bioRxiv preprint doi: https://doi.org/10.1101/2020.08.25.267435; this version posted August 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. RNA promotes the formation of spatial compartments in the nucleus 1 1,2,5 1,5 1,5 Sofia A. Quinodoz , Prashant Bhat , Noah Ollikainen , Joanna W. Jachowicz , Abhik K. Banerjee1,3, Peter Chovanec1, Mario R. Blanco1, Amy Chow1, Yolanda Markaki4, Kathrin Plath4, and Mitchell Guttman1* (1) Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA (2) David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA (3) Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA (4) Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA (5) These authors contributed equally to this work. * To whom correspondence should be addressed.
[email protected] (MG) bioRxiv preprint doi: https://doi.org/10.1101/2020.08.25.267435; this version posted August 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 SUMMARY 2 The nucleus is a highly organized arrangement of RNA, DNA, and protein molecules that are 3 compartmentalized within three-dimensional (3D) structures involved in shared functional and regulatory 4 processes. Although RNA has long been proposed to play a global role in organizing nuclear structure, 5 exploring the role of RNA in shaping nuclear structure has remained a challenge because no existing 6 methods can simultaneously measure RNA-RNA, RNA-DNA, and DNA-DNA contacts within 3D 7 structures.