Message Switching

Total Page:16

File Type:pdf, Size:1020Kb

Message Switching Message Switching Dr. Farid Farahmand, Ph.D, Central Connecticut State University Introduction 1 Message-Switched Protocols 7 Basic Ideas in Message Switching 1 Performance of Message-Switched Networks 9 Message Switching Characteristics 2 Delay Performance 9 Message-Switched Networks 2 Node Delay 9 Network Elements 2 Comparison of Message, Packet, and Store-and-Forward Switches 3 Circuit Switching 11 Message-based Protocols and the OSI Model 4 Conclusion 12 Message-Switched Networks and Glossary 12 their Applications 5 References 12 Store-and-Forward Networks 6 Further Reading 13 INTRODUCTION Prior to advances in packet switching, message switch- ing was introduced as an effective alternative to circuit A communication network consists of a collection of switching. In message switching, end-users communi- devices (or nodes) that wish to communicate and inter- cate by sending each other a message , which contains the connect together. The primary objective in any commu- entire data being delivered from the source to destina- nication network is simply moving information from one tion node. As a message is routed from its source to its source to one or more destination nodes. Based on the destination, each intermediate switch within the net- techniques used to transfer data, communication networks work stores the entire message, providing a very reliable can be categorized into broadcast and switched net- service. In fact, when congestion occurs or all network works. In broadcast networks, data transmitted by one node resources are occupied, rather than discarding the traffi c, is received by many, sometimes all, of the other nodes. the message-switched network will store and delay the In switched-communication networks, however, the data traffi c until suffi cient resources are available for success- transferred from source to destination is routed through ful delivery of the message (Davis, 1973) . The message the switch nodes. The way in which the nodes switch data storing capability can also lead to reducing the cost of from one link to another as it is transmitted from source transmission; for example, messages can be delivered at to destination node is referred to as a switching technique . night when transmission costs are typically lower. Three common switching techniques are circuit switch- Message switching techniques were originally used in ing, packet switching, and message switching. data communications. Early examples of message switch- In circuit switching, the end-users are interconnected ing applications are paper tape relay systems and telex using dedicated paths. The most common example of a networks. Electronic mail (e-mail) and voice mail are also circuit-switched communications network is the plain examples of message switching systems. Today, message old telephone service (POTS) network. One major issue switching is used in many networks, including ad hoc with circuit switching is that it can be rather ineffi cient, sensor networks, satellite communications networks, and particularly in data communications (Stallings, 2004) . military networks. This is because in a circuit-switched network the channel capacity is dedicated for the entire duration of a connec- tion, even if no information is being transferred. Further- Basic Ideas in Message Switching more, in a circuit-switched network, the actual time to Message-switched data networks are hop-by-hop sys- setup and tear down the path may in fact be longer than tems that support two distinct characteristics: store-and- the data transfer time between end-users. Refer to Chap- forward and message delivery. ter 73 for a complete discussion on circuit switching. In a message-switched network, there is no direct con- In packet switching, data is divided into smaller units, nection between the source and destination nodes. In called packets, and then transmitted through the network. such networks, the intermediary nodes (switches) have The minimum length of the packet is determined by the the responsibility of conveying the received message network and varies from network to network. Packets are from one node to another in the network. Therefore, each transported over the network between nodes. Each inter- intermediary node within the network must store all mes- mediate node queues the packet for a brief time while it sages before retransmitting them one at a time as proper determines the route the packet should take to reach the resources become available. This characteristic is often next node. For this reason, a packet-switched network referred to as store-and-forward (Stallings, 2004) . In mes- is sometimes called hold-and-forward network (Tomasi, sage switching systems (also called store-and-forward 2004) . Please refer to Chapter 72 for a complete discus- systems), the responsibility of the message delivery is sion on packet-switched networks. on the next hop, as the message travels through the path 1 bbid44608_ch70.inddid44608_ch70.indd 1 55/19/07/19/07 88:23:48:23:48 PPMM 2 MESSAGE SWITCHING toward its destination. Hence, to ensure proper delivery, regulation, and message storage when messages cannot each intermediate switch may maintain a copy of the be delivered. However, there are several drawbacks asso- message until its delivery to the next hop is guaranteed. ciated with message switching techniques. For example, In case of message broadcasting, multiple copies may be since messages are entirely processed and stored indefi - stored for each individual destination node. nitely at each intermediate node, switches require large The store-and-forward property of message-switched storage capacity (Davis, 1973) . networks is different from queuing , in which messages In general, message-switched networks are relatively are simply stored until their preceding messages are slow. This is because all messages must be entirely stored, processed. With store-and-forward capability, a message processed, and retransmitted. This slow switching scheme will only be delivered if the next hop and the link con- may lead to poor performance, particularly in wide area necting to it are both available. Otherwise, the message networks (WAN). Although, using various scheduling is stored indefi nitely. For example, consider a mail server techniques, time critical messages can be given higher that is disconnected from the network and cannot receive transmission priority, it is always possible that a short the messages directed to it. In this case, the intermediary message falls in line behind a very long one. Consequently, server must store all messages until the mail server is con- in message switching, messages initiated by different us- nected and receives the e-mails. The store-and-forward ers can expect large delay variance. technology is also different from admission control tech- Large overall delay and high delay variations make niques implemented in packet-switched or circuit- message-switched networks less suitable for real-time and switched networks. Using admission control, the data interactive applications, such as voice communications or transmission can temporarily be delayed to avoid over- multimedia games. Instead, message-switched networks provisioning the resources. Hence, a message-switched are very attractive for supporting applications which can network can also implement an admission control mech- tolerate high delays, yet very little loss. Furthermore, mes- anism to reduce network’s peak load. sage switching can be an alternative solution for networks The message delivery in message-switched networks where continuous end-to-end connectivity cannot be includes wrapping the entire information in a single guaranteed, such as ad hoc sensor networks. A detailed message and transferring it from the source to the des- discussion on advantages and disadvantages of mes- tination node. The message size has no upper bound; sage switching compared to circuit switching and packet although some messages can be as small as a simple da- switching can be found in Subsection Comparison of tabase query, others can be very large. For example, mes- Message, Packet, and Circuit Switching in this chapter. sages obtained from a meteorological database center can contain several million bytes of binary data. Practical limitations in storage devices and switches, however, can MESSAGE-SWITCHED NETWORKS enforce limits on message length. In this section we fi rst describe different elements of a Each message must be delivered with a header. The message-switched network and examine their basic func- header often contains the message routing information, tionalities. Then we focus on store-and-forward switch including the source and destination, priority level, ex- node architecture and explain its building blocks. piration time. Figure 1 shows an example of a message datagram with possible information embedded in the message header. Network Elements It is worth mentioning that while a message is being Figure 2 shows a generic message-switched network stored at the source or any other intermediary node in the allowing message transport from one end-user to another. network, it can be bundled or aggregated with other mes- This network consists of transmission links (channels), sages going to the next node. This is known as message store-and-forward switch nodes, and end stations (Tomasi, interleaving . One important advantage of message inter- 2004) . The transmission links differ depending on the leaving is that it can reduce the amount of overhead gen- transmission technology and
Recommended publications
  • Evolution of Switching Techniques Frequency Division Multiplexing
    Evolution of Switching Techniques 1. Dedicate Channel. Separate wire frequency division multiplexing (FDM) time division multiplexing (TDM) Multiplexor (MUX) Demultiplexor (Concentrator) DEMUX individual lines shared individual lines high speed line Frequency Frequency Channel 1 available bandwidth 2 1 2 3 4 1 2 3 4 1 2 3 4 3 4 FDM Time TDM Time chow CS522 F2001—Multiplexing and Switching—10/17/2001—Page 1 Frequency Division Multiplexing (FDM) chow CS522 F2001—Multiplexing and Switching—10/17/2001—Page 2 Wavelength Division Multiplexing chow CS522 F2001—Multiplexing and Switching—10/17/2001—Page 3 Impact of WDM z Many big organizations are starting projects to design WDM system or DWDN (Dense Wave Division Mutiplexing Network). We may see products appear in next three years.In Fujitsu and CCL/Taiwan, 128 different wavelengthes on the same strand of fiber was reported working in the lab. z We may have optical routers between end systems that can take one wavelenght signal, covert to different wavelenght, send it out on different links. Some are designing traditional routers that covert optical signal to electronical signal, and use time slot interchange based on high speed memory to do the switching, the convert the electronic signal back to optical signal. z With this type of optical networks, we will have a virtual circuit network, where each connection is assigned some wave length. Each connection can have 2.4 gbps tremedous bandwidth. z With inital 128 different wavelength, we can have about 10 end users. If each pair of end users needs to communicate simultaneously, it will use 10*10=100 different wavelength.
    [Show full text]
  • Lecture 8: Overview of Computer Networking Roadmap
    Lecture 8: Overview of Computer Networking Slides adapted from those of Computer Networking: A Top Down Approach, 5th edition. Jim Kurose, Keith Ross, Addison-Wesley, April 2009. Roadmap ! what’s the Internet? ! network edge: hosts, access net ! network core: packet/circuit switching, Internet structure ! performance: loss, delay, throughput ! media distribution: UDP, TCP/IP 1 What’s the Internet: “nuts and bolts” view PC ! millions of connected Mobile network computing devices: server Global ISP hosts = end systems wireless laptop " running network apps cellular handheld Home network ! communication links Regional ISP " fiber, copper, radio, satellite access " points transmission rate = bandwidth Institutional network wired links ! routers: forward packets (chunks of router data) What’s the Internet: “nuts and bolts” view ! protocols control sending, receiving Mobile network of msgs Global ISP " e.g., TCP, IP, HTTP, Skype, Ethernet ! Internet: “network of networks” Home network " loosely hierarchical Regional ISP " public Internet versus private intranet Institutional network ! Internet standards " RFC: Request for comments " IETF: Internet Engineering Task Force 2 A closer look at network structure: ! network edge: applications and hosts ! access networks, physical media: wired, wireless communication links ! network core: " interconnected routers " network of networks The network edge: ! end systems (hosts): " run application programs " e.g. Web, email " at “edge of network” peer-peer ! client/server model " client host requests, receives
    [Show full text]
  • Circuit-Switched Coherence
    Circuit-Switched Coherence ‡Natalie Enright Jerger, ‡Mikko Lipasti, and ?Li-Shiuan Peh ‡Electrical and Computer Engineering Department, University of Wisconsin-Madison ?Department of Electrical Engineering, Princeton University Abstract—Circuit-switched networks can significantly lower contention, overall system performance can degrade by 20% the communication latency between processor cores, when or more. This latency sensitivity coupled with low link uti- compared to packet-switched networks, since once circuits are set up, communication latency approaches pure intercon- lization motivates our exploration of circuit-switched fabrics nect delay. However, if circuits are not frequently reused, the for CMPs. long set up time and poorer interconnect utilization can hurt Our investigations show that traditional circuit-switched overall performance. To combat this problem, we propose a hybrid router design which intermingles packet-switched networks do not perform well, as circuits are not reused suf- flits with circuit-switched flits. Additionally, we co-design a ficiently to amortize circuit setup delay. This observation prediction-based coherence protocol that leverages the exis- motivates a network with a hybrid router design that sup- tence of circuits to optimize pair-wise sharing between cores. The protocol allows pair-wise sharers to communicate di- ports both circuit and packet switching with very fast circuit rectly with each other via circuits and drives up circuit reuse. reconfiguration (setup/teardown). Our preliminary results Circuit-switched coherence provides overall system perfor- show this leading to up to 8% improvement in overall system mance improvements of up to 17% with an average improve- performance over a packet-switched fabric. ment of 10% and reduces network latency by up to 30%.
    [Show full text]
  • QUESTION 20-1/2 Examination of Access Technologies for Broadband Communications
    International Telecommunication Union QUESTION 20-1/2 Examination of access technologies for broadband communications ITU-D STUDY GROUP 2 3rd STUDY PERIOD (2002-2006) Report on broadband access technologies eport on broadband access technologies QUESTION 20-1/2 R International Telecommunication Union ITU-D THE STUDY GROUPS OF ITU-D The ITU-D Study Groups were set up in accordance with Resolutions 2 of the World Tele- communication Development Conference (WTDC) held in Buenos Aires, Argentina, in 1994. For the period 2002-2006, Study Group 1 is entrusted with the study of seven Questions in the field of telecommunication development strategies and policies. Study Group 2 is entrusted with the study of eleven Questions in the field of development and management of telecommunication services and networks. For this period, in order to respond as quickly as possible to the concerns of developing countries, instead of being approved during the WTDC, the output of each Question is published as and when it is ready. For further information: Please contact Ms Alessandra PILERI Telecommunication Development Bureau (BDT) ITU Place des Nations CH-1211 GENEVA 20 Switzerland Telephone: +41 22 730 6698 Fax: +41 22 730 5484 E-mail: [email protected] Free download: www.itu.int/ITU-D/study_groups/index.html Electronic Bookshop of ITU: www.itu.int/publications © ITU 2006 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. International Telecommunication Union QUESTION 20-1/2 Examination of access technologies for broadband communications ITU-D STUDY GROUP 2 3rd STUDY PERIOD (2002-2006) Report on broadband access technologies DISCLAIMER This report has been prepared by many volunteers from different Administrations and companies.
    [Show full text]
  • Medium Access Control Layer
    Telematics Chapter 5: Medium Access Control Sublayer User Server watching with video Beispielbildvideo clip clips Application Layer Application Layer Presentation Layer Presentation Layer Session Layer Session Layer Transport Layer Transport Layer Network Layer Network Layer Network Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller Data Link Layer Data Link Layer Data Link Layer Computer Systems and Telematics (CST) Physical Layer Physical Layer Physical Layer Institute of Computer Science Freie Universität Berlin http://cst.mi.fu-berlin.de Contents ● Design Issues ● Metropolitan Area Networks ● Network Topologies (MAN) ● The Channel Allocation Problem ● Wide Area Networks (WAN) ● Multiple Access Protocols ● Frame Relay (historical) ● Ethernet ● ATM ● IEEE 802.2 – Logical Link Control ● SDH ● Token Bus (historical) ● Network Infrastructure ● Token Ring (historical) ● Virtual LANs ● Fiber Distributed Data Interface ● Structured Cabling Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.2 Design Issues Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.3 Design Issues ● Two kinds of connections in networks ● Point-to-point connections OSI Reference Model ● Broadcast (Multi-access channel, Application Layer Random access channel) Presentation Layer ● In a network with broadcast Session Layer connections ● Who gets the channel? Transport Layer Network Layer ● Protocols used to determine who gets next access to the channel Data Link Layer ● Medium Access Control (MAC) sublayer Physical Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.4 Network Types for the Local Range ● LLC layer: uniform interface and same frame format to upper layers ● MAC layer: defines medium access ..
    [Show full text]
  • F. Circuit Switching
    CSE 3461: Introduction to Computer Networking and Internet Technologies Circuit Switching Presentation F Study: 10.1, 10.2, 8 .1, 8.2 (without SONET/SDH), 8.4 10-02-2012 A Closer Look At Network Structure: • network edge: applications and hosts • network core: —routers —network of networks • access networks, physical media: communication links d. xuan 2 1 The Network Core • mesh of interconnected routers • the fundamental question: how is data transferred through net? —circuit switching: dedicated circuit per call: telephone net —packet-switching: data sent thru net in discrete “chunks” d. xuan 3 Network Layer Functions • transport packet from sending to receiving hosts application transport • network layer protocols in network data link network physical every host, router network data link network data link physical data link three important functions: physical physical network data link • path determination: route physical network data link taken by packets from source physical to dest. Routing algorithms network network data link • switching: move packets from data link physical physical router’s input to appropriate network data link application router output physical transport network data link • call setup: some network physical architectures require router call setup along path before data flows d. xuan 4 2 Network Core: Circuit Switching End-end resources reserved for “call” • link bandwidth, switch capacity • dedicated resources: no sharing • circuit-like (guaranteed) performance • call setup required d. xuan 5 Circuit Switching • Dedicated communication path between two stations • Three phases — Establish (set up connection) — Data Transfer — Disconnect • Must have switching capacity and channel capacity to establish connection • Must have intelligence to work out routing • Inefficient — Channel capacity dedicated for duration of connection — If no data, capacity wasted • Set up (connection) takes time • Once connected, transfer is transparent • Developed for voice traffic (phone) g.
    [Show full text]
  • A Study Paper on Communication Network and Overview of Packet Switching Technology
    Council for Innovative Research International Journal of Computers & Technology www.cirworld.com Volume 3 No. 3, Nov-Dec, 2012 A Study Paper on Communication Network and overview of Packet Switching Technology Sandeep panwar Amit garg Naresh kumar Abstract— In this paper,we highlight some of the principal paths between any two points; and second, dividing events that led up to the revolution in communications complete user messages into what he called message blocks among information processing systems. We devote most of then third, delivery of these messages by store and forward this presentation to a brief summary of the communication switching.[12] networks experience, emphasizing the description, Baran's work was similar to the research performed functions, analysis, design and performance measurement independently by Donald Davies at the National Physical of packet-switching networks. We also discuss some recent Laboratory, UK. In 1965, Davies developed the concept of advances in radio packet switching for long-haul. packet-switched networks and proposed development of a .Index Terms— ARPANET, communication networks, UK wide network.. A member of Davies' team met computer networks, networks, packet switching. Lawrence Roberts at the 1967 ACM Symposium on I. INTRODUCTION Operating System Principles, bringing the two groups together.[11] It is widely assumed that, for reasons of efficiency, the various communication networks (Internet, telephone, TV, Interestingly, Davies had chosen some of the same radio, ...) will merge into one ubiquitous, packet switched parameters for his original network design as Baran, such as network that carries all forms of communications. This view a packet size of 1024 bits. In 1966 Davies proposed that a of the future is particularly prevalent among the Internet network should be built at the laboratory to serve the needs community, where it is assumed that packet-switched IP is of NPL and prove the feasibility of packet switching.
    [Show full text]
  • Application Note: 2-Cell Test Environment
    Application Note 2-cell Test Environment MD8475A Signalling Tester 1. Background to LTE Rollout Mobile phones appearing in the late 1980s soon experienced rapid evolution of functions from 1990 to 2000 and also spread worldwide as key communications infrastructure. The mobile phone is not limited to just two-way communications between two people but also supports sending and receiving of Short Message Services (SMS), web browsing using the Internet, application and video download, etc., and has become a popular and key cultural tool supporting a fuller lifestyle for many people. Figure 1. Evolution on UE According to one research company, total mobile phone (terminal) shipments at the end of 2010 were valued at $38 billion split between 45% for 2G phones and 49% for 3G. Table 1. Mobile Terminal Shipments Mobile Terminal Shipments ($38 billion total) LTE 1.3% WiMAX 4.0% W-CDMA 40.0% CDMA 9.3% GSM 45.4% 1 MD8475A-E-F-1 The purpose of the shift from 2G to 3G systems was to make more efficient use of frequency bandwidths and was closely related to the explosive growth of the Internet. While still maintaining the easy portability of a mobile phone, users were able to access the information they needed easily at any time and place using the Internet. Similarly to growth of 3G technology, the requirements of LTE systems, which is are positioned in the market as 3.9G to maintain competitiveness with coming 4G systems, are being examined. Connectivity with IP-based core networks must be maintained to support multimedia applications and ubiquitous networks using the packet domain.
    [Show full text]
  • Wang Systems Networking VS Network Core (Standard Components) Software Bulletin Release 8.21 Release 8.30
    ... ·.·,:·:··.···'Wang Systems Networkiitg VS Network Core (Standard Components) Software Bulletin Release 8.21 Release 8.30 .. ' ~ t -..~ ~. ·.J. ~ \~ --- ..,·I Wang Systems Networking VS Network Core (Standard Components) Software Bulletin Release 8.21 Release 8.30 1st Edition - July 1986 Copyright c Wang Laboratories, Inc., 1986 71 S-0542.01 i\'14§• WANG LABORATORIES, INC. ONE INDUSTRIAL AVE., LOWELL, MA 01851 TEL. (617) 459-5000, TWX 710-343-6769, TELEX 94-7421 Disclaimer of Warranties and Limitation of Liabilities The staff of Wang Laboratories, Inc., has taken due care in preparing this manual. How­ ever, nothing contained herein modifies or alters in any way the standard terms and conditions of the Wang purchase, lease, or license agreement by which the product was acquired, nor increases in any way Wang's liability to the customer. In no event shall Wang or its subsidiaries be liable for incidental or consequential damages in connection with or arising from the use of the product, the accompanying manual, or any related materials. Software Notice All Wang Program Products (software) are licensed to customers in accordance with the terms and conditions of the Wang Standard Software License. No title or ownership of Wang software is transferred, and any use of the software beyond the terms of the aforesaid license, without the written authorization of Wang, is prohibited. Warning This equipment generates, uses, and can radiate radio frequency energy and, if not ,~ installed and used in accordance with the instructions manual, may cause interference to radio communications. It has been tested and found to comply with the limits for a Class A computing device, pursuant to Subpart J of Part 15 of FCC rules, which are designed to provide reasonable protection against such interference when operated in a commercial environment.
    [Show full text]
  • Features of the Internet History the Norwegian Contribution to the Development PAAL SPILLING and YNGVAR LUNDH
    Features of the Internet history The Norwegian contribution to the development PAAL SPILLING AND YNGVAR LUNDH This article provides a short historical and personal view on the development of packet-switching, computer communications and Internet technology, from its inception around 1969 until the full- fledged Internet became operational in 1983. In the early 1990s, the internet backbone at that time, the National Science Foundation network – NSFNET, was opened up for commercial purposes. At that time there were already several operators providing commercial services outside the internet. This presentation is based on the authors’ participation during parts of the development and on literature Paal Spilling is studies. This provides a setting in which the Norwegian participation and contribution may be better professor at the understood. Department of informatics, Univ. of Oslo and University 1 Introduction Defense (DOD). It is uncertain when DoD really Graduate Center The concept of computer networking started in the standardized on the entire protocol suite built around at Kjeller early 1960s at the Massachusetts Institute of Technol- TCP/IP, since for several years they also followed the ogy (MIT) with the vision of an “On-line community ISO standards track. of people”. Computers should facilitate communica- tions between people and be a support for human The development of the Internet, as we know it today, decision processes. In 1961 an MIT PhD thesis by went through three phases. The first one was the Leonard Kleinrock introduced some of the earliest research and development phase, sponsored and theoretical results on queuing networks. Around the supervised by ARPA. Research groups that actively same time a series of Rand Corporation papers, contributed to the development process and many mainly authored by Paul Baran, sketched a hypotheti- who explored its potential for resource sharing were cal system for communication while under attack that permitted to connect to and use the network.
    [Show full text]
  • Research on Super 3G Technology
    03-10E_T-Box_3.3 06.12.26 10:07 AM ページ 55 NTT DoCoMo Technical Journal Vol. 8 No.3 Part 2: Research on Super 3G Technology In this part 2 of the Super 3G research that is being conducted to achieve a smooth transition from 3G to 4G, we present technology that is currently being studied for standardization as technical details. Sadayuki Abeta, Minami Ishii, Yasuhiro Kato and Kenichi Higuchi At the RAN WG1 meeting of November 2005, there was 1. Introduction agreement by many companies that high commonality is As explained in part1, Super 3G, the so-called Evolved extremely important and wireless access should be the same for URAN and UTRAN or Long term evolution by the 3rd FDD (paired spectrum) and TDD (unpaired spectrum). As this Generation Partnership Project (3GPP) has been extensively common wireless access system for FDD and TDD, Orthogonal studied since 2005. Agreement on the requirement was reached Frequency Division Multiple Access (OFDMA), which features in June of 2005 to begin investigation of specific technologies. highly efficient frequency utilization was approved for the In June 2006, it was agreed that investigation of the feasibility downlink and Single-Carrier Frequency Division Multiple of the basic approach for satisfying the requirements was essen- Access (SC-FDMA) was approved for the uplink at the tially completed, and effort shifted to the work item phase to December 2005 Plenary Meeting. start the detailed specifications work. Here, we explain technol- The features of the wireless access system are described in ogy that has been proposed as study items.
    [Show full text]
  • UMTS Core Network
    UMTS Core Network V. Mancuso, I. Tinnirello GSM/GPRS Network Architecture Radio access network GSM/GPRS core network BSS PSTN, ISDN PSTN, MSC GMSC BTS VLR MS BSC HLR PCU AuC SGSN EIR BTS IP Backbone GGSN database Internet V. Mancuso, I. Tinnirello 3GPP Rel.’99 Network Architecture Radio access network Core network (GSM/GPRS-based) UTRAN PSTN Iub RNC MSC GMSC Iu CS BS VLR UE HLR Uu Iur AuC Iub RNC SGSN Iu PS EIR BS Gn IP Backbone GGSN database Internet V. Mancuso, I. Tinnirello 3GPP RelRel.’99.’99 Network Architecture Radio access network 2G => 3G MS => UE UTRAN (User Equipment), often also called (user) terminal Iub RNC New air (radio) interface BS based on WCDMA access UE technology Uu Iur New RAN architecture Iub RNC (Iur interface is available for BS soft handover, BSC => RNC) V. Mancuso, I. Tinnirello 3GPP Rel.’99 Network Architecture Changes in the core Core network (GSM/GPRS-based) network: PSTN MSC is upgraded to 3G MSC GMSC Iu CS MSC VLR SGSN is upgraded to 3G HLR SGSN AuC SGSN GMSC and GGSN remain Iu PS EIR the same Gn GGSN AuC is upgraded (more IP Backbone security features in 3G) Internet V. Mancuso, I. Tinnirello 3GPP Rel.4 Network Architecture UTRAN Circuit Switched (CS) core network (UMTS Terrestrial Radio Access Network) MSC GMSC Server Server SGW SGW PSTN MGW MGW New option in Rel.4: GERAN (GSM and EDGE Radio Access Network) PS core as in Rel.’99 V. Mancuso, I. Tinnirello 3GPP Rel.4 Network Architecture MSC Server takes care Circuit Switched (CS) core of call control signalling network The user connections MSC GMSC are set up via MGW Server Server (Media GateWay) SGW SGW PSTN “Lower layer” protocol conversion in SGW MGW MGW (Signalling GateWay) RANAP / ISUP PS core as in Rel.’99 SS7 MTP IP Sigtran V.
    [Show full text]