: Solar Wind, Magnetosheath, and Ground-Based Measurements J
THEMIS observations of a hot flow anomaly: Solar wind, magnetosheath, and ground-based measurements J. Eastwood, D. Sibeck, V. Angelopoulos, T. Phan, S. Bale, J. Mcfadden, C. Cully, S. Mende, D. Larson, S. Frey, et al. To cite this version: J. Eastwood, D. Sibeck, V. Angelopoulos, T. Phan, S. Bale, et al.. THEMIS observations of a hot flow anomaly: Solar wind, magnetosheath, and ground-based measurements. Geophysical Research Letters, American Geophysical Union, 2008, 35 (17), pp.L17S03. 10.1029/2008GL033475. hal- 03086705 HAL Id: hal-03086705 https://hal.archives-ouvertes.fr/hal-03086705 Submitted on 23 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L17S03, doi:10.1029/2008GL033475, 2008 THEMIS observations of a hot flow anomaly: Solar wind, magnetosheath, and ground-based measurements J. P. Eastwood,1 D. G. Sibeck,2 V. Angelopoulos,3 T. D. Phan,1 S. D. Bale,1,4 J. P. McFadden,1 C. M. Cully,5,6 S. B. Mende,1 D. Larson,1 S. Frey,1 C. W. Carlson,1 K.-H. Glassmeier,7 H. U. Auster,7 A. Roux,8 and O. -
Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence E
Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence E. K. J. Kilpua, D. Fontaine, C. Moissard, M. Ala-lahti, E. Palmerio, E. Yordanova, S. Good, M. M. H. Kalliokoski, E. Lumme, A. Osmane, et al. To cite this version: E. K. J. Kilpua, D. Fontaine, C. Moissard, M. Ala-lahti, E. Palmerio, et al.. Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence. Space Weather: The International Journal of Research and Applications, American Geophysical Union (AGU), 2019, 17 (8), pp.1257-1280. 10.1029/2019SW002217. hal-03087107 HAL Id: hal-03087107 https://hal.archives-ouvertes.fr/hal-03087107 Submitted on 23 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE Solar Wind Properties and Geospace Impact of Coronal 10.1029/2019SW002217 Mass Ejection-Driven Sheath Regions: Variation and Key Points: Driver Dependence • Variation of interplanetary properties and geoeffectiveness of CME-driven sheaths and their dependence on the E. K. J. Kilpua1 , D. Fontaine2 , C. Moissard2 , M. Ala-Lahti1 , E. Palmerio1 , ejecta properties are determined E. -
Planetary Magnetospheres
CLBE001-ESS2E November 9, 2006 17:4 100-C 25-C 50-C 75-C C+M 50-C+M C+Y 50-C+Y M+Y 50-M+Y 100-M 25-M 50-M 75-M 100-Y 25-Y 50-Y 75-Y 100-K 25-K 25-19-19 50-K 50-40-40 75-K 75-64-64 Planetary Magnetospheres Margaret Galland Kivelson University of California Los Angeles, California Fran Bagenal University of Colorado, Boulder Boulder, Colorado CHAPTER 28 1. What is a Magnetosphere? 5. Dynamics 2. Types of Magnetospheres 6. Interaction with Moons 3. Planetary Magnetic Fields 7. Conclusions 4. Magnetospheric Plasmas 1. What is a Magnetosphere? planet’s magnetic field. Moreover, unmagnetized planets in the flowing solar wind carve out cavities whose properties The term magnetosphere was coined by T. Gold in 1959 are sufficiently similar to those of true magnetospheres to al- to describe the region above the ionosphere in which the low us to include them in this discussion. Moons embedded magnetic field of the Earth controls the motions of charged in the flowing plasma of a planetary magnetosphere create particles. The magnetic field traps low-energy plasma and interaction regions resembling those that surround unmag- forms the Van Allen belts, torus-shaped regions in which netized planets. If a moon is sufficiently strongly magne- high-energy ions and electrons (tens of keV and higher) tized, it may carve out a true magnetosphere completely drift around the Earth. The control of charged particles by contained within the magnetosphere of the planet. -
Our Sun Has Spots.Pdf
THE A T M O S P H E R I C R E S E R V O I R Examining the Atmosphere and Atmospheric Resource Management Our Sun Has Spots By Mark D. Schneider Aurora Borealis light shows. If you minima and decreased activity haven’t seen the northern lights for called The Maunder Minimum. Is there actually weather above a while, you’re not alone. The end This period coincides with the our earth’s troposphere that con- of Solar Cycle 23 and a minimum “Little Ice Age” and may be an cerns us? Yes. In fact, the US of sunspot activity likely took place indication that it’s possible to fore- Department of Commerce late last year. Now that a new 11- cast long-term temperature trends National Oceanic and over several decades or Atmospheric Administra- centuries by looking at the tion (NOAA) has a separate sun’s irradiance patterns. division called the Space Weather Prediction Center You may have heard (SWPC) that monitors the about 22-year climate weather in space. Space cycles (two 11-year sun- weather focuses on our sun spot cycles) in which wet and its’ cycles of solar activ- periods and droughts were ity. Back in April of 2007, experienced in the Mid- the SWPC made a predic- western U.S. The years tion that the next active 1918, 1936, and 1955 were sunspot or solar cycle would periods of maximum solar begin in March of this year. forcing, but minimum Their prediction was on the precipitation over parts of mark, Solar Cycle 24 began NASA TRACE PROJECT, OF COURTESY PHOTO the U.S. -
Prediction of Solar Activity on the Basis of Spectral Characteristics of Sunspot Number
Annales Geophysicae (2004) 22: 2239–2243 SRef-ID: 1432-0576/ag/2004-22-2239 Annales © European Geosciences Union 2004 Geophysicae Prediction of solar activity on the basis of spectral characteristics of sunspot number E. Echer1, N. R. Rigozo1,2, D. J. R. Nordemann1, and L. E. A. Vieira1 1Instituto Nacional de Pesquisas Espaciais (INPE), Av. Astronautas, 1758 ZIP 12201-970, Sao˜ Jose´ dos Campos, SP, Brazil 2Faculdade de Tecnologia Thereza Porto Marques (FAETEC) ZIP 12308-320, Jacare´ı, Brazil Received: 9 July 2003 – Revised: 6 February 2004 – Accepted: 18 February 2004 – Published: 14 June 2004 Abstract. Prediction of solar activity strength for solar cy- when daily averages are more frequently available (Hoyt and cles 23 and 24 is performed on the basis of extrapolation of Schatten, 1998a, b). sunspot number spectral components. Sunspot number data When the solar cycle is in its maximum phase, there are during 1933–1996 periods (solar cycles 17–22) are searched important terrestrial consequences, such as the higher solar for periodicities by iterative regression. The periods signifi- emission of extreme-ultraviolet and ultraviolet flux, which cant at the 95% confidence level were used in a sum of sine can modulate the middle and upper terrestrial atmosphere, series to reconstruct sunspot series, to predict the strength and total solar irradiance, which could have effects on terres- of solar cycles 23 and 24. The maximum peak of solar cy- trial climate (Hoyt and Schatten, 1997), as well as the coronal cles is adequately predicted (cycle 21: 158±13.2 against an mass ejection and interplanetary shock rates, responsible by observed peak of 155.4; cycle 22: 178±13.2 against 157.6 geomagnetic activity storms and auroras (Webb and Howard, observed). -
Solar Cycle 23 and 24 and Their Geoeffectiveness
Study of Space weather events of Solar cycle 23 and 24 and their Geoeffectiveness B. Veenadhari Selvakumaran, S Kumar, Megha P, S. Mukherjee Indian Institute of Geomagnetism, Navi Mumbai, India. UN/US International Space Weather Initiative Workshop Boston, USA July 31 – 4 August, 2017 Out line Colaba - Bombay old magnetic records Solar and Interplanetary drivers, estimation of interplanetary conditions. Space weather events – Solar cycle 23 and 24 Geomagnetic response from low and equatorial latitudes On the reduced geoeffectiveness of solar cycle 24: a moderate storm perspective summary Magnetic Observatories In India by IIG Oldest Indian magnetic observatory at Alibag, established in 1904. Alibag(ABG) and Jaipur(JAI) are INTERMAGNET Observatories World Data Center (WDC) Mumbai - is member of ISCU World Data center(WDS),. The Colaba (Bombay) magnetogram for the extreme Geomagnetic storm 1-2 September, 1859. Tsurutani, B. T., W. D. Gonzalez, G. S. Lakhina, and S. Alex, The extreme magnetic storm of 1–2 September 1859, J. Geophys. Res., 108, 2003. The 1 September 1859 Carrington solar flare most likely had an associated intense magnetic cloud ejection which led to a storm on Earth of DST ~ -1760 nT. This is consistent with the Colaba, India local noon magnetic response of H = 1600 ± 10 nT. It is found that both the 1–2 September 1859 solar flare energy and the associated coronal mass ejection speed were extremely high but not unique. Superposed epoch plot of 69 magnetic storms (- 100nT) with clear main phase were selected during the solar cycle 23 period. (a) the associated interplanetary electric fields Some of the intense magnetic storms recorded (b) the Dst index. -
Extreme Solar Eruptions and Their Space Weather Consequences Nat
Extreme Solar Eruptions and their Space Weather Consequences Nat Gopalswamy NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Abstract: Solar eruptions generally refer to coronal mass ejections (CMEs) and flares. Both are important sources of space weather. Solar flares cause sudden change in the ionization level in the ionosphere. CMEs cause solar energetic particle (SEP) events and geomagnetic storms. A flare with unusually high intensity and/or a CME with extremely high energy can be thought of examples of extreme events on the Sun. These events can also lead to extreme SEP events and/or geomagnetic storms. Ultimately, the energy that powers CMEs and flares are stored in magnetic regions on the Sun, known as active regions. Active regions with extraordinary size and magnetic field have the potential to produce extreme events. Based on current data sets, we estimate the sizes of one-in-hundred and one-in-thousand year events as an indicator of the extremeness of the events. We consider both the extremeness in the source of eruptions and in the consequences. We then compare the estimated 100-year and 1000-year sizes with the sizes of historical extreme events measured or inferred. 1. Introduction Human society experienced the impact of extreme solar eruptions that occurred on October 28 and 29 in 2003, known as the Halloween 2003 storms. Soon after the occurrence of the associated solar flares and coronal mass ejections (CMEs) at the Sun, people were expecting severe impact on Earth’s space environment and took appropriate actions to safeguard technological systems in space and on the ground. -
A BRIEF HISTORY of CME SCIENCE 1. Introduction the Key to Understanding Solar Activity Lies in the Sun's Ever-Changing Magnetic
A BRIEF HISTORY OF CME SCIENCE 1 2 DAVID ALEXANDER , IAN G. RICHARDSON and THOMAS H. ZURBUCHEN3 1Department of Physics and Astronomy, Rice University, 6100 Main St., Houston, TX 77005, USA 2 The Astroparticle Physics Laboratory, NASA GSFC, Greenbelt, MD 20771, USA 3 Department of AOSS, University of Michigan, Ann Arbor, M148109, USA Received: 15 July 2004; Accepted in final form: 5 May 2005 Abstract. We present here a brief summary of the rich heritage of observational and theoretical research leading to the development of our current understanding of the initiation, structure, and evolution of Coronal Mass Ejections. 1. Introduction The key to understanding solar activity lies in the Sun's ever-changing magnetic field. The potential role played by the magnetic field in the solar atmosphere was first suggested by Frank Bigelow in 1889 after noting that the structure of the solar minimum corona seen during the eclipse of 1878 displayed marked equatorial extensions, called 'streamers '. Bigelow(1 890) noted th at the coronal streamers had a strong resemblance to magnetic lines of force and proposed th at the Sun must, in fact, be a large magnet. Subsequently, Hen ri Deslandres (1893) suggested that the forms and motions of prominences seen during so lar eclipses appeared to be influenced by a solar magnetic field. The link between magnetic fields and plasma emitted by the Sun was beginning to take shape by the turn of the 20th Century. The epochal discovery of magnetic fields on the Sun by American astronomer George Ellery Hale (1908) signalled the birth of modem solar physics. -
From the Sun to the Earth: August 25, 2018 Geomagnetic Storm Effects
https://doi.org/10.5194/angeo-2019-165 Preprint. Discussion started: 10 January 2020 c Author(s) 2020. CC BY 4.0 License. From the Sun to the Earth: August 25, 2018 geomagnetic storm effects Mirko Piersanti1, Paola De Michelis2, Dario Del Moro3, Roberta Tozzi2, Michael Pezzopane2, Giuseppe Consolini4, Maria Federica Marcucci4, Monica Laurenza4, Simone Di Matteo5, Alessio Pignalberi2, Virgilio Quattrociocchi4,6, and Piero Diego4 1INFN - University of Rome "Tor Vergata", Rome, Italy. 2Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy. 3University of Rome "Tor Vergata", Rome, Italy. 4INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy. 5Catholic University of America at NASA Goddard Space Flight Center, Greenbelt, Maryland, USA 6Dpt. of Physical and Chemical Sciences, University of L’Aquila, L’Aquila, Italy Correspondence: Mirko Piersanti ([email protected]) Abstract. On August 25, 2018 the interplanetary counterpart of the August 20, 2018 Coronal Mass Ejection (CME) hit the Earth, giving rise to a strong G3 geomagnetic storm. We present a description of the whole sequence of events from the Sun to the ground as well as a detailed analysis of the observed effects on the Earth’s environment by using a multi instrumental approach. We studied the ICME propagation in the interplanetary space up to the analysis of its effects in the magnetosphere, 5 ionosphere and at ground. To accomplish this task, we used ground and space collected data, including data from CSES (China Seismo Electric Satellite), launched on February 11, 2018. We found a direct connection between the ICME impact point onto the magnetopause and the pattern of the Earth’s polar electrojects.