Current Sheets, Magnetic Islands, and Associated Particle Acceleration in the Solar Wind As Observed by Ulysses Near the Ecliptic Plane
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fundamentals of Impulsive Energy Release in the Corona Heliophysics 2050 Workshop White Paper A
Heliophysics 2050 White Papers (2021) 4093.pdf Fundamentals of impulsive energy release in the corona Heliophysics 2050 Workshop white paper A. Y. Shih (NASA Goddard Space Flight Center), L. Glesener (UMN), S. Krucker (UCB), S. Guidoni (Amer. Univ.), S. Christe (GSFC), K. Reeves (SAO), S. Gburek (PAS), A. Caspi (SwRI), M. Alaoui (GSFC/CUA), J. Allred (GSFC), M. Battaglia (FHNW), W. Baumgartner (MSFC), B. Dennis (GSFC), J. Drake (UMD), K. Goetz (UMN), L. Golub (SAO), I. Hannah (Univ. of Glasgow), L. Hayes (GSFC/USRA), G. Holman (GSFC/Emeritus), A. Inglis (GSFC/CUA), J. Ireland (GSFC), G. Kerr (GSFC/CUA), J. Klimchuk (GSFC), D. McKenzie (MSFC), C. Moore (SAO), S. Musset (Univ. of Glasgow), J. Reep (NRL), D. Ryan (GSFC/AU), P. Saint-Hilaire (UCB), S. Savage (MSFC), R. Schwartz (GSFC/AU), D. Seaton (NOAA), M. Stęślicki (PAS), T. Woods (LASP) Introduction Solar eruptive events are the most energetic and geo-effective space-weather drivers. They originate in the corona near the Sun’s surface as a combination of solar flares (impulsive bursts of radiation across the entire electromagnetic spectrum) and coronal mass ejections (CMEs; expulsions of magnetized plasma into interplanetary space). The radiation and energetic particles they produce can damage satellites, disrupt telecommunications and GPS navigation, and endanger astronauts in space. Many of the processes involved in triggering, driving, and sustaining solar eruptive events–including magnetic reconnection, particle acceleration, plasma heating, and energy transport in magnetized plasmas–also play important roles in phenomena throughout the Universe, such as in magnetospheric substorms, gamma-ray bursts, and accretion disks. The Sun is a unique laboratory to better understand these fundamental physical processes. -
Observations of Solar Wind Penetration Into the Earth's Magnetosphere: the Plasma Mantle
ENNIO R. SANCHEZ, CHING-I. MENG, and PATRICK T. NEWELL OBSERVATIONS OF SOLAR WIND PENETRATION INTO THE EARTH'S MAGNETOSPHERE: THE PLASMA MANTLE The large database provided by the continuous coverage of the Defense Meteorological Satellite Pro gram polar orbiting satellites constitutes an important source of information on particle precipitation in the ionosphere. This information can be used to monitor and map the Earth's magnetosphere (the cavity around the Earth that forms as the stream of particles and magnetic field ejected from the Sun, known as the solar wind, encounters the Earth's magnetic field) and for a large variety of statistical studies of its morphology and dynamics. The boundary between the magnetosphere and the solar wind is pre sumably open in some places and at some times, thus allowing the direct entry of solar-wind plasma into the magnetosphere through a boundary layer known as the plasma mantle. The preliminary results of a statistical study of the plasma-mantle precipitation in the ionosphere are presented. The first quan titative mapping of the ionospheric region where the plasma-mantle particles precipitate is obtained. INTRODUCTION Polar orbiting satellites are very useful platforms for studying the properties of the environment surrounding the Earth at distances well above the ionosphere. This article focuses on a description of the enormous poten tial of those platforms, especially when they are com bined with other means of measurement, such as ground-based stations and other satellites. We describe in some detail the first results of the kind of study for which the polar orbiting satellites are ideal instruments. -
Solar and Space Physics: a Science for a Technological Society
Solar and Space Physics: A Science for a Technological Society The 2013-2022 Decadal Survey in Solar and Space Physics Space Studies Board ∙ Division on Engineering & Physical Sciences ∙ August 2012 From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outwards to a region far beyond Pluto where the Sun’s influence wanes, advances during the past decade in space physics and solar physics have yielded spectacular insights into the phenomena that affect our home in space. This report, the final product of a study requested by NASA and the National Science Foundation, presents a prioritized program of basic and applied research for 2013-2022 that will advance scientific understanding of the Sun, Sun- Earth connections and the origins of “space weather,” and the Sun’s interactions with other bodies in the solar system. The report includes recommendations directed for action by the study sponsors and by other federal agencies—especially NOAA, which is responsible for the day-to-day (“operational”) forecast of space weather. Recent Progress: Significant Advances significant progress in understanding the origin from the Past Decade and evolution of the solar wind; striking advances The disciplines of solar and space physics have made in understanding of both explosive solar flares remarkable advances over the last decade—many and the coronal mass ejections that drive space of which have come from the implementation weather; new imaging methods that permit direct of the program recommended in 2003 Solar observations of the space weather-driven changes and Space Physics Decadal Survey. For example, in the particles and magnetic fields surrounding enabled by advances in scientific understanding Earth; new understanding of the ways that space as well as fruitful interagency partnerships, the storms are fueled by oxygen originating from capabilities of models that predict space weather Earth’s own atmosphere; and the surprising impacts on Earth have made rapid gains over discovery that conditions in near-Earth space the past decade. -
THEMIS Telescope Images Analysed for Space Weather Traces
EPSC Abstracts Vol. 14, EPSC2020-1022, 2020 https://doi.org/10.5194/epsc2020-1022 Europlanet Science Congress 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. THEMIS telescope images analysed for space weather traces Melinda Dósa1, Valeria Mangano2, Zsofia Bebesi1, Stefano Massetti2, Anna Milillo2, and Anna Görgei3 1Wigner Research Centre for Physics, Space Physics and Space Technology, Budapest, Hungary ([email protected]) 2INAF/IAPS, Istituto Nazionale di Astrofisica, Roma, Italy 3Eötvös Loránd University, Institute of Physics The THEMIS solar telescope operating on Tenerife (Canary islands) has observed Mercury’s Na exosphere along several campaigns since 2007. A dataset of images taken between 2009 and 2013 are analysed here in relation with propagated solar wind data. A small subset of the images shows a low level of correlation between Na-emission and solar wind dynamic pressure. The amount of data at present is not sufficient to make a clear statement on whether the correlation is a coincidence or can be explained by other factors (position of Mercury and Earth, solar activity, etc.). Nevertheless, the authors present a comprehensive study taking into account all possible factors. Sodium plays a special role in Mercury’s exosphere: due to its strong resonance line it has been observed and monitored by Earth-based telescopes for decades. Different and highly variable patterns of Na-emission have been identified, the most common and recurrent being the high latitude double-peak pattern [1]. It is clear that the exosphere is linked to the surface and influenced by the interstellar medium and the solar wind deviated by the magnetosphere, but the role and weight of the single processes are still under discussion [2]. -
Cmes, Solar Wind and Sun-Earth Connections: Unresolved Issues
CMEs, solar wind and Sun-Earth connections: unresolved issues Rainer Schwenn Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau, Germany [email protected] In recent years, an unprecedented amount of high-quality data from various spaceprobes (Yohkoh, WIND, SOHO, ACE, TRACE, Ulysses) has been piled up that exhibit the enormous variety of CME properties and their effects on the whole heliosphere. Journals and books abound with new findings on this most exciting subject. However, major problems could still not be solved. In this Reporter Talk I will try to describe these unresolved issues in context with our present knowledge. My very personal Catalog of ignorance, Updated version (see SW8) IAGA Scientific Assembly in Toulouse, 18-29 July 2005 MPRS seminar on January 18, 2006 The definition of a CME "We define a coronal mass ejection (CME) to be an observable change in coronal structure that occurs on a time scale of a few minutes and several hours and involves the appearance (and outward motion, RS) of a new, discrete, bright, white-light feature in the coronagraph field of view." (Hundhausen et al., 1984, similar to the definition of "mass ejection events" by Munro et al., 1979). CME: coronal -------- mass ejection, not: coronal mass -------- ejection! In particular, a CME is NOT an Ejección de Masa Coronal (EMC), Ejectie de Maså Coronalå, Eiezione di Massa Coronale Éjection de Masse Coronale The community has chosen to keep the name “CME”, although the more precise term “solar mass ejection” appears to be more appropriate. An ICME is the interplanetry counterpart of a CME 1 1. -
Solar Wind Magnetosphere Coupling
Solar Wind Magnetosphere Coupling F. Toffoletto, Rice University Figure courtesy T. W. Hill with thanks to R. A. Wolf and T. W. Hill, Rice U. Outline • Introduction • Properties of the Solar Wind Near Earth • The Magnetosheath • The Magnetopause • Basic Physical Processes that control Solar Wind Magnetosphere Coupling – Open and Closed Magnetosphere Processes – Electrodynamic coupling – Mass, Momentum and Energy coupling – The role of the ionosphere • Current Status and Summary QuickTime™ and a YUV420 codec decompressor are needed to see this picture. Introduction • By virtue of our proximity, the Earth’s magnetosphere is the most studied and perhaps best understood magnetosphere – The system is rather complex in its structure and behavior and there are still some basic unresolved questions – Today’s lecture will focus on describing the coupling to the major driver of the magnetosphere - the solar wind, and the ionosphere – Monday’s lecture will look more at the more dynamic (and controversial) aspect of magnetospheric dynamics: storms and substorms The Solar Wind Near the Earth Solar-Wind Properties Observed Near Earth • Solar wind parameters observed by many spacecraft over period 1963-86. From Hapgood et al. (Planet. Space Sci., 39, 410, 1991). Solar Wind Observed Near Earth Values of Solar-Wind Parameters Parameter Minimum Most Maximum Probable Velocity v (km/s) 250 370 2000× Number density n (cm-3) 683 Ram pressure rv2 (nPa)* 328 Magnetic field strength B 0 6 85 (nanoteslas) IMF Bz (nanoteslas) -31 0¤ 27 * 1 nPa = 1 nanoPascal = 10-9 Newtons/m2. Indicates at least one interval with B < 0.1 nT. ¤ Mean value was 0.014 nT, with a standard deviation of 3.3 nT. -
THEMIS Observations of a Hot Flow Anomaly: Solar Wind, Magnetosheath, and Ground-Based Measurements J
THEMIS observations of a hot flow anomaly: Solar wind, magnetosheath, and ground-based measurements J. Eastwood, D. Sibeck, V. Angelopoulos, T. Phan, S. Bale, J. Mcfadden, C. Cully, S. Mende, D. Larson, S. Frey, et al. To cite this version: J. Eastwood, D. Sibeck, V. Angelopoulos, T. Phan, S. Bale, et al.. THEMIS observations of a hot flow anomaly: Solar wind, magnetosheath, and ground-based measurements. Geophysical Research Letters, American Geophysical Union, 2008, 35 (17), pp.L17S03. 10.1029/2008GL033475. hal- 03086705 HAL Id: hal-03086705 https://hal.archives-ouvertes.fr/hal-03086705 Submitted on 23 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L17S03, doi:10.1029/2008GL033475, 2008 THEMIS observations of a hot flow anomaly: Solar wind, magnetosheath, and ground-based measurements J. P. Eastwood,1 D. G. Sibeck,2 V. Angelopoulos,3 T. D. Phan,1 S. D. Bale,1,4 J. P. McFadden,1 C. M. Cully,5,6 S. B. Mende,1 D. Larson,1 S. Frey,1 C. W. Carlson,1 K.-H. Glassmeier,7 H. U. Auster,7 A. Roux,8 and O. -
Heliophysics Division Space Weather Strategy HPAC, June 30 – July 1, 2020
Heliophysics Division Space Weather Strategy HPAC, June 30 – July 1, 2020 1 Heliophysics Space Weather Strategy This strategy outlines the goals and objectives of NASA Heliophysics Division with respect to space weather. It is consistent with the goals and agency responsibilities articulated in the 2019 National Space Weather Strategy and Action Plan, as well as the Agency’s efforts in human and robotic exploration. Context • Understanding space weather is the domain of Heliophysics. Space weather is the applied expression of Heliophysics. In Priority 1 of the 2020 NASA Science Plan, Strategy 1.4 pertains directly to space weather: Develop a Directorate-wide, target-user focused approach to applied programs, including Earth Science Applications, Space Weather, Planetary Defense, and ⁻ Space Situational Awareness. 2 Space Weather Strategy Vision • Advance the science of space weather to empower a technological society safely thriving on Earth and expanding into space. Mission • Establish a preeminent space weather capability that supports robotic and human space exploration and meets national, international, and societal needs by advancing measurement and analysis techniques, and by expanding knowledge and understanding for transitioning into improved operational space weather forecasts and nowcasts. 3 1. Observe • Advance observation techniques, technology, Goals and capability 2. Analyze • NASA plays a vital role in space • Advance research, analysis and modeling weather research by providing capability unique, significant, and exploratory 3. Predict observations and data streams for • Improve space weather forecast and nowcast theory, modeling, and data analysis capabilities research, and for operations. 4. Transition • NASA’s contributions to observing • Transition capabilities to operational and understanding space weather environments are critical for the success of the National and International space 5. -
A Decadal Strategy for Solar and Space Physics
Space Weather and the Next Solar and Space Physics Decadal Survey Daniel N. Baker, CU-Boulder NRC Staff: Arthur Charo, Study Director Abigail Sheffer, Associate Program Officer Decadal Survey Purpose & OSTP* Recommended Approach “Decadal Survey benefits: • Community-based documents offering consensus of science opportunities to retain US scientific leadership • Provides well-respected source for priorities & scientific motivations to agencies, OMB, OSTP, & Congress” “Most useful approach: • Frame discussion identifying key science questions – Focus on what to do, not what to build – Discuss science breadth & depth (e.g., impact on understanding fundamentals, related fields & interdisciplinary research) • Explain measurements & capabilities to answer questions • Discuss complementarity of initiatives, relative phasing, domestic & international context” *From “The Role of NRC Decadal Surveys in Prioritizing Federal Funding for Science & Technology,” Jon Morse, Office of Science & Technology Policy (OSTP), NRC Workshop on Decadal Surveys, November 14-16, 2006 2 Context The Sun to the Earth—and Beyond: A Decadal Research Strategy in Solar and Space Physics Summary Report (2002) Compendium of 5 Study Panel Reports (2003) First NRC Decadal Survey in Solar and Space Physics Community-led Integrated plan for the field Prioritized recommendations Sponsors: NASA, NSF, NOAA, DoD (AFOSR and ONR) 3 Decadal Survey Purpose & OSTP* Recommended Approach “Decadal Survey benefits: • Community-based documents offering consensus of science opportunities -
Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence E
Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence E. K. J. Kilpua, D. Fontaine, C. Moissard, M. Ala-lahti, E. Palmerio, E. Yordanova, S. Good, M. M. H. Kalliokoski, E. Lumme, A. Osmane, et al. To cite this version: E. K. J. Kilpua, D. Fontaine, C. Moissard, M. Ala-lahti, E. Palmerio, et al.. Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence. Space Weather: The International Journal of Research and Applications, American Geophysical Union (AGU), 2019, 17 (8), pp.1257-1280. 10.1029/2019SW002217. hal-03087107 HAL Id: hal-03087107 https://hal.archives-ouvertes.fr/hal-03087107 Submitted on 23 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE Solar Wind Properties and Geospace Impact of Coronal 10.1029/2019SW002217 Mass Ejection-Driven Sheath Regions: Variation and Key Points: Driver Dependence • Variation of interplanetary properties and geoeffectiveness of CME-driven sheaths and their dependence on the E. K. J. Kilpua1 , D. Fontaine2 , C. Moissard2 , M. Ala-Lahti1 , E. Palmerio1 , ejecta properties are determined E. -
Atmospheric Escape from the TRAPPIST-1 Planets\Xmlpi{\\}
Atmospheric escape from the TRAPPIST-1 planets and implications for habitability Chuanfei Donga,b,1, Meng Jinc, Manasvi Lingamd,e, Vladimir S. Airapetianf, Yingjuan Mag, and Bart van der Holsth aDepartment of Astrophysical Sciences, Princeton University, Princeton, NJ 08544; bPrinceton Center for Heliophysics, Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08544; cLockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304; dInstitute for Theory and Computation, Harvard–Smithsonian Center for Astrophysics, Cambridge, MA 02138; eJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; fHeliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771; gInstitute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095; and hCenter for Space Environment Modeling, University of Michigan, Ann Arbor, MI 48109 Edited by Neta A. Bahcall, Princeton University, Princeton, NJ, and approved December 4, 2017 (received for review May 15, 2017) The presence of an atmosphere over sufficiently long timescales dence from our own Solar System suggests that the erosion of the is widely perceived as one of the most prominent criteria asso- atmosphere by the stellar wind plays a crucial role, especially for ciated with planetary surface habitability. We address the crucial Earth-sized planets where such losses constitute the dominant question of whether the seven Earth-sized planets transiting the mechanism (13, 14), and the same could also be true for exo- recently discovered ultracool dwarf star TRAPPIST-1 are capable of planets around M dwarfs (15, 16). Recent studies of atmospheric retaining their atmospheres. To this effect, we carry out numerical ion escape rates from Proxima b (and other M-dwarf exoplanets) simulations to characterize the stellar wind of TRAPPIST-1 and the also appear to indicate that the resulting ion losses are signifi- atmospheric ion escape rates for all of the seven planets. -