The Collembola of the Vancouver Region of British Columbia

Total Page:16

File Type:pdf, Size:1020Kb

The Collembola of the Vancouver Region of British Columbia THE COLLEMBOLA OF THE VANCOUVER REGION OF BRITISH COLUMBIA by LIONEL EARL WADE A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS in the Department of ZOOLOGY We acoept this thesis as conforming to the standard required from candidates for the degree of MASTER OF ARTS Members of the Department of Zoology. THE UNIVERSITY OF BRITISH COLUMBIA April, 1954 ABSTRACT An initial study of the Collembola of British Columbia, based on two hundred and eighty-seven collections from locations in the lower Fraser Valley, eastern Vancouver Island and the area around Kamloops in the Dry Interior, reveals forty-five definitely identified species, herein briefly described, annotated and illustrated, and an equal number, not included in this work, upon which further study is necessary. The species recorded here consist of twelve species of the Family Poduridae, eight species of the Family Isotomidae, twenty-one species of the Family Entomobryidae, and four species of the Family Sminthuridae. The diversity of species, as shown in this limited study, indicates that this Order of insects is very substantially represented in this Province of extremely diversified ecological habitats. This present work constitutes the first portion of a monograph of the Collembola of British Columbia upon which the author is currently engaged. ACKNOYiTLEDGMENTS My sincerest thanks are extended to Dr. W.A. Clemens, former Head of the Department of Zoology under whom this work was "begun, and to Dr. Ian MoT. Cowan, present Head of the Department, for their advice and encouragement at all times, and for extending to me the facilities of the Department. Special thanks are due to Professor G.J". Spencer whose encouragement and advice have been a continuous aid in developing all phases of this topic. In addition to making available the collections of the University of British Columbia, his assistance with the collection of specimens and the revision of the manuscript were especially appreciated. My cordial thanks go also to Dr. K. Graham and Dr. J". Adams who helped greatly in the preparation and correction of the drawings; to Miss M.A. Allen, Mr. A.R. Forbes, Mr. R. Edwards, and Mr. G.M. Wade, who made collections for me in areas which I was unable to reach; to Mr. W.L. Mackenrot and Mr. L. Naughty for obtaining the Ozalid reproductions of the drawings; to Mrs. J. Lookhart, and Mr. R. Reid for advice in the preparation of many sections; and finally and particularly to my wife Rose Wade for typing this thesis and for continuous encouragement and help; without her self-sacrifice I would not have been able to attend the University. TABLE OF CONTENTS 1. Introduction: (a) Purpose of this Study on Collemhola 1 (h) Economic Importance of Collembola 2 (c) Nature of Damage... 3 (d) Previous study on Collemhola in British Columbia .. 4 (e) Previous study elsewhere in North America on Collembola 5 2. Geography and Climate of the Region:.'.. 6 3. Collection and Preparation of Specimens:.. 8 (a) Methods of Collecting 8 (b) Methods of Mounting for Observation. 10 (c) Purpose of Collections 11 4. Ecology: 12 (a) Habitat 12 (b) Food .13 (c) Moisture and Thermal Limits .14 i Oviposition 14 ii Hatchability 15 iii Survival of the Adult 16 (d) Distribution 16 (S) Abundance. .18 5. Life Cycle: 19 (a) Mating 20 (b) Oviposition ...20 (c) Embryology .21 (a) Hatching .21 (e) Metamorphosis.... ...22 6. Morphology: • *22 (a) External Structure ..22 (b.) Internal Structure 26 7. Systematic List and Description of Species: 28 (a) Nomenclature and Synonomy 28 (b) List of the Species of Collembola of the Vancouver Region ..29 (c) Description of Species ..31 8. Phylogeny: . .121 9. Literature Consulted: 123 TABLE OF PLATES Plate 1. following page 7. Map of the South West corner of British Columbia Map of the Vancouver Region Plate 2. following page 9. Outline of the proceedure to separate small insects from leaves Plate 5. following page 22. Diagram of an Arthropleonid Diagram of a Symphypleonid Plate 4. following page 23. Diagram of a Podurid Diagram of a Tibiotarsus Diagram of the Genitalia Plates 5 to 50. following individual descriptions. Diagrams of various parts of Collembola COLLEMBOLA OF THE VANCOUVER REGION OF BRITISH COLUMBIA 1. Introduction: (a) Purpose of this Study on Collembola. Insects of the ©rder Collembola are one of the most widely distributed forms of animals in the world today. Due to their small size, which seldom exceeds five mm. in length and the scarcity of economic damage caused by these insects, systematists have largely overlooked this ©rder. In North America at present, only three men are working on the systematics of this Order; only one man, Macnamara (1935) has seriously collected them in eastern Canada. Apart from a short list of fifteen species put out by Spencer (1948) the Order has not been correctly investigated in British Columbia. In his paper, Spencer records that the late Justus Folsom, chief student of these insects on this continent, informed him by correspondence that at least one hundred species should occur in this province. In view of the serious gap in our knowledge of this Carder in Canada, and especially in the west, it seemed highly desirable that at least a start should be made in collecting and identifying the species in the lower Fraser Valley and the coastal islands. Therefore, for the last eighteen months, whenever time permitted, efforts have been made to visit areas in this region and to collect Collembola. The forty-five species recorded here have been identified by the writer, using the splendid monographs of - £ - Folsom (1913-1937) and Maynard (1951), with what is felt to he a high degree of accuracy. Only those definitely identified have been included here. In addition, an even greater number of species have been collected but only tentatively separated and identified, the positive identify ication of all my material by an authority has not been possible because specialists in this order deal with it only on a part-time basis and cannot commit themselves to examine and return material within a specified time. When my total collections have been identified the list presented here will probably be doubled, and since the collections represent only a limited coastal portion of this Province, the prophesy of Dr. J.W. Folsom, that there should be at least one hundred species in British Columbia, should be amply justified, (b) Economic Importance of Collembola. Relatively few members of this order are of economic importance and still fewer are of known importance. Most species are not of economic importance due to their feeding habits. That is, they subsist on algae, fungi, lichens and decaying organic matter. The few which are of economic importance, consume very little food because of their small size. Only when in exceedingly great abundance do they cause enough damage to be noticeable. Many other species are not recognized as pests even though agricultural products are their food. Since populations of these remain relatively small, their feeding only slightly inhibits, . •:• the growth of the host plant. This reduces the yield, but will not destroy any part of the crop outright. As the size and value of any crop increases so does the value of the damage caused by the pest. In general, the damage eaused by Collembola does not justify the cost of control measures. Only where the crop is of special value or when an entire crop is likely to be destroyed will control measures be needed, (c) Nature of Damage. Of those species which feed on the leaves, mostly seedling plants, some prefer the upper surface, others the lower surface and still others will feed on both. They may themselves make irregular holes in the leaves or enlarge wounds caused by potato or flea beetles. Feeding collectively, they can destroy the cotyledons and other leaves completely. Further damage will result if bacteria or fungi gain entrance through these wounds. Below the soil surface Collembola will injure the stem or even cut it through. On the roots, pits are cut out or the root hairs and rootlets eaten. Seeds and bulbs may have the entire interior excavated. A major pest causing such damage in truck garden crops is the "garden springtail" (Bourletlella hortensis Fitch)• A second class of Injury is to commercial mushroom crops. Damage is inflicted by eating the spawn and by chewing holes in the stems and caps of the mushrooms. Species commonly found in mushroom beds are Hypogastrura armata Nicolet, Xenylla hum!cola Tullberg, and Lepidooyrtus cyaneus - 4 - Tullberg. Springtail damage to the roots of sugar cane causes an overall reduction in growth and final weight. Germination is impaired where buds and bud scales are eaten. Ingram (1931) states there may be a relation between insect attack and root rot. The possibility of Springtails causing damage in forests is indicated in a report by W.E. Collinge (1913), He found Seira nigromaoulata Lubbock attacking the shoots of Pinus sylvestris L. This insect is attracted by resinous gums and as the leaf bud opens, it makes its way to the bases of young leaves. Its feeding causes the needles to turn yellow and drop. As a household pest, Springtails are of no economic importance, other than annoying people, who dislike "bugs". A spectacular instance of damage caused by an introduced pest occured when the "Lucerne flea" (Sminthurus vlridls L.) was carried into Australia in the early part of this century. By 1930 it had increased in abundanoe to such an extent that it threatened the Alfalfa and other forage crops of South Australia. To date, this species has not been recorded in North America.
Recommended publications
  • 10) Correlation - Methods
    10) Correlation - Methods 10) Correlation – Methods Correlations between structural attributes and arthropod biodiversity were investigated. The results can shed light on the influence of structure and the response of the animals. Using bivariate techniques, the structural descriptors in ten categories were matched against summaries of abundance, richness, diversity, and the abundance of each RTU. NMS vector biplots highlight structural descriptors most strongly correlated with changes in arthropod composition. Mantel tests investigated the strength of the relationship of similarity between trees for structure against the similarity between trees for arthropods. 10.1 Exploring correlations between structure and arthropod biodiversity The effect of crown structure on the trunk and canopy arthropod biodiversity was explored at a tree level. Only information describing each tree was used. No trap or placement level analyses were conducted. The structural descriptors of the tree were considered independent predictors, and tree level arthropod biodiversity descriptors were considered dependent responses. Interpretation of the results must accommodate that several structural descriptors were strongly correlated. For example, mean cone volume corresponds with mean cone surface area. Some descriptors were perfectly correlated. For example, the largest branch airspace was always found in a large branch, and therefore the descriptor of maximum branch airspace for all branches will be the same as the maximum branch airspace for dead branches. Correlation does not equal causation. The correlation of a structural descriptor with any aspect of arthropod biodiversity does necessarily mean the arthropod is responding to that measure. It is possible that the animals are actually responding to cryptic predictors. If these cryptic predictors are themselves correlated with the observed predictor variables, then a potentially misleading predictor-response will be observed.
    [Show full text]
  • Unexpected Diversity in Neelipleona Revealed by Molecular Phylogeny Approach (Hexapoda, Collembola)
    S O I L O R G A N I S M S Volume 83 (3) 2011 pp. 383–398 ISSN: 1864-6417 Unexpected diversity in Neelipleona revealed by molecular phylogeny approach (Hexapoda, Collembola) Clément Schneider1, 3, Corinne Cruaud2 and Cyrille A. D’Haese1 1 UMR7205 CNRS, Département Systématique et Évolution, Muséum National d’Histoire Naturelle, CP50 Entomology, 45 rue Buffon, 75231 Paris cedex 05, France 2 Genoscope, Centre National de Sequençage, 2 rue G. Crémieux, CP5706, 91057 Evry cedex, France 3 Corresponding author: Clément Schneider (email: [email protected]) Abstract Neelipleona are the smallest of the four Collembola orders in term of species number with 35 species described worldwide (out of around 8000 known Collembola). Despite this apparent poor diversity, Neelipleona have a worldwide repartition. The fact that the most commonly observed species, Neelus murinus Folsom, 1896 and Megalothorax minimus Willem, 1900, display cosmopolitan repartition is striking. A cladistic analysis based on 16S rDNA, COX1 and 28S rDNA D1 and D2 regions, for a broad collembolan sampling was performed. This analysis included 24 representatives of the Neelipleona genera Neelus Folsom, 1896 and Megalothorax Willem, 1900 from various regions. The interpretation of the phylogenetic pattern and number of transformations (branch length) indicates that Neelipleona are more diverse than previously thought, with probably many species yet to be discovered. These results buttress the rank of Neelipleona as a whole order instead of a Symphypleona family. Keywords: Collembola, Neelidae, Megalothorax, Neelus, COX1, 16S, 28S 1. Introduction 1.1. Brief history of Neelipleona classification The Neelidae family was established by Folsom (1896), who described Neelus murinus from Cambridge (USA).
    [Show full text]
  • Why Are There So Many Exotic Springtails in Australia? a Review
    90 (3) · December 2018 pp. 141–156 Why are there so many exotic Springtails in Australia? A review. Penelope Greenslade1, 2 1 Environmental Management, School of School of Health and Life Sciences, Federation University, Ballarat, Victoria 3353, Australia 2 Department of Biology, Australian National University, GPO Box, Australian Capital Territory 0200, Australia E-mail: [email protected] Received 17 October 2018 | Accepted 23 November 2018 Published online at www.soil-organisms.de 1 December 2018 | Printed version 15 December 2018 DOI 10.25674/y9tz-1d49 Abstract Native invertebrate assemblages in Australia are adversely impacted by invasive exotic plants because they are replaced by exotic, invasive invertebrates. The reasons have remained obscure. The different physical, chemical and biotic characteristics of the novel habitat seem to present hostile conditions for native species. This results in empty niches. It seems the different ecologies of exotic invertebrate species may be better adapted to colonise these novel empty niches than native invertebrates. Native faunas of other southern continents that possess a highly endemic fauna, such as South America, South Africa and New Zealand, may have suffered the same impacts from exotic species but insufficient survey data and unreliable and old taxonomy makes this uncertain. Here I attempt to discover what particular characteristics of these novel habitats are hostile to native invertebrates. I chose the Collembola as a target taxon. They are a suitable group because the Australian collembolan fauna consists of a high percentage of endemic taxa, but also exotic, non-native, species. Most exotic Collembola species in Australia appear to have originated from Europe, where they occur at low densities (Fjellberg 1997, 2007).
    [Show full text]
  • Checklist of Springtails (Collembola) from the Republic of Moldova
    Travaux du Muséum National d’Histoire Naturelle © Décembre Vol. LIII pp. 149–160 «Grigore Antipa» 2010 DOI: 10.2478/v10191-010-0011-x CHECKLIST OF SPRINGTAILS (COLLEMBOLA) FROM THE REPUBLIC OF MOLDOVA GALINA BUªMACHIU Abstract. The checklist of Collembola from the Republic of Moldova including 223 species is presented. The list is based on literature sources and personal collecting. Résumé. Ce travail présente la liste des 223 espèces de collemboles de la République de Moldova. Cette liste fut réalisée en utilisant des références littéraires et des collections personnelles. Key words: Collembola, checklist, Republic of Moldova. INTRODUCTION The records on Collembola from the Republic of Moldova started about 50 years ago with the first two species included by Martynova in “The key to insects of the European part of the USSR. Collembola” (1964). Some more information on species diversity of Collembola from the soil of Moldavian vineyards was included in Stegãrescu’s work (1967). During the last twenty years, this group has been studied more systematically, with more than 200 species recorded (Buºmachiu 2001, 2004, 2006 a, b, 2008). Since 2002, eleven species new to science were described from the Republic of Moldova by da Gama & Buºmachiu (2002, 2004); Buºmachiu & Deharveng (2008) and Buºmachiu & Weiner (2008). Until now, the faunistic data on Collembola from the Republic of Moldova have not been summarised in the form of a checklist. The present paper includes the complete list of Collembola from the Republic of Moldova using the modern nomenclature. Totally, 223 species are listed. Some problematic and dubious species, such as Pseudanurida clysmae Jackson, 1927, Onychiurus fimetarius (Linnaeus, 1758) and Orchesella divergens Handschin, 1929 recorded by Stegãrescu (1967) and Pseudosinella wahlgrei Börner, 1907, are not included in the list.
    [Show full text]
  • Biodiversidad De Collembola (Hexapoda: Entognatha) En México
    Revista Mexicana de Biodiversidad, Supl. 85: S220-S231, 2014 220 Palacios-Vargas.- BiodiversidadDOI: 10.7550/rmb.32713 de Collembola Biodiversidad de Collembola (Hexapoda: Entognatha) en México Biodiversity of Collembola (Hexapoda: Entognatha) in Mexico José G. Palacios-Vargas Laboratorio de Ecología y Sistemática de Microartrópodos, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito exterior s/n, Cd. Universitaria, 04510 México, D. F. [email protected] Resumen. Se hace una breve evaluación de la importancia del grupo en los distintos ecosistemas. Se describen los caracteres morfológicos más distintivos, así como los biotopos donde se encuentran y su tipo de alimentación. Se hace una evaluación de la biodiversidad, encontrando que existen citados más de 700 taxa, muchos de ellos a nivel genérico, de 24 familias. Se discute su distribución geográfica por provincias biogeográficas, así como la diversidad de cada estado. Se presentan cuadros con la clasificación ecológica con ejemplos mexicanos; se indican las familias y su riqueza a nivel mundial y nacional, así como la curva acumulativa de especies mexicanas por quinquenio. Palabras clave: Collembola, biodiversidad, distribución, ecología, acumulación de especies. Abstract. A brief assessment of the importance of the group in different ecosystems is done. A description of the most distinctive morphological characters, as well as biotopes where they live is included. An evaluation of their biodiversity is presented; finding that more than 700 taxa have been cited, many of them at the generic level, in 24 families. Their geographical distribution is discussed and the state richness is pointed out. Tables of ecological classification applied to Mexican species are given.
    [Show full text]
  • Por Que Devemos Nos Importar Com Os Colêmbolos Edáficos?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Biblioteca Digital de Periódicos da UFPR (Universidade Federal do Paraná) REVISTA SCIENTIA AGRARIA Versão On-line ISSN 1983-2443 Versão Impressa ISSN 1519-1125 SA vol. 17 n°. 2 Curitiba abril/maio. 2016 p. 21-40 POR QUE DEVEMOS NOS IMPORTAR COM OS COLÊMBOLOS EDÁFICOS? Why should we care about edaphic springtails? Luís Carlos Iuñes Oliveira Filho¹*, Dilmar Baretta² 1. Professor do curso de Agronomia da Universidade do Oeste de Santa Catarina (Unoesc), Campus Xanxerê - SC, E-mail: [email protected] (*autor para correspondência). 2. Professor do curso de Zootecnia da Universidade do Estado de Santa Catarina (UDESC Oeste), Campus Chapecó - SC. Bolsista em Produtividade Científica CNPq. E-mail: [email protected] Artigo enviado em 26/08/2016, aceito em 03/10/2016 e publicado em 20/12/2016. RESUMO: Este trabalho de revisão tem como objetivo apresentar a importância dos colêmbolos edáficos, com destaque para aspectos agronômicos e ecológicos. São abordadas as características gerais, densidade e distribuição dos colêmbolos, bem como a relação dos colêmbolos com práticas agrícolas, com fungos, com ciclagem de nutrientes e fertilidade do solo. São também reportados trabalhos da literatura, demonstrando a importância desses organismos aos serviços do ecossistema, como ciclagem de nutrientes, melhoria na fertilidade, agregação do solo, controle de fungos e indicadores da qualidade do solo. Pretende-se com este trabalho demonstrar o importante papel desempenhado pelos colêmbolos e expandir o campo de pesquisa com esses organismos, aumentando o conhecimento dos importantes processos mediados por eles e a interface entre a Ecologia do Solo e Ciência do Solo.
    [Show full text]
  • Redalyc.Biodiversidad De Collembola (Hexapoda: Entognatha) En México
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Palacios-Vargas, José G. Biodiversidad de Collembola (Hexapoda: Entognatha) en México Revista Mexicana de Biodiversidad, vol. 85, 2014, pp. 220-231 Universidad Nacional Autónoma de México Distrito Federal, México Disponible en: http://www.redalyc.org/articulo.oa?id=42529679040 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Revista Mexicana de Biodiversidad, Supl. 85: S220-S231, 2014 220 Palacios-Vargas.- BiodiversidadDOI: 10.7550/rmb.32713 de Collembola Biodiversidad de Collembola (Hexapoda: Entognatha) en México Biodiversity of Collembola (Hexapoda: Entognatha) in Mexico José G. Palacios-Vargas Laboratorio de Ecología y Sistemática de Microartrópodos, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito exterior s/n, Cd. Universitaria, 04510 México, D. F. [email protected] Resumen. Se hace una breve evaluación de la importancia del grupo en los distintos ecosistemas. Se describen los caracteres morfológicos más distintivos, así como los biotopos donde se encuentran y su tipo de alimentación. Se hace una evaluación de la biodiversidad, encontrando que existen citados más de 700 taxa, muchos de ellos a nivel genérico, de 24 familias. Se discute su distribución geográfica por provincias biogeográficas, así como la diversidad de cada estado. Se presentan cuadros con la clasificación ecológica con ejemplos mexicanos; se indican las familias y su riqueza a nivel mundial y nacional, así como la curva acumulativa de especies mexicanas por quinquenio.
    [Show full text]
  • Disturbance and Recovery of Litter Fauna: a Contribution to Environmental Conservation
    Disturbance and recovery of litter fauna: a contribution to environmental conservation Vincent Comor Disturbance and recovery of litter fauna: a contribution to environmental conservation Vincent Comor Thesis committee PhD promotors Prof. dr. Herbert H.T. Prins Professor of Resource Ecology Wageningen University Prof. dr. Steven de Bie Professor of Sustainable Use of Living Resources Wageningen University PhD supervisor Dr. Frank van Langevelde Assistant Professor, Resource Ecology Group Wageningen University Other members Prof. dr. Lijbert Brussaard, Wageningen University Prof. dr. Peter C. de Ruiter, Wageningen University Prof. dr. Nico M. van Straalen, Vrije Universiteit, Amsterdam Prof. dr. Wim H. van der Putten, Nederlands Instituut voor Ecologie, Wageningen This research was conducted under the auspices of the C.T. de Wit Graduate School of Production Ecology & Resource Conservation Disturbance and recovery of litter fauna: a contribution to environmental conservation Vincent Comor Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 21 October 2013 at 11 a.m. in the Aula Vincent Comor Disturbance and recovery of litter fauna: a contribution to environmental conservation 114 pages Thesis, Wageningen University, Wageningen, The Netherlands (2013) With references, with summaries in English and Dutch ISBN 978-94-6173-749-6 Propositions 1. The environmental filters created by constraining environmental conditions may influence a species assembly to be driven by deterministic processes rather than stochastic ones. (this thesis) 2. High species richness promotes the resistance of communities to disturbance, but high species abundance does not.
    [Show full text]
  • Awenda Provincial Park
    AWENDA PROVINCIAL PARK One Malaise trap was deployed at Awenda Provincial Park in 2014 (44.82534, -79.98458, 231m ASL; Figure 1). This trap collected arthropods for twenty weeks from April 29 – September 19, 2014. All 10 Malaise trap samples were processed; every other sample was analyzed using the individual specimen protocol while the second half was analyzed via bulk analysis. A total of 3029 BINs were obtained. Over half the BINs captured were flies (Diptera), followed by bees, ants and wasps (Hymenoptera), moths and butterflies (Lepidoptera), and true bugs (Hemiptera; Figure 2). In total, 595 arthropod species were named, representing 21.3% of the BINs from the Figure 1. Malaise trap deployed at Awenda Provincial site (Appendix 1). All the BINs were assigned at least Park in 2014. to family, and 54% were assigned to a genus (Appendix 2). Specimens collected from Awenda represent 214 different families and 705 genera. Diptera Hymenoptera Lepidoptera Hemiptera Coleoptera Trombidiformes Sarcoptiformes Psocodea Mesostigmata Araneae Entomobryomorpha Mecoptera Symphypleona Trichoptera Neuroptera Thysanoptera Dermaptera Pseudoscorpiones Stylommatophora Odonata Opiliones Orthoptera Figure 2. Taxonomy breakdown of BINs captured in the Malaise trap at Awenda. APPENDIX 1. TAXONOMY REPORT Class Order Family Genus Species Arachnida Araneae Agelenidae Agelenopsis Clubionidae Clubiona Clubiona kastoni Dictynidae Emblyna Emblyna sublata Linyphiidae Ceraticelus Ceraticelus atriceps Ceraticelus fissiceps Ceratinella Ceratinella brunnea Ceratinops
    [Show full text]
  • Collembola: Actors of Soil Life
    Collembola: actors of soil life Auteurs : 02-05-2019 Encyclopédie de l'environnement 1/9 Généré le 01/10/2021 An unsuspected diversity of invertebrates swarms under our feet when we walk on the ground in a forest, meadow or garden. Invisible communities are active in the soil as in a parallel world, with the difference that this world is very real and well connected to the above ground level. It is indeed essential to plants that grow above it. Among the invertebrates living in the soil, Collembola (or springtails) are important because of their abundance and therefore their ability to impact the functioning of an entire ecosystem. They have a wide variety of forms and live in a wide variety of habitats. Their main role is to regulate the microorganisms responsible for the decomposition of organic matter and the recycling of nutrients that will be used by plants for their development. Unfortunately, many human activities can affect the communities of Collembola. These include, for example, soil pollution by metals, pesticides, etc., but also human practices such as the introduction of exotic plants or the use of waste to fertilize the soil. 1. Soil invertebrates, shadow workers Encyclopédie de l'environnement 2/9 Généré le 01/10/2021 Table 1.Invertebrates, sizes, abundances (in a temperate meadow) and dominant diets in each of the three soil fauna size classes. Ind.: individuals; L: length; ø: diameter. Saprophagous: a diet consisting of dead organic matter of plant or animal origin. Carnivory: a diet consisting of live animals. Microphagous: a diet consisting of bacteria, fungi and/or unicellular algae.
    [Show full text]
  • Mesofauna at the Soil-Scree Interface in a Deep Karst Environment
    diversity Article Mesofauna at the Soil-Scree Interface in a Deep Karst Environment Nikola Jureková 1,* , Natália Raschmanová 1 , Dana Miklisová 2 and L’ubomír Kováˇc 1 1 Department of Zoology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, SK-04180 Košice, Slovakia; [email protected] (N.R.); [email protected] (L’.K.) 2 Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, SK-04001 Košice, Slovakia; [email protected] * Correspondence: [email protected] Abstract: The community patterns of Collembola (Hexapoda) were studied at two sites along a microclimatically inversed scree slope in a deep karst valley in the Western Carpathians, Slovakia, in warm and cold periods of the year, respectively. Significantly lower average temperatures in the scree profile were noted at the gorge bottom in both periods, meaning that the site in the lower part of the scree, near the bank of creek, was considerably colder and wetter compared to the warmer and drier site at upper part of the scree slope. Relatively high diversity of Collembola was observed at two fieldwork scree sites, where cold-adapted species, considered climatic relicts, showed considerable abundance. The gorge bottom, with a cold and wet microclimate and high carbon content even in the deeper MSS horizons, provided suitable environmental conditions for numerous psychrophilic and subterranean species. Ecological groups such as trogloxenes and subtroglophiles showed decreasing trends of abundance with depth, in contrast to eutroglophiles and a troglobiont showing an opposite distributional pattern at scree sites in both periods. Our study documented that in terms of soil and Citation: Jureková, N.; subterranean mesofauna, colluvial screes of deep karst gorges represent (1) a transition zone between Raschmanová, N.; Miklisová, D.; the surface and the deep subterranean environment, and (2) important climate change refugia.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]