TH0500007 the Estimation of Enol Contents in a Ketone by Proton Nuclear Magnetic Resonance Spectroscopy

Total Page:16

File Type:pdf, Size:1020Kb

TH0500007 the Estimation of Enol Contents in a Ketone by Proton Nuclear Magnetic Resonance Spectroscopy TH0500007 The Estimation of Enol Contents in a Ketone by Proton Nuclear Magnetic Resonance Spectroscopy sfiurceV. mi?r mmitni12', isva Somsak Aramrueng'*. Damrat Supyen'*2, Weerachai Phutdhawong2 'Chemistry Department, Chiang Mai University, Chiang Mai, 20200 Thailand 2Chemistry Department, Maejo University, Sansai, Chiang Mai, 50290 Thailand 6 Kuwiitisfn^^Snau^BmntiiiBwen 2 vualu CDCI3 vi 25°c T«tnS 'H-NMR VJII 83.0% uas 1.6% i S lJ ttuf\f\t> mBiilaauwi'masaimilusniMBnflm'nBUBfi (CD3OD) tfiwfiJBsiwtaBsi^lflUYiimfl'UBatifta.ikil'u 65.2 % iafltiBs;iifl«iosi«Hia?iS8^0?imijwtilu 14.3 % lufhmwmu'uqiu (C6D6) Abstract : Enol contents in CDCI3 at 25°C of 6 carbonyl compounds and 2 compounds containing electron withdrawing groups were determined using 'H-NMR. The results were approximately 83.0% and 1.6% enol contents for acetylacetone and ethyl acetoacetate respectively. In the other compounds enol forms appeared to be absent in the equilibrium mixture. When the solvent was changed from CDCI3 to denterated methanol (CD3OD ) for acetylacetone the enol content was lowered to 65.2%. On the contrary for ethyl acetoacetate it increased to 14.3% in deuterated benzene (Cyi^). Methodology : The 'H-NMR spectra of the Following compounds (see table 1) were recorded in CDCI3 (-10 mg/0.5 ml) employing TMS as an internal reference. The machine was Hitachi 60 MHz and run at ~25°C. To see the effect of solvents, compound 1 was dissolved in deuterated methanol (CD3.OD ) (~10 mg/0.5 ml) and compound 3 in deuterated benzene (C6D6). Using TMS as an internal reference at ~25°C and the solutions were recorded to obtain the 'H-NMR spectra. Results and Discussion : The percentage of keto and enol forms were estimated from the integration of acetyl methyl protons (COCH3) at 2.2 ppm and allyllic methyl proton (C=C-CHj) at 2.0 ppm. When there were no enol forms the peak at 5 - 6 ppm corresponding to vinyl proton would be absent. The results were shown in table 1. The effect of solvents was found as follows : compound 1 contained 65.2 % enol form in CD3OD at 30°C ; compound 3, 14.3 % in C,sD6 . This phenomenon was explained by the increasing of intermolecular hydrogen bonding between the solvent and keto-form in the case of acetylacetone. But in the case of ethyl acetoacetate intramolecular hydrogen bonding in the enol form was increased by denterated benzene which is less polar than CDCI3. The results were similar to those reported in the literature 1 except for compound 3. Table 1 Compounds studied and enol contents (%) Compound no. names enol content(%) _ acetylacetone 83.0 2. acetone none 3. ethyl acetoacetate 1.6 4. methyl acetate none 5. nitro-methane none 6. acetonitrile none 7. phenylacetone none diethylmalonate none Reference: 1. Goro, J. Org. Chem. 19,469,1960(1954). Keywords : NMR, Enol, Ketone.
Recommended publications
  • Synthesis and Antimicrobial Evaluation of Some Novel Thiazole, Pyridone, Pyrazole, Chromene, Hydrazone Derivatives Bearing a Biologically Active Sulfonamide Moiety
    Int. J. Mol. Sci. 2014, 15, 1237-1254; doi:10.3390/ijms15011237 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Synthesis and Antimicrobial Evaluation of Some Novel Thiazole, Pyridone, Pyrazole, Chromene, Hydrazone Derivatives Bearing a Biologically Active Sulfonamide Moiety Elham S. Darwish *, Azza M. Abdel Fattah, Fawzy A. Attaby and Oqba N. Al-Shayea Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt; E-Mails: [email protected] (A.M.A.F.); [email protected] (F.A.A.); [email protected] (O.N.A.-S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +20-100-588-1771; Fax: +202-570-8480. Received: 10 November 2013; in revised form: 10 January 2014 / Accepted: 13 January 2014 / Published: 17 January 2014 Abstract: This study aimed for the synthesis of new heterocyclic compounds incorporating sulfamoyl moiety suitable for use as antimicrobial agents via a versatile, readily accessible N-[4-(aminosulfonyl)phenyl]-2-cyanoacetamide (3). The 2-pyridone derivatives were obtained via reaction of cyanoacetamide with acetylacetone or arylidenes malononitrile. Cycloaddition reaction of cyanoacetamide with salicyaldehyde furnished chromene derivatives. Diazotization of 3 with the desired diazonium chloride gave the hydrazone derivatives 13a–e. Also, the reactivity of the hydrazone towards hydrazine hydrate to give Pyrazole derivatives was studied. In addition, treatment of 3 with elemental sulfur and phenyl isothiocyanate or malononitrile furnished thiazole and thiophene derivatives respectively. Reaction of 3 with phenyl isothiocyanate and KOH in DMF afforded the intermediate salt 17 which reacted in situ with 3-(2-bromoacetyl)-2H-chromen-2-one and methyl iodide afforded the thiazole and ketene N,S-acetal derivatives respectively.
    [Show full text]
  • Feiii, Cuii and Znii Complexes of the Rigid 9-Oxido-Phenalenone Ligand—Spectroscopy, Electrochemistry, and Cytotoxic Properties
    International Journal of Molecular Sciences Article FeIII, CuII and ZnII Complexes of the Rigid 9-Oxido-phenalenone Ligand—Spectroscopy, Electrochemistry, and Cytotoxic Properties Katharina Butsch 1, Alexander Haseloer 1 , Simon Schmitz 1, Ingo Ott 2, Julia Schur 2 and Axel Klein 1,* 1 Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany; [email protected] (K.B.); [email protected] (A.H.); [email protected] (S.S.) 2 Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, D-38106 Braunschweig, Germany; [email protected] (I.O.); [email protected] (J.S.) * Correspondence: [email protected] Abstract: The three complexes [Fe(opo)3], [Cu(opo)2], and [Zn(opo)2] containing the non-innocent anionic ligand opo− (opo− = 9-oxido-phenalenone, Hopo = 9-hydroxyphenalonone) were synthe- 1 sised from the corresponding acetylacetonates. [Zn(opo)2] was characterised using H nuclear magnetic resonance (NMR) spectroscopy, the paramagnetic [Fe(opo)3] and [Cu(opo)2] by electron paramagnetic resonance (EPR) spectroscopy. While the EPR spectra of [Cu(opo)2] and [Cu(acac)2] in dimethylformamide (DMF) solution are very similar, a rather narrow spectrum was observed for [Fe(opo)3] in tetrahydrofuran (THF) solution in contrast to the very broad spectrum of [Fe(acac)3] in − Citation: Butsch, K.; Haseloer, A.; THF (Hacac = acetylacetone, 2,4-pentanedione; acac = acetylacetonate). The narrow, completely Schmitz, S.; Ott, I.; Schur, J.; Klein, A. isotropic signal of [Fe(opo)3] disagrees with a metal-centred S = 5/2 spin system that is observed FeIII, CuII and ZnII Complexes of the in the solid state.
    [Show full text]
  • Development of Novel Peptide Nucleic Acids A
    b-Dicarbonyl compounds Compounds having two carbonyl groups separated by an intervening carbon atom are called b-dicarbonyl compounds, and these compounds are highly versatile reagents for organic synthesis. O O O O C C C R C C C OR' b b b-Dicarbonyl system b-Keto ester ** The pKa for such a proton is in the range 9-11, acidic enough to be removed easily by an alkoxide base to form an enolate. O O O H O OR C C C C C.. C + HOR H enolate anion pKa = 9-11 .. .. .. .. .. .. O . O . O O . O O C C C .. C C C R C OR' R C OR' R C OR' H H H Resonance structure of the anion of a b-keto ester Synthesis of b-keto ester (Claisen condensation) O O O NaOC H 2 2 5 CH3COC2H5 CH3CC..HCOC2H5 + C2H5OH + Na (removed by distillation) Sodiumacetoacetic ester HCl O O CH3CCH2COC2H5 Ethyl acetoacetate (acetoacetic ester) (76%) O O O O (1) NaOC2H5 R CH C + H CHC R CH2C CHCOC H + C H OH 2 OC2H5 OC2H5 + 2 5 2 5 (2) H3O R R (R may also be H) b-Keto ester Mechanism Step1 .. O O . .. + . OHC H + C H OH R CHC OC2H5 .. 2 5 RC.. H C OC2H5 2 5 H .. O . RCH C OC2H5 Step 2 .. .. .. .. O . O O O . RCH2C + . RCH2C CH C OC2H5 HC C OC2H5 . C H O . OC2H5 R 2 5 .. R .. O . O .. + . OC2H5 RCH2C CH C OC2H5 .. R Step 3 .. .. O . O H O O .
    [Show full text]
  • Lonza's Chemical Network Diketene and HCN Derivatives, Heterocycles
    Lonza’s chemical network Diketene and HCN derivatives, heterocycles and basic chemicals catalog Pharma&Biotech Nutrition Agriculture MaterialsScience PersonalCare Diketene and HCN derivatives, heterocycles and basic chemicals catalog Content About Lonza 3 Introduction 4 Diketene / ketene derivatives 6 Esters 6 Arylides 7 Alkylamides 8 Pyrazolones 9 Dehydroacetic acid 9 Lonzamon monomers 10 Other diketene derivatives 10 HCN derivatives 12 Heterocycles 14 Basic chemicals 16 Others 17 Alphabetical index 18 About Lonza Lonza is the global leader in the production and support of active phar- From 1897 to the present day combining Swiss tradition with global maceutical ingredients both chemically and biotechnologically. Biophar- experience, the company has had an enterprising character, adapting maceuticals are one of the key growth drivers of the pharmaceutical and its offerings and services to the needs of customers and to changing biotechnology industries. technologies. Throughout our history, we have maintained a strong culture of performance, results and dependability that is valued by all Lonza has strong capabilities in large and small molecules, peptides, of our customers. amino acids and niche bioproducts which play an important role in the development of novel medicines and healthcare products. In addition, Lonza’s cracker in Visp is the back bone of a comprehensive fully back- Lonza is a leader in cell-based research, endotoxin detection and cell ward integrated chemical network. Our product portfolio consists of therapy manufacturing. Furthermore, the company is a leading provider HCN- and diketene derivatives as well as basic chemicals which are key of chemical and biotech ingredients to the nutrition, hygiene, preserva- raw materials and intermediates for many sophisticated applications.
    [Show full text]
  • Glycosyl Barbiturate Ligands of Bacterial Lectins: from Monomer Design to Glycoclusters and Glycopolymers François Portier, Anne Imberty, Sami Halila
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Expeditious Synthesis of C -Glycosyl Barbiturate Ligands of Bacterial Lectins: From Monomer Design to Glycoclusters and Glycopolymers François Portier, Anne Imberty, Sami Halila To cite this version: François Portier, Anne Imberty, Sami Halila. Expeditious Synthesis of C -Glycosyl Barbiturate Lig- ands of Bacterial Lectins: From Monomer Design to Glycoclusters and Glycopolymers. Bioconjugate Chemistry, American Chemical Society, 2019, 30 (3), pp.647-656. 10.1021/acs.bioconjchem.8b00847. hal-02322076 HAL Id: hal-02322076 https://hal.archives-ouvertes.fr/hal-02322076 Submitted on 4 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. EXPEDITIOUS SYNTHESIS OF C‐GLYCOSYL BARBITURATE LIGANDS OF BACTERIAL LECTINS: FROM MONOMER DESIGN TO GLYCOCLUSTERS AND GLYCOPOLYMERS François Portier, Anne Imberty and Sami Halila* Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France. E‐mail: [email protected]; Fax: +33 4 76 54 72 03; Tel : +33 4 76 03 76 66 ABSTRACT The approach developed here offers a straightforward and efficient access to ‐C‐glycosyl barbiturates ligands, spanning from glycomimetics to multivalent C‐neoglycoconjugates, with the aim of deciphering structural parameters impacting the binding to pathogenic lectins.
    [Show full text]
  • Acetoacetic Ester Synthesis
    Programme: B.Sc. B.ed. (Integrated) Course: ORGANIC CHEMISTRY- III Semester: VI Code: CHE-352 Topic: ETHYLACETOACETATEE Date- 07/04/2020 y Only PPe Dr. Angad Kumar Singh ForF Department of Chemistry, Central University of South Bihar, Gaya (Bihar) Note: These materials are only for classroom teaching purpose at Central University of South Bihar. All the data taken from several books, research articles including Wikipedia. Note: These materials are only for classroom teaching purpose at Central University of South Bihar. All the data taken from several books, research articles including Wikipedia. Ethylacetoacetate The Claisen Condensation between esters containing - hdhydrogens, promotdted byabase such as sodium ethoxy ide, toproduce a !- ketoester. One equiv serves as the nucleophilele (enolate)(eno and the other is OnlyO the electrophile which undergoes additiontion andae elimination. The use of stronger bases, e.g. sodium amide or sodiumsodUse hydride instead of sodium ethoxide, often increases the yield.d. al onal Ethylacetoacetate Note: These materials are only for classroom teaching purpose at Central University of South Bihar. All the data taken from several books, research articles including Wikipedia. Mechanism of the Claisen Condensation The reaction is driven to product by the final deprotonation step. Note: These materials are only for classroom teaching purpose at Central University of South Bihar. All the data taken from several books, research articles including Wikipedia. Mixed Claisen Condensation Like mixed aldol reactions, mixed Claisen condensations are useful if differences in reactivity exist betweenn they two esters as for example when one of the esters has no -hydrogenydrogOnlyO . Examples of such esters are: e Use ers excess Note: These materials are only for classroom teaching purpose at Central University of South Bihar.
    [Show full text]
  • Classification of Chemicals
    Classification of Chemicals Flame & Detonation Arrester Specifications PROTECTOSEAL ® The Protectoseal Company recommends that the National Butadiene would qualify as a Group D material. In each of Electric Code (NEC) Article 500, rankings of various chemi - these cases, the chemicals were primarly listed in a higher cals be used, whenever possible, to determine the suitability category (Group B), because of relatively high pressure read - of a detonation arrester for use with a particular chemical. ings noted in one phase of the standard test procedure con - When no NEC rating of the particular chemical is available, ducted by Underwriters Laboratories. These pressures were the International Electrotechnical Commission (IEC) classifica - of concern when categorizing the chemicals because these tion (Groups IIA, IIB and IIC) is recommended as a secondary NEC groupings are also used as standard indicators for the source of information for determining the suitability of an ar - design strength requirements of electrical boxes, apparatus, rester for its intended service. In general, the IEC Group IIA is etc. that must withstand the pressures generated by an igni - equivalent to the NEC Group D; the IEC Group IIB is equiva - tion within the container. It should be noted that, in each of lent to the NEC Group C; and the IEC Group IIC includes these cases, the test pressures recorded were significantly chemicals in the NEC Groups A and B. In the event of a dis - lower than those commonly encountered when testing a deto - crepancy between the NEC and the IEC ratings, Protectoseal nation arrester for its ability to withstand stable and over - recommends that the NEC groups be referenced.
    [Show full text]
  • Ethyl Acetoacetate (Acetoacetic Ester) (B) Diethyl Molonote (Molonic Ester) the Structure of (A) and (B) Are As
    PRESENTATION OF ENOLATES Dr. Susmita Bajpai Department of Chemistry B.N.D. College, Kanpur ENOLATES The class of compounds which contain a methylene group (–CH2–) directly bonded to the electron withdrawing groups such as –COCH3, –COOC2H5, –CN, are called active methylene compounds. This is so because the –CH2 group in them is acidic and reactive. The two examples are (a) Ethyl acetoacetate (Acetoacetic ester) (b) Diethyl molonote (Molonic ester) The structure of (a) and (b) are as This reaction is known as claisen condensation Ethyl acetoacetate (CH3COOCH2COOC2H5) • It's IUPAC name is ethyl 3-oxobutanoate • Preparation: Ethyl acetoacetate is prepared by heating ethyl acetate with sodium ethoxide in ethanol, followed by acidification. Claisen condensation • It is a condensation reaction in which, two ester molecules condensed to form an alcohol and a b-Keto ester. Therefore ethyl acetoacetate is a b-Keto ester. • Mechanism: The mechanism involves three steps: + • Step-I :- First sodium ethoxide (C2H5O–Na ) breaks into ethoxide ion and sodium ion. This ethoxide ion attacks ethyl acetoacetate to give ethyl alcohol and ester anion. Step -II: Ester anion attacks the carbonyl group of a second molecules of ethyl acetate. • Step-III: Ethoxide ion is eliminated Properties • It is a colourless pleasant smelling liquid • b.p. - 180.4oC • It is sparingly soluble in water but freely so in organic solvent. • It is neutral to litmus. Chemical properties • It is a tautomeric mixture of Keto and enol forms. Therefore it gives the reaction of the various functional groups present in the two forms. Acidity of methylene hydrogen (Formation of salt) • In ethyl acetoacetate methylene group (–CH2–) flank by two carbonyl group.
    [Show full text]
  • Ethyl Acetoacetate
    21.6 The Acetoacetic Ester Synthesis Acetoacetic Ester O O C C H3C C OCH2CH3 H H Acetoacetic ester is another name for ethyl acetoacetate. The "acetoacetic ester synthesis" uses acetoacetic ester as a reactant for the preparation of ketones. Deprotonation of Ethyl Acetoacetate O O – C C + CH3CH2O H3C C OCH2CH3 H H Ethyl acetoacetate pKa ~ 11 can be converted readily to its anion with bases such as sodium ethoxide. Deprotonation of Ethyl Acetoacetate O O – C C + CH3CH2O H3C C OCH2CH3 H H Ethyl acetoacetate pKa ~ 11 can be converted readily to its anion K ~ 105 K ~ 10 with bases such as O O sodium ethoxide. C •• C + CH3CH2OH H3C –C OCH2CH3 3 2 H pKa ~ 16 Alkylation of Ethyl Acetoacetate O O The anion of ethyl C •• C acetoacetate can be H C C OCH CH 3 – C OCH2CH3 alkylated using an H alkyl halide (SN2: primary and R X secondary alkyl halides work best; tertiary alkyl halides undergo elimination). Alkylation of Ethyl Acetoacetate O O The anion of ethyl C •• C acetoacetate can be H C C OCH CH 3 – C OCH2CH3 alkylated using an H alkyl halide (SN2: primary and R X secondary alkyl O O halides work best; tertiary alkyl halides C C undergo elimination). H3C C OCH2CH3 H R Conversion to Ketone O O Saponification and C C acidification convert H3C C OH the alkylated H R derivative to the – 1. HO , H2O corresponding b-keto 2. H+ acid. O O The b-keto acid then undergoes C C decarboxylation to H C 3 C OCH2CH3 form a ketone.
    [Show full text]
  • Packed Column Supercritical Fluid Chromatography: Applications in Environmental Chemistry
    Packed Column Supercritical Fluid Chromatography: Applications in Environmental Chemistry Dedication To Steve Örebro Studies in Chemistry 19 NICOLE RIDDELL Packed Column Supercritical Fluid Chromatography: Applications in Environmental Chemistry © Nicole Riddell, 2017 Title: Packed Column Supercritical Fluid Chromatography: Applications in Environmental Chemistry Publisher: Örebro University 2017 www.publications.oru.se Print: Örebro University, Repro 04/2017 ISSN 1651-4270 ISBN 978-91-7529-184-0 Abstract Nicole Riddell (2017): Packed Column Supercritical Fluid Chromatography: Applications in Environmental Chemistry. Örebro Studies in Chemistry 19. Although gas and liquid chromatography have emerged as dominant separation techniques in environmental analytical chemistry, these methods do not allow for the concurrent analysis of chemically diverse groups of persistent organic pollutants (POPs). There are also a small number of compounds which are not easily amenable to either of these traditional separation techniques. The main objective of this thesis was to address these issues by demonstrating the applicability of packed col- umn supercritical fluid chromatography (pSFC) coupled to mass spec- trometry (MS) in various aspects of environmental chemistry. First, pSFC/MS analytical methods were developed for legacy POPs (PCDDs, PCDFs, and PCBs) as well as the emerging environmental con- taminant Dechlorane Plus (DP), and issues relating to the ionization of target analytes when pSFC was coupled to MS were explored. Novel APPI and APCI reagents (fluorobenzene and triethylamine) were opti- mized and real samples (water and soil) were analyzed to demonstrate environmental applicability. The possibility of chiral and preparative scale pSFC separations was then demonstrated through the isolation and characterization of ther- mally labile hexabromocyclododecane (HBCDD) stereoisomers. The analytical pSFC separation of the α-, β-, and γ-HBCDD enantiomers as well as the δ and ε meso forms was shown to be superior to results ob- tained using a published LC method.
    [Show full text]
  • Effect of the Titanium Isopropoxide:Acetylacetone Molar Ratio on the Photocatalytic Activity of Tio2 Thin Films
    molecules Article Effect of the Titanium Isopropoxide:Acetylacetone Molar Ratio on the Photocatalytic Activity of TiO2 Thin Films Jekaterina Spiridonova 1,* , Atanas Katerski 1, Mati Danilson 2 , Marina Krichevskaya 3,* , Malle Krunks 1 and Ilona Oja Acik 1,* 1 Laboratory of Thin Films Chemical Technologies, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; [email protected] (A.K.); [email protected] (M.K.) 2 Laboratory of Optoelectronic Materials Physics, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; [email protected] 3 Laboratory of Environmental Technology, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia * Correspondence: [email protected] (J.S.); [email protected] (M.K.); [email protected] (I.O.A.); Tel.: +372-620-3369 (I.O.A.) Academic Editors: Smagul Karazhanov, Ana Cremades and Cuong Ton-That Received: 31 October 2019; Accepted: 25 November 2019; Published: 27 November 2019 Abstract: TiO2 thin films with different titanium isopropoxide (TTIP):acetylacetone (AcacH) molar ratios in solution were prepared by the chemical spray pyrolysis method. The TTIP:AcacH molar ratio in spray solution varied from 1:3 to 1:20. TiO2 films were deposited onto the glass substrates at 350 ◦C and heat-treated at 500 ◦C. The morphology, structure, surface chemical composition, and photocatalytic activity of the obtained TiO2 films were investigated. TiO2 films showed a transparency of ca 80% in the visible spectral region and a band gap of ca 3.4 eV irrespective of the TTIP:AcacH molar ratio in the spray solution.
    [Show full text]
  • Deuteriodesilylation: a Mild and Selective Method for the Site- Specific Incorporation of Deuterium Into Drug Candidates and Pharmaceutical Structures
    DEUTERIODESILYLATION: A MILD AND SELECTIVE METHOD FOR THE SITE- SPECIFIC INCORPORATION OF DEUTERIUM INTO DRUG CANDIDATES AND PHARMACEUTICAL STRUCTURES Kimberly N. Voronin A Thesis Submitted to the University of North Carolina Wilmington in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Chemistry and Biochemistry University of North Carolina Wilmington 2012 Approved by Advisory Committee Chris V. Galliford Pamela J. Seaton John A. Tyrell Chair Accepted by Dean, Graduate School TABLE OF CONTENTS ABSTRACT ................................................................................................................................... vi ACKNOWLEDGEMENTS .......................................................................................................... vii DEDICATION ............................................................................................................................... ix LIST OF TABLES .......................................................................................................................... x LIST OF FIGURES ...................................................................................................................... xi LIST OF ABBREVIATIONS ...................................................................................................... xiii LIST OF SCHEMES .....................................................................................................................xv CHAPTER 1: INTRODUCTION ....................................................................................................1
    [Show full text]