BULLETIN DE L’INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE

BULLETIN VAN НЕТ KONINKLIJK BELGISCH INSTITUUT VOOR NATUURWETEN SCHAPPEN

SCIENCES DE LA TERRE AARD WETEN SCHAPPEN VOL. 69 - SUPPLEMENT - A

D.P. NAIDIN FESTSCHRIFT (INTAS 94 - 1414) edited by A. V. Dhondt and A. S. Alekseev BULLETIN DE L’INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE

BULLETIN VAN НЕТ KONINKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN

SCIENCES DE LA TERRE AARD WETEN S CHAPPEN VOL. 69 - SUPPLEMENT - A

D.P. NAIDIN FESTSCHRIFT (INTAS 94 -1414) edited by A. V. Dhondt and A. S. Alekseev

BRUXELLES 1999 BRUSSEL Rédacteur en chef - Hoofdredacteur - Editor. Annie V. D hondt

Secrétaire de rédaction - Redactiesecretaris - Associate editor: Jacques G odefroid

Comité de rédaction - Redactiecomité - Editorial board: Pierre B ultynck Daniel Cahen M ichel D eliens

Comité international - Intemationaal comité - Consulting editors: Denise Brice (Lille, France) C. Howard C. B runton (London, UK) William T. D ean (Cardiff, UK) Gerhard H ahn (Marburg, FRG) Thomas R. W aller (Washington DC, USA)

La rédaction remercie pour lecture critique de manuscrits: De redactie dankt volgende reviewers voor medewerking aan dit volume: For this volume the following reviewers are gratefully acknowledged:

A. S A lekseev (Moscow), S. K. D onovan (London), A. S. Gale (London), R. Guiraud (Montpellier), J. H ardenbol (Houston), W. H ay (Kiel), H. H ess (Biimingen), Ph. H oedemaeker (Leiden), Ann H olbourn (London), V. E. Kh ain (Moscow), J. Klein (Amsterdam), Н. Klinger (Cape Town), W. K uhnt (Kiel), Hedi O berhànsli (Potsdam), H. G. O w en (London), Isabella P remoli Silva (Milano), F. R obaszynski (Mons), E. Steurbaut (Brussels)

BULLETIN DE L’INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE SCIENCES DE LA TERRE

BULLETIN VAN НЕТ KONINKLIJK BELGISCH INSTITW T VOQR NATUURWETENSCHAPPEN AARDWETENSCHAPPEN

Vol. 69 - 1999 - Supplement - A ISSN 0374-6291

Publié, verschenen, published: 15.IX.1999

© Edition de © Uitgave van het l’Institut Royal des Sciences Naturelles KoninHijk Belgisch Instituut voor de Belgique Natuurwetenschappen Rue Vautier 29 Vautierstraat 29 B-1000 Bruxelles, Belgique B-1000 Brussel, België TABLE DES MATIÈRES CONTENTS

Contents 3 Ke n n e d y W . J. & C o b b a n , W . A ., P achydis­ cus (Pachydiscus) hombyense J o n e s, 1963, Frontispiece: D. P. N a id in 4 and P. (P.) catarinae (A n d er so n & H a n n a , Preface 5 1935) (, : Ammonoi­ dea), Pacific Realm marker fossils in the Acknowledgements 6 Western Interior Seaway of North America 119 Hancock, J. М., The contributions of D. P. Naidin to the study of the Cretaceous system 7 K o pa ev ic h , L. F. & B eniamovskii, V. N ., Foraminiferal distribution across the Maas- Alekseev, A. S., K o pa ev ic h , L. F., O v ec h k i­ trichtian/Danian boundary of Mangyshlak pe­ na, M. N. & O lferiev , A . G., ninsula (West Kazakhstan) 129 and Lower Palaeocene of Northern Saratov Region (Russian Platform, Volga River): Fo­ N ik ish in , A. M . Z ie g l e r , P. A. Steph e n so n , raminifera and calcareous narmoplankton 15 R. A. & U stin o v a , M. A., Santonian to Pa­ laeocene tectonics of the East-European cra­ Cobban, W . A., K e n n e d y , W . J. & L a n d m a n , ton and adjacent areas 147 N. H. Platyscaphites, a new ammonite from the Lower Campanian (Upper Cretaceous) of R o b a szy n sk i, F., Cretaceous Stages Boun­ the United States Western Interior 47 daries in central Tunisia: how to follow the Brussels 1995 Symposium Recommendations 161 Dhondt, A. V., Upper Maastrichtian bivalve faunas from the Crimea, Maastricht and Man­ gyshlak 55

Gale, A. S., H a n c o c k , J. M. & K e n n e d y , W. J., Biostratigraphical and sequence correla­ Reports: tion of the successions in Man­ gyshlak (W. Kazakhstan) and Crimea (Ukraine) with those in southern England 67 K otetishvili, E., Upper Cretaceous Ammo­ Gabdullin, R. R., G u zh ik o v , A. Ju., Bo- nites and their extinction: interpretation of gachkin, A. B ., B on d a ren k o , N . A., L u bi­ data from the Caucasus and comparison with mova, T. V. & W id r ik , A. B., Periodites Mangyshlak, the Crimea and the Maastricht below and above the КУТ boundary 87 area 167

Jagt, J. W. М., An overview of Late Creta­ Z h e l e z k o , V. I., Stratigraphie distribution ceous and Early Palaeogene echinoderm fau­ of lamnoid sharks at Cretaceous and Palaeo­ nas from Liège-Limburg (Belgium, The Ne­ gene stage boundaries in the Eastern Peri- therlands) 103 Tethys 173 D . P. N a id in Preface

It is a well known fact that geology in general, and palaeontology and stratigraphy in particular, are very international research topics. All of us, at one time or another, need to see material or sections already described by other colleagues. For research on Cretaceous strata, sections and faunas from the former USSR always were of extreme importance — directly related to the vast expanse of Cretaceous outcrops in the largest country in the world.

For many years the western scientific world considered that it was extremely difficult — not to say im­ possible — to make contact with colleagues, to study sections or collections in the USSR.

For western European Cretaceous workers the breakthrough came in the seventies. In 1976 a few western Cretaceous specialists met M. A. Pergament in Dresden; in 1977, in Lawrence, Kansas, similarly D. P. Naidin was introduced “ in person” to some of us; in 1978 at the Münster Cretaceous meeting 10 (!) Cretaceous workers from the USSR, among them I). P. Naidin, M. A. Pergament, N. I. Shulgina and V. A. Zakharov, were present. After the Minister meeting, A. V. Dhondt decided to apply for a grant to study type collections of Cretaceous bivalves in the USSR, material. In 1980 and 1981-1982 she spent altogether 20 weeks in the USSR. From then onwards contacts with colleagues from different parts of the former USSR were self- evident, and she worked especially with specialists on Upper Cretaceous strata centred around D. P. Naidin at Moscow University. Alexander S. Alekseev worked under D. P. Naidin’s supervision from 1967 onwards. Sitting in D. P: Naidin’s office at the MGU he met many foreign visitors both from eastern and western European countries — a.o. WvK1_Chpstensen, Annie V. Dhondt, R. Marcinowski, K. A. Troeger. D. P. Naidin introduced into the Former Soviet Union many new developments in palaeontology and stratigraphy; these ideas were propagated by him through personal contacts and through numerous publications in Russian.

In 1993 between the MGU and the Belgian Institute of Natural Sciences we decided to try our luck and applied for a grant from the newly formed INTAS programme with a proposal entitled: Bio-events at the К/T boundary on the southern margin o f the white chalk sea - palaeobiology, palaeobio- geography, sequence stratigi'aphy, geochemistry and geochronology. This project was conceived to include research on the uppermost Cretaceous and the К/T boundary in Mangyshlak (Kazakhstan), the Crimea (the Ukraine) and around Maastricht, by scientists from the former USSR and from western . Our aim was to compare these outcrops and make the very important results obtained by D. P. Naidin and his group known to the western scientific world through publications in English. The main activities in the context of INTAS 94-1414 which officially run from November 1995 to March 1998 were: — the first excursion with participation of western scientists to the Upper Cretaceous outcrops on Man­ gyshlak (May 1994); — participation in the “ Second International Symposium on Cretaceous Stage Bounndaries” in Brussels (September 1995); — meeting at ‘ ‘Polygon’ ’ (geological fieldcamp of Moscow University in the Crimea) in June 1996 and June 1997; — final scientific meeting of INTAS 94/1414 in the Geological Faculty of Moscow University (March 1998) with presentation of results; — a LEICA-WILD MZ 12 binocular microscope was bought with our grant money, and installed in the Department of Historical and Regional Geology of the Geological Faculty of Moscow University; We decided to conclude the project with a kind of festschrift honouring Prof. D. P. Naidin — at the occasion of his 80'th birthday. Without the extensive contribution to Cretaceous science made by D. P. Naidin our project would not have been possible. This is better explained in Jake Hancock’s contribution on D. P. Naidin in this volume. The other papers and reports included in this volume, were mainly written in connection with, or as a direct result of the INTAS project. The volume includes papers on the Upper Cretaceous and on the К/T boundary mainly in Crimea, Mangyshlak and Maastricht, but also on the Saratov region. Palaeontological aspects (on Ammonites, Bivalves, Echinoderms, Shark Teeth), biostratigraphy (on narmoplankton, Foraminifera, belemnites), sedimentology (rhythms and cycles), sequence stratigraphy, and tectonics are discussed.

Annie V. Dhondt Coordinator of the INTAS 94-1414 programme Royal Belgian Institute of Natural Sciences

Aleksandr S. Alekseev Faculty of Geology, Moscow State University Brussels, April 15, 1999

Acknowledgements

First and foremost we would like to thank Prof. D. P. Naidin — for the continuous help he has given and still gives to Cretaceous scientists everywhere — near him in Moscow University, further afield in Russia, and wherever possible abroad. All through the years we have known him, he was always prepared to share his knowledge and experience, collections, books and time with colleagues and students near and far. Secondly, our sincere thanks to the INTAS programme. It made possible a very interesting collabora­ tion between scientists and our group really benefitted from it. We are especially grateful to Gerard den Ouden — for being ever ready to understand and help out when unexpected problems arose. Many colleagues and friends participated over the years with advice and practical help in aspects of our programme. We cannot name them all, but would like to mention especially Dirk Anne, Hugo De Potter, Alexandra Egorova, Jacques Godefroid, Jake Hancock, John Jagt, Nikolay Kurdin, Anatoly Nikishin and Etienne Steurbaut. Finally, at Moscow University, we are much indebted to Prof. B. A. Sokolov, Dean of the Geological Faculty, and to Academician Prof. E. E. Milanovsky, Head of the Department of Historical and regional Geology for making our collaboration possible; at the Royal Belgian Institute of Natural Sciences we are very grateful to Dr. D. Cahen, Director, and to Prof. P. Bultynck, Head of the Department of Palaeontology, for unstinting material and moral assistance.

Annie V. Dhondt and Aleksandr S. Alekseev BULLETIN DE L’INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE SCIENCES DE LA TERRE, 69-SUPP. A: 7-13, 1999 BULLETIN VAN НЕТ KONINKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN AARDWETENSCHAPPEN, 69-SUPP. A: 7-13, 1999

The contributions of D.P. Naidin to the study of the Cretaceous system

by Jake M. HANCOCK

Abstract come immediately to mind. In the second half of the 20th century the most widely known name in the western Dmitri Pavlovich N aidin has advanced our knowledge of the Upper countries has been Dmitri Naidin because of the excep­ Cretaceous in his studies of belemnites, biostratigraphy, palaeogeogra­ phy, the К/T boundary, geochemistry and isotope studies. For the tionally broad range of his publications which impinge on world at large his most important contribution has been his leadership palaeontology, biostratigraphy, regional geology, sea-le- in Russia which he has used to build and maintain geological contacts vel changes and isotope geochemistry. between the eastern and western political blocks.

Key-ivords: К/T boundary, belemnites, stratigraphy, palaeogeogra­ phy, palaeotemperatures, eustasy, international relations. Background and early days

Dmitri N a id in was bom on 28 January 1919 at Kre- Résumé menchug on the Dnieper in the Ukraine, some 250 km south-east of Kiev. His father was a respected expert on Dmitri Pavlovich N aidin a fait progresser notre connaissance du fertilisers who worked at an agricultural institute in Kiev. Crétacé supérieur par ses études concernant les bélemnites, la bios­ In addition to the usual elementary education in the tratigraphie, la paléogéographie, la limite К/T, la géochimie et les isotopes. A l’échelle mondiale, sa contribution la plus importante fut USSR, the young Dmitri was given private lessons in son leadership en Russie qu’il a mis à profit pour maintenir des contacts German, regarded in eastern Europe as the cultural lan­ géologiques entre les groupes politiques de l’est et de l’ouest. guage of science. When Dmitri was about 12 his family moved to Mos­ Mots-clefs: transition К/T, bélemnites, stratigraphie, paléogéographie, paléotemperatures, eustatisme, relations internationales. cow where his father became a senior research scientist at the All Soviet Institute of Fertilisers, Agricultural Tech­ niques and Chemistry. Dmitri finished at secondary Резюме school in 1937 and started as a student in the Geology faculty at the Institute of Geological Prospecting in Mos­ Работы Дмиірия Павловича Найдина в таких областях как cow (MGRI), graduating in 1941 as an engineering geol­ белемниты, биостратиграфия, палеогеография, граница К/Т, ogist, specialising in geological mapping and prospect­ геохимия и изотопы, способствовали усовершенствованию ing. For a few months he worked in the Geological наших знаний о Верхнем меле. В Росиии, Дмитрий Павлович Survey of the Tadzhik Soviet Republic, a mountainous использовал свое широкое влияние в целях поддержания region to the east of Samarkand. сотрудничества политических групп Запада и Востока в области геологии, что, несомненно, является его главным On 22 June 1941 Germany invaded the USSR. In вкладом на мировом уровне. March 1942 Dmitri was conscripted into the army. Until 1943 he trained at the Voronesh Military School of com­ Ключевые слова: граница К/T, белемниты, стратиграфия, munications, graduating as a junior officer. He served as палеогеография, палеотемпературы, глобальный уровень the commanding officer of communication sections of моря. anti-aircraft units until being demobilised in February 1946 with the rank of “ starshiy leitenant” (Senior Lieu­ с tenant).

Cretaceous sediments are spread over enormous areas of the Russian Federation and neighbouring countries (see Geological career in outline fig. 4 in N a id in et al., 1986). It is hardly surprising that a number of Russian geologists have been famous for their With the end of the Great Patriotic War, Naidin became studies of Cretaceous rocks; Archangelsky and Bushinsky head of the Lvov section of the Carpathian expedition in 8 Jake M. HANCOCK

1946, under the direction of Professor A.A. Bogdanov. the Caspian is approximately 2,200 km, about the same From 1949 to 1951 he was assistant to Bogdanov at distance as from the Gulf of Mexico to the Canadian MGRI (Moscow Geological Prospecting Institute). Dur­ border), Naidin realised that the use of belemnites for ing this time he obtained his Ph.D. on “ Upper Cretaceous stratigraphy was much more complicated than previously deposits of the SW part of the Russian Platform” . realised. Not only were many regional belemnite appear­ When Bogdanov moved from MGRI to MGU (Mos­ ances the result of immigrations rather than evolution in cow State University, also known as the Lomonosov place - this had been realised for many years by anyone University) in 1951, Naidin moved with him as his assis­ who cared to think about the sudden appearance of new tant. In 1952 Naidin published his first major paper on taxa without evolutionary predecessors. Nor, that one belemnite taxonomy and stratigraphy (see below). He genus or species might be ecologically excluded by an­ became a “ docent” (lecturer) at the university in 1953. other (Naidin, 1959). Far more serious was the discovery He was awarded a higher doctorate in 1965, and in 1966 that zonal boundaries could be diachronous over a few became a Professor at MGU where he was employed for hundred km. For example, in the Crimea one could the remainder of his career and continues to play an active recognise two zones in the Upper Maastrichtian: Belem­ role in research. nella kazimiroviensis above and Belemnitella junior be­ In addition to many prestigious posts in Russia, e.g. low. As one goes eastwards from Crimea to the Volga editor and member of Council of the Moscow Society of Basin, the B. junior Zone thins and disappears and that of Naturalists (MOIP) which awarded him their principal B. kazimiroviensis thickens (Fig. 1). This is not a matter prize in 1973, Naidin has been a major participant in the of sedimentation (although there are sedimentary com­ International Geological Correlation Programme, and plications as well): other indicators for the boundary from 1975-1984 was the only Voting Member from the between lower and upper Upper Maastrichtian show that USSR on the International Subcommission of Cretaceous both subdivisions of the Upper Maastrichtian are present. Stratigraphy. These international appointments have been Thus in Mangyshlak the whole of the Upper Maastrich­ important vehicles for Naidin’s contacts with geologists tian is represented by a Zone of Belemnella kazimirovien­ outside the USSR. sis (Naidin, 1973).

It is still necessary to go to the original paper (Naidin, Belemnite research 1973) for full details, although some of the taxonomy has been modified. For more recent views set in the context of Naidin’s early work was on belemnites and their strati­ the whole European - central Asian region see Christen­ graphy. In his 1952 monograph he attempted a compre-.- sen (1996, 1997 a, b). hensive survey of all the Upper Cretaceous belemnites of the western Ukraine, and their inter-relations, largely Regional studies based on the succession in the Opolie area of the Dnestr valley, north-north-west of Ivano-Frankovsk Alongside these studies on belemnites, Naidin has devel­ (= Stanislav). More extensive studies of the taxonomy oped a broad picture of Upper Cretaceous geology. This were published 12 years later (Naidin, 1964a, b; 1965). was seen from his first papers in English (1959, 1960a), Belemnitella and Belemnella were covered rather briefly through other papers published in the west (1979, 1981b; at this time, and fuller accounts were given in his 1969 N aidin & V olkov, 1998). Amongst those publications in book and in the Atlas of the Upper Cretaceous fauna of Russia have been N aidin & P etrenko (1961), Gerasi­ the Donetz Basin (Naidin, 1974), particularly near Vor­ mov et al. (1962), P apulov & N aidin (1979), N aidin & oshilovgrad (= Lugansk) in the eastern Ukraine. There A lekseev (1980), N aidin et al. (1986); and as one of the were also important taxonomic corrections in N aidin authors o f the standard work on the Cretaceous system in (1975). Russia edited by M oskvin, 1986-87. These studies con­ tinue, e.g. Jolkichev & N aidin (1998). Amongst this taxonomic work he proposed a new classification of the belemnitellids that lack a true alveo­ If Dmitri Naidin had done no other research, these be­ lus, whose relationships had never properly been consid­ lemnite and regional studies would still have placed him ered before. He established two new subgenera of as one of the leading Russian geologists in the second half Actinocamax: A. (Praeactinocamax) an d ^ . (Paractino- of the 20th centuiy. In fact, he has been a leader in several camax); a new genus, Belemnellocamax; and a new sub­ other fields of Cretaceous studies. genus of Gonioteuthis, G. (Goniocamax). Sea-level changes The studies were extended southwards to the Crimea and eastwards to the Caspian syneclise (= shallow basin) All Naidin’s accounts of regional geology and palaeogeo- around the northern part of the Caspian Sea (summaries graphy have been related first to transgressions and re­ in N aidin, 1969, 1979, 1981). gressions, and then to eustatic changes of sea-level. Ear­ As a result of this broader area of study (from western lier work was very generalised (e.g. N aidin, 1971, 1972b, Ukraine to the Mangyshlak Hills on the north-east side of 1976b), but by 1980 he led a team which produced curves The contributions of D.P. Naidin to the study of the Cretaceous system 9

their theories of coastal-onlap but does not believe that west east the EXXON curve is applicable to the East European Platform; and, like others before him, complains that the biostratigraphical correlations in the EXXON chart

О are inadequate to use their eustatic changes for correla­ Belemnella arkhangelskii tion. aw as a Geochemistry and general studies N и N a Belemnitella N. Unusually in a scientific world of ever increasing specia­ & ju n io r lisation, Naidin, having started as a palaeontologist, has D M - i encouraged the use of every teclmique to improve the overall picture of Cretaceous geology.

о He has paid special attention to isotope geology for Belemnella lanceolata, Bel. sumensis palaeotemperatures (N a id in , 1972a; T eis & N a id in , 'Всо cti 1973; T e is , N a id in & S t o y a n o v a -V e r g il o v a , 1975). cd V o l k o v & N a id in (1994, 1998) have attempted to re­ construct trade-winds and marine currents for much of the ü for the whole world. Naidin has also £ о T contributed a view on the geochronology of the Cretac­ i-l Bel. licharewi eous period (N a id in , 1981a, 1982). He has adopted a л cautious approach, not even offering his own table of І dates. U Geochemistry has also been applied to his studies of the К/T boundary (see N a id in , 1997). Fig. 1 - Copy of fig. 5 from NAIDIN (1973), re-drawn for this paper with anglicisation of cyrillic script. Be­ Cretaceous-Tei-tiary boundary lemnella arkhangelskii is now k n o w to be a junior synonym of Belemnella kazimiroviensis Skoloz- drowna. There are valuable К/T boundary sections in the Crimea, This figure is one of Naidin’s early diagrams to in the Kopet-Dag, straddling the border between Turk­ show that some belemnite species have different menia and Iran, and in Mangyshlak in western Kazakh­ stratigraphical ranges in different regions. The ori­ stan. The section at Koshak (44° 36.55’ N; 51° 46.50’ E) ginal caption (in Russian) reads: Biozones and teil- in particular, is accessible, free of vegetation, unlikely to zones of Maastrichtian belemnites in the Western be built over, contains echinoids, belemnites, ammonites, (western Europe, Poland, western region of the foraminifera, calcareous nannoplankton and an iridium Ukraine) and the Eastern European palaeogeogra­ anomaly: in many respects it would be a better global phical region. boundary stratotype and section point than El Kef, but when the international vote was taken, the Mangyshlak region was closed to non-Soviet citizens. on a stage-by-stage scale for eight regions of the USSR (N aidin et al., 1980 a, b). In the 1980’s he paid particular A valuable aspect of Naidin’s research is that from the attention to Kazakhstan (N a id in et al., 1982, 1984): this earliest papers (e.g. N a id in , 1960; M o sk v in & N a id in , showed some startling differences from the curves for 1960) has been that he has not just concentrated on late western Europe and the USA (but see M arcinowski et Cretaceous extinctions but has considered the survivors al, 1996). into the Palaeogene, and investigated the appearance of new taxa. It was this broad view of the faunal changes that In his most recent work (Naidin & Volkov, 1998) he led him early in his researches to assign the Danian to the re-affiims his belief in eustasy, which he thinks is con­ Tertiary and put the КУТ boundary on the top of the trolled by increases and decreases in the total volume of Maastrichtian. water in the oceans. He also emphasises that many sedi- mentological phenomena are affected by epeirogeny and Naidin’s most complete discussion of his earlier views climate. In spite of the stability of the “ East European is in his 1976a paper, but see also N a id in (1978). The Platform” , (which comprises both the Russian Platform Danian sediments of the Crimea are described in and its extension westwards through north Poland, north N a id in (1964c) and more recently by N a id in & B en ja- Germany and southern Scandinavia), there are local re­ m o v sk y (1994). The Maastrichtian sections in Mangysh­ gions where tectonism rales over eustasy (see N a id in et lak are described in N a id in , B en ja m o v sk y & K opaevich al., 1980b, fig. 10). He supports the EXXON school in (1984). 10 Jake M. HANCOCK

In 1997 he distinguished two types of boundary sections done there. But this is to jump forward. At first it was a in Mangyshlak: those with boundary clays, which contain matter of developing his career inside the USSR. Ir enrichment in the basal few mm of the clay, e.g. If he had avoided politics until he had left the army, Koshak and Kyzylsai; and those with a hardground on Dmitri could hardly have avoided them as a geologist. top of the Maastrichtian, e.g. Aksyirtau (Naidin, 1997). From 1946^19 he worked on the Upper Cretaceous strati­ For discussions in English, see N aidin (1987, 1996). graphy of western Ukraine around Lwow, Drohobyoz, Stranislawow and Tamopol. This was not just a matter of Politics a few brief visits. He himself was concentrating on the belemnites, but he also collected the inoceramids on There are many innocent people, even some scientists, which Dobrov based his work, the echinoids used by who believe that science is independent of politics. Moskvin, some of the ammonites studied by Mikhailov, No discussion of Naidin’s work is possible without and the material for various authors on the foraminifera. taking politics into account. As Isaiah Berlin has written, He also worked on material in the museum at the Uni­ “ ... despite every effort to separate them, conducted by versity of Lwow. In other words, he must have spent a lot a blind scholastic pedantry, politics has remained indis­ of time in western Ukraine. solubly intertwined with every other form of philosophi­ cal enquiry.” (Berlin, 1997, p. 192). By now there is a During those years western Ukraine was still in a state of generation which has never known the stupid distortions violent turmoil. As someone who had become a member of knowledge and understanding during the cold war, let of the Communist Party during the war yet had a Ukrai­ alone the extremes of thought-control during and imme­ nian father, Dmitri was able to move in all sections of diately after the Great Patriotic War. The isolation of society. Nonetheless, he must have learnt a great deal of Russia from western Europe and North America, and the political skills needed to work within the Soviet the isolation of North America and western Europe from system at that time. Russia are already becoming difficult to visualise, but the differences of language merely made the separation ea­ Stalin died in 1953. Whilst he was alive any contact with sier: ignorance could be excused. foreigners would have been foolhardy. By 1955 Naidin was in an established position in Soviet society, a party The degree of isolation between east and west is well member for more than ten years, working in a subject of illustrated by two standard works on sediments: P etti- limited political significance at the premier All Soviet john (1957) and Strakhov (1962). The American work university (MGU). He started sending offprints, writing discusses the formation of clastic rocks in terms of both 'letters and exchanging specimens with that most lovable physics and chemistry, but it is the tectonic milieu which of western geologists, Ehrhard Voigt (University of Ham­ dominates the control on facies. . although sedimenta­ burg), who had himself been an enterprising prisoner of tion... is affected by many factors, the most fundamental war in the Soviet Union. In 1958 Naidin submitted a is tectonics” (Pettijohn, 1957, p. 638). Much of this paper to Ivar Hessland for publication in the Stockholm relationship between facies and tectonics is discussed in Contributions in Geology (Naidin, 1959). We now know terms of “the geosynclinal cycle” . that the Swedish socialist government maintained very In Strakhov’s giant w ork it is difficult to find a close relationships with the USSR through the cold war mention of geosynclines. Although he recognises a tec­ (Richard Reyment, personal communication). Around the tonic factor in the distribution of facies, the dominant same time Naidin started corresponding with Willy control is climate. Indeed, volume 2 is on the formation of Wright and Jake Hancock in England. sedimentary rocks in humid climates, volume 3 on their In 1960-61 Richard Reyment was able to visit Moscow formation in arid climates. For the Russian author the and Leningrad; in 1963 Voigt was a guest, not only in greater importance of climate was concluded after con­ Moscow but also in the university ‘ ‘baza’ ’ (= field centre) sideration of both hypotheses: American publications on near Bakhchisarai in the Crimea. Arising from these tectonic controls are quoted but their conclusions are contacts came the quantitative study of Actinocamax rejected. verus (R eyment & N aidin, 1962); and a monograph on For the American author, literature in Russian does not Upper Cretaceous Bryozoa from the European part of the exist. A striking example of this is provided by the USSR (Voigt, 1962); followed by a similar survey of the description of the Black Sea sediments. The latest and Bryozoa from the south Asian republics of the USSR, only example of Russian work which P ettijohn quotes is with the help of both Naidin and Ashot Atabekian (Le­ a paper in French by Androussow published in 1897; no ningrad) (V oigt, 1967). mention at all of the more recent Russian work, including that by Strakhov himself. Thus Naidin gradually built up contacts between east and west. Over the years this became slightly easier, Naidin recognised the need to get information to geolo­ but it is difficult now to comprehend the courage which gists outside the Soviet block of research being done in was needed during the cold war. Relationships within the USSR and eastern Europe. And to get western geol­ the eastern block were more complicated than it may ogists to visit the USSR to see what research was being have appeared. Even in the so-called free west, commu­ The contributions of D.P. Naidin to the study of the Cretaceous system 11

nication with the USSR was often regarded with suspi­ eous sections. So long as the Soviet Union existed the cion and sometimes impossible if you were a government region was totally closed to non-Soviet citizens, even employee. for party members from other east European countries. Dmitri tried repeatedly to get permission to take geolo­ Naidin has contributed to the improvement of geological gists there, without success. It was only with the inde­ relations between east and west in a variety of ways. First, pendence of Kazakhstan that he was able to lead western I would put the dissemination of Russian literature to geologists into Mangyshlak in 1994. On the ground there western geologists. seemed to be no reason why foreigners should have been He has sent out copies not just of his own works but of excluded. many Russian geologists, either by persuading them to One of my many good memories of Dmitri Naidin is at write to us, or by obtaining copies of their papers and the international meeting on the К/T boundary held in monographs to send himself. Whereas some of the atlases Copenhagen in 1979. He explained that it was the official of fossils of the 1950’s to 1970’s were produced in line in the Soviet Union that the Danian was part of the editions of 1,400 to 2,000 copies, in the 1980’s numbers Cretaceous system, but he didn’t believe that the Russians went down to 600-800 copies. The number of spare should ignore what the rest of the world had discovered copies must be very small. For some papers there is and for him the boundary should be placed at the top of now a print-run of only 400 copies. the Maastrichtian stage. By 1984 he had succeeded in changing the view of the Interdepartmental Stratigraphie There was also the dissemination of ideas from’the west Committee of the USSR which then came into line with into the USSR. He was responsible for the introduction of international opinion. several developments of western research to other geol­ If Dmitri Naidin’s most important contribution in the- ogists in Russia, e.g. the concept of hardgrounds in chalk history of geology has been the building of good relations successions, and the use of quantitative measurements in between east and west, we should remember that this was palaeontology. only possible because of that impressive body of pub­ lished research, of which the outline given above is far In the 1970’s Russian geologists started to appear at from a complete survey. It has been his catholic approach Cretaceous symposia in the west. Here one must pay which has ensured the respect of a broad body of geolo­ tribute not only to Naidin, but to Richard Reyment with gists. his IGCP Project on MidCretaceous Events; to Tove Birkelund for the meetings she organised in Copenhagen; and to Jost Wiedmann for his International Cretaceous Symposia. Acknowledgements Fourthly, have been visits of western geologists to Cretaceous regions in the former Soviet Union. The I am indebted to a wide circle of friends for information and advice: Sasha Alekseev, Raymond Casey, Walter Christensen (particularly for craziness of the old Soviet system is nowhere better his expert advice on belemnite studies), Dennis Cuny, Annie Dhondt, illustrated than the difficulties Naidin had in getting Irene Katchourin, Ludmilla Kopaevich, Jim Kennedy, Albert Levine, geologists to the Mangyshlak hills on the eastern side Anatoly Nikishin and Richard Reyment. In view of the political sensitivities of parts of this paper, I should mention that the assess­ of the northern Caspian Sea. It has been known for ments and opinions are my own. Finally, I should like to thank Dmitri many years that the hills there contain fabulous Cretac­ Naidin himself for all his kindnesses to me over many years.

References

Berlin, I., 1997. The proper study of mankind, xxxvi + 667 Platform. Ocherki Regional'noi Geologii SSSR, 5: 196 pp. (in pp. Chatto & Windus, London. Russian). Jolkichev, N. A., & N aidin, D.P., 1998. Upper Cretaceous of Christensen, W. K., 1996. A review of the Upper Campanian northern Bulgaria, Crimea and Mangyshlak: 1, Upper Cretac­ and Maastrichtian belemnite biostratigraphy of Europe. Cretac­ eous stratigraphy of northern Bulgaria. Byulleteii' Moskovskogo eous Research, 17: 751-766. Obshchestva Ispytatelei Prirody, otdel geologicheskij, 73: 17- Christensen, W. K., 1997a. The Late Cretaceous belemnite 28. (in Russian). family Belemnitellidae: taxonomy and evolutionary history. Marcinowski, R., W alaszczyk, I. & Olszewska-Nejbert, D., Bulletin o f the Geological Society o f Denmark, 44: 59-88. 1996. Stratigraphy and regional development of the mid-Cre­ taceous (Upper Albian through ) of the Mangyshlak Christensen, W. K , 1997b. Palaeobiogeography and migra­ Mountains, western Kazakhstan. Acta Geologica Polonica, 46: tion in the Late Cretaceous belemnite family Belemnitellidae. 1-60. Acta Palaeontologica Polonica, 42: 457-495. Moskvin, М. M. (Editor), 1986-87. Cretaceous System, 2 vols, Gerasimov, P. A., Migacheva, E. E., N aidin, D. P. & S te rlin , 339 + 326 pp. Stratigi-aphy o f the USSR (general editor B.S. B. P., 1962. and Cretaceous sediments of the Russian Sokolov). Nedra, Moscow, (in Russian). 12 Jake M. HANCOCK

M o skvin, M .M . & N a id in , D. P., I960. Danian and contiguous d in, D. P. & S avchinskaya , О. V., Atlas of the Upper Cretac­ deposits of the Crimea, Caucasus, and the Transcaspian Region eous fauna of the Donbass. Nedra, Moscow, 197-240 (in Rus­ and the south-eastern part of the Russian Platform. Interna­ sian). tional Geological Congress 21, Reports o f Soviet Geologists, N a id in , D. P., 1975. Late Maastrichtian belemnitellids of Problem 5: The Cretaceous-Tertiary boundary 1540. Izdatelst- Eurasia. In: M e n n er, V. V. et al. (Editor), Evolution and vo Akademii Nauk SSSR, Moscow, (in Russian with English change of the organic kingdom at the Mesozoic-Cenozoic summary). boundary, 91-108, Publishing House Nauka, Moscow, (in Rus­ Naidin, D. P., 1952. Material for the biostratigraphy of the sian). western regions of the Ukraine. Belemnites of the upper Cre­ N a id in , D. P., 1976a. The Cretaceous-Palaeogene boundary. taceous of the western Ukraine. Tmdy Moskovskogo Geologo- Boundaries of Geological Systems. To the 70th birthday of Razvedochnogo Instituta imeni S. Ordzhonikidze, 27: 5-125. (in Academician V. V. Menner, 225-257. Izdatelsvo Nauka SSSR, Russian). Moscow, (in Russian). Naidin, D. P., 1959. On the paleogeography of the Russian N a id in , D. P., 1976b. Epeirogeny and eustasy. Vestnik Mos­ platform during the Upper Cretaceous epoch. Stockholm Con- kovskogo Universiteta, Geologiya 1976, 2: 3-16 (in Rus­ tributions in Geology, 3, 6: 127-138. sian). N a id in , D. P., 1960a. The stratigraphy of the Upper Cretaceous N a id in , D. P., 1978. The stratotype stage for the top of the of the Russian Platform. Stockholm Contributions in Geology, Cretaceous (on an example of the Maastrichtian stage). Byidle- 6,4: 39-61. ten Moskovskogo Obshchestva Ispitateley Prirody, otdel geo­ N a id in , D. P., 1960b. Concerning the boundary between the logicheskij, 53, 3: 56-77. (in Russian). Maastrichtian and Danian stages. International Geological N a id in , D. P., 1979. Vergleichende Stratigraphie der Oberen Congress 21, Reports o f Soviet Geologists, Problem 5: The Kreide der Russischen Tafel und West-Europa. In: W iedm ann, Cretaceous-Tertiaiy boundary 41-46. Izdatelsvo Akademii J. (Editor), Aspekte der Kreide Europas, 497-510. International Nauk SSSR, Moscow, (in Russian with English summary). Union of Geological Sciences (A) 6.

N a id in , D. P., 1964a. Upper Cretaceous Belemnitella and Be­ N a id in , D. P., 1981a. Geochronology of the Mesozoic. In: lemnella of the Russian Platform and some adjacent regions. K e l l e r , В. M. (Editor). The principles of a geochronological Byulleten Moskovskogo Obshchestva Ispytatelei Piirody, otdel scale and its construction: Phanerozoic. Itogi Nauka i Tekh- geologicheskij, 39: 85-97 (in Russian). niki, Series on Stratigraphy, Palaeontology, 2: 34-73. (in Rus­ N a idin, D. P., 1964b. Upper Cretaceous belemnites of the sian). Russian Platform and adjacent regions. Actinocamax, Gonio- N a id in , D. P., 1981b. The Russian Platform and the Crimea. teuthis and Belemnellocamax. Moscow University Press. 191 In: R ey m en t, R. a . & B en g tson , P. (Editors). Aspects of pp. (in Russian). midCretaceous regional geology, 29-68. Academic Press, Lon­ N a idin , D. P., 1964c. Danian and Montian sediments of the don. Crimea. Sbomik v Chest Akademika Jovcho Smilovicha Jov- N a id in , D. P., 1982. Geochronology of the Cretaceous period. cheva, 167-184, Sofia, (in Russian). Byulleten Moskovskogo Obshchestva Ispytatelei Prirody, otdel N a id in , D. P., 1965. Upper Cretaceous belemnites (Family geologicheskij, 57: 51-72. (in Russian). Belemnitellidae Pavlow) of the Russian Platform and adjacent N a id in , D.P., 1987. The Cretaceous-Tertiary boundary in Man­ regions. 41 pp. Moscow University Press, (in Russian). gyshlak, U.S.S.R. Geological Magazine, 124: 13-19. N a idin , D. P., 1969a. Biostratigraphie und Palaogeographie der N a id in , D. P., 1996. Cenomanian/ and Maastrichtian/ Oberen Kreide der Russischen Tafel. Geologisches Jahrbuch, Danian events in the eastern European palaeobiogeographical 87: 157-186. region. Mitteilungen ans dem Geologisch-Palaontologischen N a id in , D. P., 1969b. Morphology and palaeobiology of the Institut de}- Universitât Hamburg, 77: 369-378. Upper Cretaceous belemnites. 303 pp. Moscow University N a id in , D. P., 1997. On the two types of Cretaceous/Paleo­ Press (in Russian) gene boundary. Doklady Akademii Nauk, 352: 369-373. (in N aidin, D. P., 1971. On global sea-level changes in the Meso­ Russian). zoic and Caenozoic. Byulleten Moskovskogo Obshchestva Is­ N a id in , D. P. & A le k see v , A . S., 1980. Sections of Cenoma­ pytatelei Prirody, otdel geologicheskij, 46: 10-18. (in Rus­ nian sediments between Kacha and Bodrak (Crimea) Izvestiya sian). Vysshikh Uchebnykh Zavedenii. Geologiya i Razvedka for N aidin, D. P., 1972a. Isotopic palaeotemperatures and some 1980, 4: 11-25. (in Russian). problems in geology. Byulleten Moskovskogo Obshchestva Is­ N a id in , D. P. & B en jam o vsk y , V. N ., 1994. The Suvlukaya pytatelei Prirody, otdel geologicheskij, 47: 112-124. (in Rus­ Palaeogene Section. Stratigraphy and Geological Congélation, sian). 2, 3: 272-283. N aidin, D. P., 1972b. Oscillations in sea-level changes during N a id in , D. P., B en jam o vsk y , V. N . & K o paevich, L. F., 1982. the Mesozoic and Caenozoic. Symposium on comprehensive Late Cretaceous transgressions and regressions in western Ka­ studies on the nature o f the ocean, 3: 85-103. University of zakhstan. Izvestiya Vysshikh Uchebnykh Zavedenii. Geologiya i Moscow, (in Russian). Razvedka for 1982, 10: 3-19. (in Russian). N a idin , D. P., 1973. On the relationship between small units in N ajdin, D. P., B en jam o vsk y , V. N . & K opaevich, L. F., 1984. biostratigraphy and those in palaeobiogeography. Buylleten Methods of studying transgressions and regressions (exempli­ Moskovskogo Obschestva Ispitateley Prirody, otdel geologi­ fied by the Late Cretaceous basins of western Kazakhstan), 164 cheskij, 48: 50-63. (in Russian). pp. Moscow University, (in Russian). N a id in , D. P., 1974. Subclass Endocochlia-order Belemniti- N a id in , D. P. & P etren ko , V. S., 1961. On the Upper Cretac­ dae. In: B lank, M . Y a., K r y m g o lts, G. Ya. (Editor), N aj- eous depressions in the southern part of the East European The contributions of D.P. Naidin to the study of the Cretaceous system 13

Platform and its Palaeozoic framework. Byulleten Moskovskogo Teis, R. V. & Naidin, D. P., 1973. Palaeothermometry and Obshchestva Ispytatelei Prirody, otdel geologicheskij, 36: 56- isotopics put together with oxygen and biogenic carbonates, 75. (in Russian). 256 pp. , Nauka, Moscow, (in Russian). Naidin, D. P., Pokhialajnan, V. P., K ats, Yu. I. & Krassilov, Teis, R., N aidin, D. P. & Stoyanova-Vergilova, М., 1975. V. A., 1986. The Cretaceous Period: palaeogeography and Palaeotemperatures of the Jurassic and of palaeoceanology, 264 pp. Akademija Nauk SSSR, Moscow, Bulgaria according to the isotopic oxygen composition of be­ (in Russian). lemnite guards. Geologica Balcanica, 5: 65-80. Naidin, D. P., Sasonova, I. G., P ojarkova, Z. N ., D jalilov, V o ig t, E., 1962. Upper Cretaceous biyozoa from the European M. R., Papulov, G. N., B enjamovsky, V. N., & K opaevich, L. part of the USSR and contiguous areas. Moscow University F., 1980a. Cretaceous transgressions and regressions on the Press. 125 pp. (in Russian). (French translation 1964. Paris, EastEuropean Platform, Crimea and central Asia. Byulleten Bureau de Recherches géologiques et minières, Traduction no. Moskovskogo Obshchestva Ispytatelei Prirody, otdel geologi­ 4455). cheskij, 55: 27-42. (in Russian). Naidin, D. P., Sasonova, I. G., Pojarkova, Z. N., D ja lilo v , V o ig t, E., 1967. Oberkreide-Bryozoen aus den asiatischen M. R., Papulov, G. N., Senkovsky, Yu. М., Benjamovsky, V. Gebieten der UDSSR. Mitteilungen ans dem Geologischen N. & Kopaevich, L. F., 1980b. Cretaceous transgressions and Staatsinstitut in Hamburg, 36: 5-95. regressions on the Russian Platform, in Crimea and central Volkov, Yu. V. & Naidin, D. P., 1994. Variation in climatic Asia. Cretaceous Research, 1: 375-387. zones and surface currents in the oceans during the Cretaceous Naidin, D. P. & Volkov, Yu. V., 1998. Eustasy and Late period, Byidleten Moskovskogo Obshchestva Ispitatelei Prir­ Cretaceous seas of the East-European Platform. Zéntralblatt ody, otdel geologicheskij, 69: 103-123. (in Russian). fur Geologie und Palâontologie. Teil 1. Allgemeine, Ange- Volkov, Yu. V. & N aidin, D. P. 1998. Marine currents induced wandte, Regionale und Historische Geologie, 1996: 1225- by trade winds and the southerly dispersal of some marine 1232. organisms during the Late Cretaceous. Doklady Akademii Papulov, G. N. & N a id in , D. P., 1979. The Santonian-Campa- Nauk, 358: 367-370. (in Russian). (English translation m. Dok­ nian boundary on the East European Platform. Akademija Nauk lady Earth Sciences 358: 44-47 with the title “Tradewind SSSR, Uralski Nauchni Centr. Tmdy Instituta Geologii i Geo­ currents and meridional dispersal of some marine organisms khimii, 148: 118 pp. Sverdlovsk, (in Russian). in the Late Cretaceous” ). Pettijohn, F. J., 1957. Sedimentary Rocks, 2nd edition, xvi + 718 pp. Harper & Brothers, New York. Reyment, R. A. & Naidin, D. P., 1962. Biometric study of Jake M. H an co ck Actinocamax verus s.l. from the Upper Cretaceous of the Т.Н. Huxley School. Russian Platform. Stockholm Contributions in Geology, 9,4: Imperial College, 147-206. Prince Consort Road, Strakhov, N. М., 1962. Fundamental theory of the formation London, SW7 2BP of lithologies. Akademia Nauk SSSR, Moscow (English trans­ U.K. lation published 1967-1970 by Consultants Bureau, New York; and Oliver & Boyd, Edinburgh, with the title Principles of Typescript submitted 15.10.1998 Lithogenesis, 1,431 pp). Revised typescript received 15.3.1999 BULLETIN DE L’INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE SCIENCES DE LA TERRE, 69-SUPP. A: 15^15, 1999 BULLETIN VAN НЕТ KONINKLIIK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN AARDWETENSCHAPPEN, 69-SUPP. A: 15-45, 1999

Maastrichtian and Lower Palaeocene of Northern Saratov Region (Russian Platform, Volga River): Foraminifera and calcareous nannoplankton

by Alexander S. ALEKSEEV, Lyudmila F. KOPAEVICH, Mariya N. OVECHKINA & Alexander G. OLFERIEV

Abstract районе содержит несколько перерывов, главный из которых приурочен к концу раннего Маастрихта. На вершине From five Maastrichtian outer shelf sections of the high latitude (52°N) Тепловского поднятия мергели верхней части верхнего North Saratov Region a detailed foraminiferal and calcareous nanno- Маастрихта (верхи зоны СС26) перекрывают верхний алъб. plankton study has been carried out for the first time. The most Детальная стратиграфическая корреляция показала important taxa are illustrated. The Maastrichtian succession contains существование в этом регионе внуіри-маастрихтских several hiatuses, of which the most important encompasses the late early Maastrichtian (zones CC23b and CC24). On top of the Tyoplovka тектонических движений. Обсуждена тектоническая история Uplift the uppermost Maastrichtian marls (upper part of CC26) overlie Тепловского поднятия. Часть разреза нижнего Маастрихта с the Upper Albian. The existence of mid-Maastrichtian tectonic move­ Belemnella lanceolata gracilis принадлежит зоне СС23А. В ments in this region is shown by detailed stratigraphie correlations. The конце Маастрихта в разрезе Ключи 1 установлена interval with the Lower Maastrichtian Belemnella lanceolata gracilis трансгрессия, сопровождавшаяся проникновением в этот belongs to Zone CC23A. During the latest Maastrichtian a transgres­ район тепловодных и глубоководных Globotruncana. Эго sion with invasion ofwarm-water and deep-water Globotruncana taxa was recognized in the Klyuchi 1 section and this transgressive event is трансгрессивное событие является важным маркирующим an important marker in the White Chalk Sea. уровнем для моря «Писчего Мела».

Key-words: Foraminifera - calcareous nannoplankton - biostratigra- Ключевые слова: Фораминиферы, наннопнанктон, phy - Maastrichtian - Lower Palaeocene - Russia био стр атиграфия, Маастрихт - нижний Палеоцен, Россия

Résumé Introduction Dans la partie septentrionale (52°N) de la région de Saratov, une étude détaillée des foraminifères et du nannoplancton calcaire a été effectuée pour la première fois dans cinq sections maastrichtiennes ayant fait The major part of information on biotic changes across partie du shelf externe situé à de hautes latitudes. Les taxa les plus the Maastrichtian/Danian boundary comes from rela­ importants sont figurés. La succession maastrichtienne comprend plu­ tively low latitude sections, especially in the tropical sieurs hiatus dont le plus important coïncide avec la fin du Maastrich- and subtropical realms. Only a few sections were studied tien inférieur (zones CC23b et CC24). Au sommet du soulèvement de Tyoplovka, les marnes du Maastrichtien le plus supérieur (partie in high latitudes among which are Stevns Klint and supérieure de CC26) recouvrent l’Albien supérieur. L’existence de Kjôlby Gaard in N Europe (Hultberg & Malmgren, mouvements tectoniques au Maastrichtien moyen dans cette région 1986, 1987; Schmitz et al., 1992) and boreholes in the est attestée par des corrélations stratigraphiques détaillées. L’intervalle à Belemnella lanceolata gracilis du Maastrichtien inférieur appartient à Antarctic, on Maud Rise and on the Kerguelen Plateau la Zone СС23А. Au cours du Maastrichtien terminal, une transgression (Huber, 1990; Pospichal & Wise, 1990; Thierstein et avec arrivée d’eaux chaudes et de taxa de Globotruncana d’eau pro­ al., 1991). Evidence exists that sequences of biotic events fonde a été mise en évidence dans la section de Klyuchi 1; cet événement transgressif est un marqueur important dans la mer de la and their extent during the Maastrichtian-Danian transi­ Craie blanche. tion were quite different in tropical and high latitude basins (Gartner, 1996). Only few data are available Mots-clefs: Foraminifères, nannoplancton calcaire, biostratigraphie, Maastrichtien, Paléocène inférieur, Russie. from the eastern part of the large, relatively shallow and cold-water marine Russian basin that covered the southern and eastern parts of the Russian Platform be­ tween 50-55°N during the Late Cretaceous and Palaeo­ Резюме gene. This basin had connections with the Western Siber­ Впервые на севере Саратовской области детально изучены ian Sea through narrow sea straits which crossed the фораминиферы и известковый нанопланктон пяти Uralian Uplift Zone -and through the wide Turgay Strait высокоширотных (52° с.ш.) разрезов Маастрихта, east of the Urals. The sediments of this basin contain приуроченных к обстановке внешнего шельфа. Наиболее important information for a better understanding of the важные таксоны изображены. Разрез Маастрихта в этом terminal Cretaceous events and their appearance in dif- 16 Alexander S. ALEKSEEV et al.

Fig 1. — Location of the area and the sections studied.

ferent climatic belts. Not only latitudinal, but also long­ Geological Setting itudinal differences exist between stratigraphie ranges of important late Maastrichtian marker species, in W Europe The Saratov Region is part of the vast Volga River area and in E Europe (e.g. belemnitellids), as was shown (Povolzhie in Russian) of the East European Platform , firstly by N aidin (1973). often named the Uliyanovsk-Saratov Syneclise or De­ The Saratov Region is situated in the N. part of the pression (Naidin I960, 1969; Gerasimov et al. 1962), Russian Basin between 50 and 53° N along the Volga situated close to the W and NW margin of the Peri- River. There is a relatively complete outer shelf Maas- Caspian Depression. The wide belt of the Russian craton trichtian-Danian sequence. This sequence contains rich along the Volga River was relatively mobile during Me­ assemblages of planktonic Foraminifera including true sozoic times with several tectonic uplifts and swells were deep water taxa, although never studied in detail (Bar­ recognized (Nikishin et al., this volume). In the vicinity yshnikova, 1966). However, the very first illustrations of of Saratov, to the west and north of the town, numerous foraminiferan shells in transmitted light by E hrenberg small amplitude uplifts occur. These uplifts axe known as (1854) came from that area (Volsk chalk). Later, A r- the Saratov Dislocations and are characterized in their khangelsky (1912) gave lists of Foraminifera from sev­ axial parts by Mid-Jurassic sediments overlying with an eral rock samples of the Belemnitella lanceolata Zone angular unconformity the Middle (Mos- (Maastrichtian) and line drawings of a few species were covian) limestones. Different levels of Upper Cretaceous published by Baryshnikova in Kamysheva-E lpatievs- unconformably overlie the Jurassic and Lower Cretac­ kaya (1967). In one section the lower Upper Maastrich­ eous formations on the slopes of these uplifts. tian calcareous nannofossil assemblage of the Lithraphi- The Upper Cretaceous is mainly represented by widely dites quadratus Zone was studied and illustrated (Gutsa- distributed Cenomanian sands (up to 25-30 m), Turonian- ki et al., 1975). The nannofossil Nephrolithus frequens Coniacian sandy chalks and chalks (up to 25 m), Santo­ Zone was recognized by M usatov (1995) in the topmost nian and Campanian sandstones, marls and siliceous layers of the Maastrichtian in the Klyuchi area. All these rocks (40-50 m) and Maastrichtian sands, siliceous “ opo- data show the great importance of the Saratov Region for kas” , marls and chalks (up to 60 m). The Maastrichtian environmental reconstructions of the eastern part of the sediments are the most widely distributed Upper Creta­ terminal Cretaceous Chalk Sea. In this paper we present ceous strata in the Saratov region. They are overlain by preliminary results of studies of several Maastrichtian siliceous rocks of Palaeocene age known as Syzranian and basal Lower Palaeocene (Syzranian) sections in the Stage or Syzran Formation. There are three sub-meridio­ N Saratov Region. nal facial belts of Maastrichtian age, which were first Maastrichtian and Lower Palaeocene of Northern Saratov Region 17

Fig 2. — Section Lokh 1 and stratigraphie distribution of the most important Foraminifera and calcareous nannoplankton taxa. Levels with most abundant radiolarians, sponge spicules, cirripeds and belemnites are also shown. 18 Alexander S. ALEKSEEV et al.

o Щ J2 Distribution of main taxa Oею N ГуорІоѵка2 f i zone

.34

7_

.31

40 (N O CQ U

J3 L- Nè §Ce *Ьі«3 5 §cC3 «s: Sc o “ -S a <5o <3 • ! O Ъ1S 04 ^ Jû e? & <

ЧЗ <3 .s: .g ê "o O ccj st S 13 o 5 Q R Q es -§ ü -2 'fe S -Ci r'a ‘5 c Cj >■» -s: 0 Q -U *хзCî С -ХЗ .SI ■§ 15 3 s .g * t3 .bp o 1 e bQa £ *s: c "o p <з ■« £ .g ,H s оS’ bo «s s s: a s: -o o <3 ks: <3 S to .S o ûQ o p •« ~5b s; «0 Û> "5 S co £ 35 Cûo . î) -s: ■£ es ?u

y ‘j m ail ...... clay silt p e b b l e s

Fig 3. — Section Tyoplovka 2 and stratigraphie distribution of the most important Foraminifera and calcareous nannoplankton taxa. Maastrichtian and Lower Palaeocene of Northern Saratov Region 19 documented in this region by Arkhangelsky (1912) and The base of the Maastrichtian has not been reached, but the were more precisely described by F lerova & Gurova presence of abundant clastic material (up to 10%) in the low­ (1958) and D erviz (1959). The first belt located in the ermost sample LH1-1 supports the idea that it is close to the west, consists of calcareous sands. Marls are found in the lower boundary of unit Lokh 1. According to previous data central part and chalks are present along the Volga River, (B o n d a ren ko , 1975) the Maastrichtian marls overlie Cenoma­ nian sands in this area. In total 28.5 m of light yellow-grey north of Saratov. No formal lithostratigraphy exists for calcareous clays, siltic in their lower part and clayish marls are the Upper Cretaceous of the Saratov Region. seen in section Lokh 1. The sequence can be subdivided into Note: “ Opoka” : a Polish term for siliceous rocks consisting three lithological units. of a mixture of amorphous silica and clay. In fresh state the Unit Lokh A. The lower 11.1 m of the sequence is repre­ opoka has a dark colour, but in weathered state it is whitish. sented by yellow-grey micaceous calcareous clays with 22-35% Silica can constitute up to 90 %, but the rock is completely CaC03, sometimes with burrows and fissures filled with gyp­ recrystallized under diagenesis and no clear diatom frustula are sum veins, often with iron oxides. The content of the fraction visible unlike what would have been the case in diatomite. > 0.05 mm is 3-10%. “ Opoka” occurs frequently in N. Germany, Poland, on the Russian Platform and in W. Siberia. Unit Lokh В. The top of unit Lokh A is a prominent erosional hardground with numerous up to 60 cm deep burrows. The basal layer that overlies unit Lokh A consists of glauconitic calcareous friable sandstone (0.7 m) with rare, mainly eroded Material and methods belemnite rostra and moulds of small bivalves. The calcareous sandstone is replaced up section by yellow-grey calcareous Five sections were studied and sampled 60-65 km to the clays (28-32% carbonate) with small fragments of bivalve NW, N and NE of Saratov (Figure 1). More than 150 shells. The total thickness of this unit is 11.6 m. The content samples were collected at intervals between 0.4 to 1.5 m of the fraction > 0.05 mm is 1-3% only. for foraminiferal and calcareous nannofossil studies. The Unit Lokh C. In the washed residue of sample LH1-51 quite Foraminifera were extracted from soft marls with stan­ abundant large grains of glauconite occur, suggesting that dard micropalaeontological techniques by soaking dry this level is very probably near to another hiatus, marked by'a samples of 50 g in sodium bicarbonate and washing them basal glauconitic bed. This hiatus is supposed to fall in the through a 0.05 mm screen. Relatively hard Palaeocene interval between samples LH1-50 and LH1-51 that has a thick­ ness of about 1.5 m. Unit Lokh С consists of yellow-grey “opokas” were disintegrated through melting crushed- calcareous clays (5.8 m thick, 23-30% of CaC03). The top of rock samples with sodium sulfate. For nannofossils nor­ this unit and the contact with the Palaeocene are not visible in mal smear-slides were prepared from each sample. The this locality. coccoliths were identified under the light microscope 2. Section Tyoplovka 2 in the Novye Burasy Area. 52°06’ N, Carl Zeiss Axiolab under magnification x 1500. The 46°04’ E. A small ravine on the southwestern slope of a hill on SEM photographs of foraminifers and nannofossils were the left bank of a small tributary of the Chardym River know'll taken by Camscan in the Palaeontological Institute of as the Tyoplovka River and located at about 57 km N of RAS. The carbonate contents were determined in 37 Saratov, 10 km SE of Novye Burasy and about 1.5 km SE of samples by dissolution of 10 g rock in 20% formic acid Tyoplovka Village. on scales, and calculated from carbon dioxide loss with a Below the Syzranian “ opokas” which are badly exposed precision of 1 %. As standard in experiments chemically here, 6.3 m of light grey siltic and micaceous thinly laminated pure CaC03 was used. marls (41-47% of carbonate) (Figure 3) are visible in a deep and narrow ravine that first cuts the hill slope parallel to it and after that in its crest. Maastrichtian marls overlie Upper Albian black clays of the Paramonovo Formation. The top sample from these Repository clays contains the radiolarian Crolanium cuneatum (Smirnova & Kh. Aliev), typical for the Paramonovo Formation, which is The collections of macrofossils and Foraminifera are housed in widely distributed in Central Russia (A lekseev et al., 1996). A the Paleontological Institute of the Russian Academy of phosphoritic conglomerate lies at the base of the marls. Its Sciences (PIN) under numbers 4775 and 4776 respectively. thickness is up to 0.1 m. The phosphatic pebbles are generally small (1-2 cm) but occasionally can reach up to 5-7 cm across. The total thickness of the Maastrichtian marls was estimated Locality descriptions to be 18 m (B aryshnikova , 1966). Along this ravine at a distance of 40 m the basal Maastrichtian conglomerate cuts in 1. Section Lokh 1 in the Novye Burasy Area: 52° 08’ N, 45° 52’ a westward direction progressively deeper and deeper levels E. A small abandoned quarry on the left bank of a tributary of the Paramonovo Formation. This supports the: existence of of the Chardym River, 65 km NW of Saratov and 15 km W an angular unconformity between Albian and Maastrichtian of Novye Burasy. The quarry is on the slope of a hill covered strata. by hard Palaeocene Syzranian “ opokas” . The bottom of the 3. Section Tyoplovka 3. A large ravine, 0.5 km south-east of quarry is about 20 m above the river. The lower 2 m of the section Tyoplovka 2. This ravine cuts the slope of the Tyoplov­ section (Figure 2) were sampled in a trench. The upper part ka River valley from the Palaeocene “ opokas” at its top to of the section above sample LH1-49 is poorly exposed and Middle Jurassic clastics at its foot. Maastrichtian marls, the mainly covered by grass. Samples were collected at intervals of same as in section Tyoplovka 2, are situated in the relatively 1.5 m up to the bottom of deep holes (up to 1 m deep) in the gentle part of the slope and are only poorly exposed. On top of talus. the Paramonovo Formation the basal Maastrichtian phosphori- "вхв; uopjxreidoiruBu sn0^iB0\e0 pue шэдшшшо^ iirejjoduii isoui эц; jo uopnquisip oiqdRiSpBJjs риге \ іцэгъСта uotpsg — > 3bj

s ; s b |0 \ігіи E>(odo % 0 9 < Ъ'/'?' i j - ô o z 2 ^ 4 - IIRIU К <■ <■

е^_> T ш • f ZP~* IP-* z ^ ; П Qp-* о >§ 6E“> a- Q 2 E ^ ~ 7 _ L£~* Ci §■ 9E -> 3 C Ç E ^ b ± L I—*О • о го P£~* 'L- о A __ to E E ^ ZLZ •< c о \ -S3 о Z£ ^ ІГ I 1—» - то* TE "*" го n OE-* >3 1 z 5 ^ 2 6Z~* c§ &Z-* 't - *■>3r OqТО § LZ~* 'У 7 s' t* 5 ‘ 9Z~* ~7;z~7:/s s\s\ £} s's s' "т C ÇZ~* •s PZ~* ‘ё Q а r.s 's s о £Z~* ‘ЗS' ’ 1* ТО >3 § 8 zz~ § ■ 3 то С) 3 то es \z'- // . ,S'J/ / . V с ozz Q £ о » ■ 3 S ' Cr çj- * Cl ï f ïo 2“ El ’ TO q =r> g£ ^ g - » t» о o_ к , zv к О 5 “ s : § о § Ci S ' <& 2 ; з ‘ '3* I D ^ *§ S: S ‘ X*' 5 § о ° 5' s i f “ 1+ Й то cT rо s s S* 5 : § Q В. &» g *3 S‘ 21 Z. 1 § E a S" S' Ci a S а Л ^ 3 TO Чз o t ' E" ^ S' IÜ s ^ i - § >fCt SCi §. g б ' c>‘ a R- 8- 'Z* Э- о 5 N *" â 5S 3 3-.. Sg. =S- Чз 71 Z. Ci &■ 11 i * § Чз 2SТО 5 ’ Сз-' ;а- s g a '£■» С t n S' a О оfcb B*. n о t n И 2 *§-ifS Cl t n •~цQ s; B"

" 9 Г ■21- I c! > ts^r>3 S. вхщ ишп jo uop.tiqiqsTQ [ P 'f e 3 OP я V-cT

■JV 1Э AHHS^HIV 'S -іэривхэіу qz Maastrichtian and Lower Palaeocene of Northern Saratov Region 21 tic conglomerate occurs. The base of the conglomerate dips to Micr op alaeontology the NE under an angle of about 30-40°. Samples TP3-17 and TP3-18 were collected at a distance of 1 m from the base of the Maastrichtian sediments in the studied sections contain Maastrichtian. 40 m upwards, along the ravine, in a small abundant planktonic and benthic Foraminifera (Plates 1 trench, the displaced contact of the Maastrichtian marls and and 2). Moreover, in washed residues of many samples Palaeocene “ opoka” can be seen. 75 m upwards along the ravine, on top of a zone without exposures, green-yellow cal­ occur diverse, mainly smooth ostracod shells (Krithe, careous Syzranian “ opoka” crops out (sample TP3-23). Cytherella etc), radiolarian skeletons (especially in sec­ 4. Sections Klyuchi 1 and 2, in the Bazamy Karabulak Area: tion Tyoplovka 2) and capitular plates of the cirriped 51° 59’ N, 46°30’ E. Few shallow ravines cross the left gentle Zeugmatolepas cretae (Steenstrup). Also tiny echinoid slope of the Malyi Klyuch River valley, about 62 km north­ spines and inoceramid prisms are constant components eastern of the Saratov. of the sediments. Siliceous sponge spicules occur at some Klyuchi 1 is situated in the ravine furthest from Klyuchi levels (for example in the basal bed of unit Lokh В and in Village, about 1 km beyond the last buildings of the village. the top of the Maastrichtian). The upper part of the section is located 10 m from the field margin (Figure 4). Two units can be recognized. FORAMINIFERA Unit Klyuchi C. The upper part of the section consists of Foraminiferal assemblages from all studied lithological 5.9 m of Lower Syzranian (Lower Palaeocene) green-grey hard units, except unit Klyuchi C, are very similar. The main calcareous “opokas” (17-20% of CaC03) with abundant character is the predominance of planktonic Foramini­ moulds of small bivalves, gastropods and solitary scleractinian fera. The P/В ratio commonly varies between 75-92% corals (Trochocyathus calcitrapa von Koenen) in its lower part (1-2.5 m above the base). The base of the “ opokas” consists of which is typical for an outer shelf environment. Preserva­ a siliceous glauconitic sandstone (0.15 m) with abundant frag­ tion is usually very good, as, quite often, shells are void ments of Maastrichtian marls up to 2-3 cm across. The top of and clear, and their fine sculptural elements easily visible. the Maastrichtian is a hardground with burrows which penetrate The planktonic assemblage has a low taxonomic diver­ the underlying marls up to a depth of 0.1-0.2 m. The burrows sity, resulting from the relatively high latitude position of are filled with green, siliceous sandy glauconitic material which the studied sections. The total production of planktonic forms the base of the Palaeocene. foraminiferids is very high (commonly 3000 - 9000 speci­ Unit Klyuchi B. Below the boundary hardground, a thick mens per gram of rock, and reaching up to 21000 speci­ succession of white chalky marls (52-65% of carbonate) is seen mens in sample KL1-28). Sedimentation rates appear to including levels with abundant Zoophycos trace fossils (e.g. at have been rather slow. 11.5 m). The lower part of unit Klyuchi В (6 m) contains more Among the planktonic Foraminifera, small heteroheli- carbonate (62-65% CaC03) but in the topmost 5 m the carbo­ nate content decreases again (55-59%). The base of unit В is cids are most frequent [mainly Heterohelix globulosa covered by soil in this section. On the surface of these marls, (Ehrenberg), up to 66-89% of the planktonic assemblage]. in their middle part, a few belemnite rostra were discovered Common are Globigerinelloides (7-26%) and Archaeo- together with iron oxide pseudomorphs on small sponges. globigerina taxa and transitional forms between Archae- The Klyuchi 2 section is on the same valley slope as Klyuchi oglobigerina and Rugoglobigerina (2-15%). Hedbergella 1, but 0.5 km closer to Klyuchi Village. This ravine is the last monmouthensis Olsson, Rugoglobigerina nigosa (Plum­ with good Cretaceous outcrops. The lower part ends in a small mer), Globotruncanella petaloidea (Gandolfi) and G. temporary marl quarry near the bottom of the valley. Further to havanensis (Voorwijk) are less frequent, but occur in the east ravines cut only Upper Pliocene (Akchagylian) or most samples. The triserial Guembelitria cretacea Cush­ Quaternary clastics. Three unit can be recognized. man is very rare. The relative abundance of these groups Unit Klyuchi A. Lowermost part of the section (Figure 5) is characteristic for a shelf environment. The large Ar- consists of yellow-grey siltic calcareous clays which are very chaeoglobigerina australis Huber, first described from similar to the clays of unit Lokh 1, but contain slightly more carbonate (35-36% of CaC03). The thickness of this unit, Antarctica (Huber, 1990), and forms close to it, together although incomplete, is 3.2 m. with Rugoglobigerina rugosa (Plummer), are especially Unit Klyuchi Bb. Unit Klyuchi A is overlain by a bed of abundant in unit Lokh A. The taxonomy of the high spiral green-yellow clay (0.8-0.9 m) with rare dispersed glauconite forms intermediate between Archaeogloberigina and Ru- grains. This bed has the lowest carbonate content (only 16-20% gogloberigerina has not been studied in detail. Some CaC03) of the entire studied Maastrichtian succession. The authors have established new taxa, such as the genus lower boundary of the clay bed is probably erosional and Helvetiella (Longoria & Gamper, 1984), but additional penetrates into the top of the calcareous clays of unit Klyuchi research is necessary to clarify their taxonomy. Globiger­ A, although evidence is very poor. This bed can be very easily inelloides multispinus (Lalicker) occurs at some levels, traced along the slope as a marker horizon. On the surface of but in the Upper Maastrichtian G. volutus (White) is more this clay rare belemnite rostra were found. frequent. Unit Klyuchi B. More than 10 m of white chalky marls Representatives of more warm-water and deep-water identical to those of section Klyuchi 1 are visible in this section. A bed 10 cm thick glauconite occurs at the base of the marls, genera such as Pseudotextularia, Planoglobulina, Globo- overlying the erosional contact between units Klyuchi Bb and truncanita and Globotruncana occur sporadically as sin­ B. The top of these marls should be close to the boundary gle specimens and are mainly confined to the late Maas­ between units Klyuchi В and C, as shown by micropalaeonto- trichtian units Tyoplovka A and Klyuchi B. Globotrun­ logical data (see below). cana area (Cushman), G. mariei Banner & Blow, G. 22 Alexander S. ALEKSEEV et al.

Ü0 S V3 Klyuchi 2 Distribution of main taxa СП 00 "To c-35 z ZZZ .=-34 eu£ ,-33 “Q ZZ Q Q E- 32 < lS?i i.s z 43 § t 7 \ 7 E-31 .C Ь'э z z z b0 z z z 6-30 <3 J ï & t - u Со ~ 7 t-29 I* &3 / ~ 7 , t - 28 <3 .K 10. z - ?~ 7 <-27 C a ,bc -s: 26 & T 7" p vo 25 CN s Ü 24 t: <-20 Q fiq -Ki3 Ьэ 19 Ц z' / <-18 § U c z ^ 1 7 “Z- •Q <-16 .5 Cb e o ВІ § -i BF 12 s: BF 11 -g t 1 "5jT3 ^3,0 5 âi QJ £ 3 S •« ‘C Î3 s: г es V» «a о Çj Hi S q a, al b <5 S c O .a Q t-H en <3 U* CS *5Ьо • § m u s: Q O s .x: СЭ .g Q -3 "o o o S-1 5

Calcareous Clays IZ, clays У Maris

Fig 5. — Section Klyuchi 2 and stratigraphie distribution of the most important Foraminifera and calcareous nannoplankton taxa.

esnehensis Nakkady, Pseudotextularia deformis (Ki- In this interval (samples KL1-25 and KL2-36) also few koine), Planoglobulina brazoensis Martin and Racemi- specimens of the cosmopolitan but mainly high latitude guembelinapowelli Smith & Pessagno occur in the upper taxon Schackoina multispinata Cushman & Wickenden 5 m of unit Klyuchi В in section Klyuchi 1. were found (K rasheninnikov & B a s o v , 1985; H u b e r , Pseudotextularia elegans (Rzehak) (= P. defonnis Ki- 1990). koine, in this paper) has long been recognised in Europe Benthic Foraminifera are nicely preserved and rela­ as an index species of uppermost Maastrichtian at high tively abundant (250-1700 specimens per gram of rock). latitudes (W ic h e r , 1953; M a l m g r e n , 1982; H u l t b e r g & The general taxonomic composition is close to that of the M a l m g r e n , 1987). The level of first appearance of this Polish Vistula Basin (G a w o r -B ie d o w a , 1992) and species occurs in the upper part of the Nephrolithus clearly differs from these in the Crimea (A l e k se e v & frequens Zone of northern Europe (Denmark, Sweden) K o p a e v ic h , 1997). The benthic assemblages are comple­ (M a l m g r e n , 1982). tely dominated by calcareous forms. The agglutinated Maastrichtian and Lower Palaeocene of Northern Saratov Region 23

Foraminifera (mainly Spiroplectammina, Bolivinopsis, tion (Plate 3). In some intervals the signatures of dissolu­ Arenobulimina, Ataxophragmium and Heterostomella) tion and overgrowth are evident. The dominance in as­ represent no more than 1-2% of the assemblage. Among semblages of resistant species such as Micula decussata the calcareous taxa the most abundant are the infaunal Vekshina, Arkhangelskiella cymbiformis Vekshina, Pre- species of Bolivina, Praebulimina, Bolivinoides, Stilos- discosphaera grandis Perch-Nielsen, Cribrosphaerella tomella and Pseudouvigerina and some nodosariids. The ehrenbergii (Arkhangelsky) and several others in most epifaunal taxa belonging to Cibicidoides, Gavelinella, assemblages, confirm the influence of dissolution on the Anomalinoides and Brotzenella, as well as Hanzawaia taxonomic composition of the nannoflora. The distribu­ ekblomi (Brotzen), Stensioenia pommerana Brotzen, tion of the identified taxa in the studied sections is shown Gyromorphina allomorphinoides (Reuss) and large Len- in Tables 1-4. ticulina species constitute a subordinate part of the as­ In section Lokh 1 the dominant species throughout the semblages. succession are Arkhangelskiella cymbiformis Vekshina, For age determination we used the benthic foraminif- Cribrosphaerella ehrenbergii (Arkhangelsky), Watz- eral zonation of the European palaeobiogeographic pro­ naueria barnesae (Black in Black & Bames) Perch-Niel- vince (B eniamovskii & K o p a e v ic h , 1998). The oldest sen, Eijfellithus turriseiffeli (Deflandre in Deflandre & Lower Maastrichtian benthic assemblage occurs in units Fert) Reinhardt, E. parallelus Perch-Nielsen, Kamptner- Lokh A and Klyuchi A. It consists mainly of Bolivina ius magnificus Deflandre, Prediscosphaera grandis decuirens (Ehrenberg), Neoflabellina reticulata (Reuss), Perch-Nielsen and Micula decussata Vekshina. Also fre­ Spiroplectammina kelleri Dain, Bolivina incrassata Re­ quent are Microrhabdulus decoratus Deflandre, Lithra- uss, Cibicidoides aktulagayensis (Vasilenko), C. comma- phidites carniolensis Deflandre, Arkhangelskiella specil- tus (Vasilenko) and Stensioeina pommerana Brotzen. In lata Vekshina, Chiastozygus literarius (Gôrka) Manivit the upper part of unit Lokh A (samples LH1-19 and LH1- and Cretarhabdus conicus Bramlette & Martini. 22) rare specimens of Bolivinoides draco miliaris Hilter- The nannofossil assemblage of unit Lokh A is char­ mann & Koch occur. These and other forms are charac­ acterized by Aspidolithus sp. aff. Aspidolithus parcus teristic for Subzone BFlOa (Neoflabellina reticulata-Bo- constrictus (Hattner et al.) Perch-Nielsen and Tranolithus livina decurrens Subzone). manifestus Stover which do not cross the boundary be­ The lower part of Unit Lokh В (7 m, up to sample LH1- tween units Lokh A and B. The last specimens of the first 43) contains the assemblage of Zone BF11 (Bolivinoides species occur in the basal bed of unit Lokh В just above draco draco Zone). The marker subspecies Bolivinoides the hiatus, in LH1-31 and LH-32, probably, as a result of draco draco (Marsson) has its first appearance datum in reworking. These Aspidolithus specimens differ from the the basal glauconitic sandstone bed of this unit (sample typical A. parcus constrictus by a wider central field LH1-30). The upper part of unit Lokh В and unit Lokh С (Plate 3, Figure 13). Reinhardites levis Prins & Sissingh belong to Zone BF12 (Brotzenella praeacuta Zone) of the in Sissingh is rare and was found only in samples LH1-20, lower Upper Maastrichtian. The benthic assemblage of LH1-21 and LH1-29 and this is not the real first appear­ unit Klyuchi Bb is very different from that of the under­ ance of this species. The presence of these nannofossil lying unit and appears to consist of both the BF11 and taxa indicates that unit Lokh A belongs to Subzone BF12 zones. Bolivinoides draco draco (Marsson) and CC23a. Spiroplectammina kasanzevi Dain have their first appear­ The nannofossil assemblage of units Lokh В and С ance at the base of this unit, but Brotzenella praeacuta indicates subzone CC25a and the lower part of subzone (Vasilenko) was found in sample KL2-13, 0.6 m higher CC25b, because of the absence of Lithraphidites quad- up the section. Unit Klyuchi В belongs to Zone BF13 ratus Bramlette & Martini, which according to P er c h - (Hanzawaia ekblomi Zone). This species has its first N ie l se n (1985) has its first appearance in the middle of appearance in sample KL2-15 and 3 m higher up it is CC25b. In unit Lokh С the nannoplankton assemblage joined by the first Bolivina crassa Vasilenko. becomes less diverse, but this is due to the disappearance Unit Tyoplovka A in sections Tyoplovka 2 and Tyo­ of rare species such as Braarudosphaera bigelowii (Gran plovka 3 does not contain the marker species of Zone & Braarud) Deflandre, Chiastozygus fessus (Stover) Sha- BF13, but the presence of Bolivinoides draco draco fik, Rhombolithion speetonensis Rood & Barnard and (Marsson) and sparse Bolivina crassa Vasilenko in Markalius perforatus Perch-Nielsen. samples TP2-18 and TP2-26 give a clear indication of In the sections Klyuchi 1 and Klyuchi 2 calcareous their age. Units Klyuchi В and Tyoplovka A are char­ nannofossils are abundant, but have mainly moderate or acterized by the presence of a few specimens of Sliteria poor preservation. The dominant species are the same as varsoviensis Gawor-Biedowa, although consistently re­ in the section Lokh 1. The most ancient assemblage presented. This taxon is considered as an indicator of late which is identical to the assemblage of unit Lokh A is Maastrichtian upwelling sites (W id m a r k & S pe ije r , characteristic for unit Klyuchi A. It contains Aspidolithus 1997). sp. aff. A. parcus constrictus that has its last appearance in sample KL2-14, but no Reinhardites levis Prins & CALCAREOUS NANNOPLANKTON Sissingh in Sissingh. R. levis is probably veiy rare in The calcareous nannofossils are abundant in all studied the Saratov Region. Unit Klyuchi A belongs to subzone sections and have generally moderate or poor preserva­ CC23a. 24 Alexander S. ALEKSEEV et al.

Table 1. Distribution of calcareous nanno:Fossils in the Maastrichtian of section Lokhl Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Aspidolithus aff. parcus constrictus FFR FFRFF FRRFF Arkhangebkiella cymbiformb AAAA A CV AAA C A A C AACA Cribrosphaerella ehrenbergii A CACA C AAAA CACAAA Calculates obsatrus RF FFR Braarudosphaera bigelowii R R Eiffellhhus turrisaffelii ACAC C FA FACCC C A C Kamptnerius magnifiais RFFA FAACCFC C FF CCC Micula decussata AAAAA CFAAAAAAA CA A A Lhhraphidites camiolensis FF FFFRFF FFCRF Prediscosphaera grandis R C C CCFF CCC A CAACAF Microrhabduhis decoratus FFFR RCFFFFFF Lucianorhabdus cayewdi R RRRRRR Watznaueria bamesae СCCFFFFFC CC F CF VekshineUa angusta F FRFFRFF Ahmuellerella octoradiata F F FRFFFFF Micula concava FFRFF Tranolithus manifestos FRRFFF Zygodiscus spiralis C FF C F F Arkhangelskiella specillata AACAA CCC C Chiastozygus Utterarius C F ACFFC RhomboUthion speetonensis RR Chiastozygus amphipons FFCC Cretarhabdus conicus FF C FR Prediscosphaera cretacea F FCFR Zygodiscus diplogrammus RRRR F Prediscosphaera spinosa FFFFRF Zygodiscus slaughteri FRR Markalius inversus RFFRFR Microrhabduhis attenuatus R Chiastozygus platyrhethus - R Prediscosphaera buckryi R Stradneria crenulata FR Cretarhabdus angusüforatus R Markalius perforatus R Chiastozygus fessus R Manivitella pemmatoidea R Rhagodiscus angustus Obliquipithonella operculata Reinhardites levis Cydagelosphaera margerelii Prediscosphaera interdsa Obliquipithonella saxea Biscutum constans Eiffellithus parallelus Preservation GGG MMPMM M MMPPPMM MM Note: Preservation: G - good, M - moderate, P - poor, Abundance: V - very abundant, A - abundant, С - common, F - few, R - rare, P - present Maastrichtian and Lower Palaeocene of Northern Saratov Region 25

Table 1. Continued 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 F F R RRR

A CCAA ACA ACA VV A c CVAAA V A CA CCCA CACAAAA c AV A AAA FF F F C FF F FR RR RRRR RR A C AA AA CCC A c CAC C AA FFR FF F CCACF F RCR A C A C C A ACAA AVVVAAVCA V FFF FFF RFC CA A F C A CF CCCCCAVV C A C AA F A FF FRF CCF C AA C AA CAC R R . F R R R C C F FF C F C c F C FFF C CF FA AFF F FFF C FFF С F R FF F R R F R F C F F CC F A A C C A C C F C C C A C AA AA CA A A FF A FF CA C CC C F RRR RR F FF FF C R F FFF C F F RR R F F F F C FF RR FFF R R FF R C C FF RR F F RR FF F RR R F AC R F R R F C F R -F

F R R F R F R R FF R F R F R

F F FF R R F R R F C F R FF F R R R RR RR R R FF F

M PMMPMPP MM PPMMPP PPPM M 26 Alexander S. ALEKSEEV et al.

Table 1. Continued Species 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 Aspidolithus aff.parcus constrictus Arkhangelskielia cymbifomis AA CACAA CAA AAA ACA Cribrosphaerella ehrenbergii A AAA AAAA A A A C C AA A Calcutites obscurus F R F RF Braarudosphaera bigelmvii R RR EiffeUithus turriseiffelii С CCC VCAA C F C CCC A Katnptnerius magnifiais FFR RR FFF F RR Micula decussata СCAAAAV V AAAA A C A C Lithraphidites camiolensis С F FA FFFR FF C Prediscosphaera grandis СC A C AA CAAA CCC C A C Microrhabdulus decoratus с F CFFF FCF FFA Lucianorhabdus cayeuxd RRR R Watznaueria barnesae СFC CFACC F CACF C Vekshindla angusta СCR FF F AhmuellereUa octoradiata FFFR C RF F Micula concava F F F FFF Tranolithus manifestas Zygodiscus spiralis СFCRFFC C R C F CC Arkhangehkiella spedllata ACA C ACA C A Chiastozygus Utterarius AF CCCFC FFF CFV Rhombolithion speetonensis RR Chiastozygus amphipons FF C F CF Cretarhabdus conicus F F -F F F R R F Prediscosphaera cretacea FFFCFFFCFA Zygodiscus diplogrammus FFRFRRRR Prediscosphaera spiiwsa R FRRFRFFRFRF Zygodiscus slaughteri CRC RF C RFF Markalius inversus FRCFF FFF Microrhabdidus attenuatus R Chiastozygus platyrhethus Prediscosphaera buckryi RR Stradneria crenulata R Cretarhabdus angustiforatus Markalius perforatus FRF FF Chiastozygusfessus R R Manivitella pemmatoidea R Rhagodiscus angustus RFRF F F Obliquipthonella operculata F CFCR Reinhardites levis Cyclagelosphaera margerelii Prediscosphaera interdsa Obliquipithonella saxea RR Biscutum constans FF FFFF EiffeUithus parallelus RR RR Preservation MPPPPPPMPP PPMMPP Maastrichtian and Lower Palaeocene of Northern Saratov Region 27

Table 2. Distribution of calcareous nannofossils in the Upper Maastrichtian and Palaeocene of section Klyuchi 1 Species 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 Arkhangebkiella cymbiformis AA AA A VCC AA C A AA ACAA Micula decussata AAV A V A V c VVA VVAAA VC Prediscosphaera cretacea F FF F c F CC FF C Watznaueria bamesae С C F C c AC C C A C AAC C EiffeUithus turriseiffeli С VC AA A A c C AA C ACAA Lithraphidites camwlensis FF FF C F CF F FFFF C FFF Nephrolithus frequens С CCC AAC A CCC A F AA F CA Zygodiscus spiralis F FF C FF F F FF FF FFF Prediscosphaera intercisa R RR RR R Cribrosphaerella ehrenbergii AACACC C A CC C A CC C CA ArkhangeSskiella specilata A AACA F CA Prediscosphaera grandis A C CC A C CCC C c F CCC A C Pr.stoveri R R R RR Cretarhabdus conicus F F F F F F Ahmuerella octoradiata F F RR F Calculites obscurus F FF FRFFF Chiastozygus litter arms C C F F F FF F Ch. amphipons FCC FCF F FF Microrhabdulus decoratus FFFCC C F CCF Lithraphidites praequadratus RR Ludanorhabdus cayeuxii F RRRF Prediscosphaera spinosa F F R FFF R F F F C Eijfeüithus parralelus RRRR Microrhabdulus attenuates R RRRRRRR Kamptnerius magnifiais F F Chiastozygus fessus R Micula concava F F RRFR Glaukolithus dipbgrammus F F F FRF FF Uthraphidites quadratus RR FF R F F F F C FFF F VekschineUa angusta F FRF F Zygodiscus diplogrammus RFF R R F R FF Cretarhabdus crenulatus F Stradneria crenulata R FF RFF Ceratolithus aculeus R Braarudosphaera bigebwii R Corollithwn sigruim R Bhagodiscus angustus RFF Chiastozygus platyrhethus R R Aculeus scotus R Cylindrolithus rneinae R Z. sbugtheri RR R Watznaueria biporta R RR R Broinsonia enormis R Markalius perforatus F R Cribrosphaerella daniae FF R Biscutum constrictum F Zygodiscus acanthus R Bhombolithion speetonensis R ManbiteHa pemmatoidea R Lithraphidites grossopectmatus VekshineUa crux Obliquipithonella operculata 0. saxea Preservation PPP P M P P MM MMMM MMM MM 28 Alexander S. ALEKSEEV et al.

Table 2. Continued 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 AAA AA AA C C CC C CF FF FCC AA ACC AVV V AV AA AA A A c C FCC AACV AA A P. FC F C FFC F FFF R R RF FFF F ACC C CC CCCC FFC FC CCAC C C C С ACC C AC ACCC F F FCC FCC F F F F FFF F FFF FF F FF F F С CC AC CC A FC CC FRFF F F c CCC CF Б FFC FF FFF F R RF F F FFF FFC R R R С AA A C C ACC C FFF FA FAA C AC C C CC F C FCC AC AAC F C C c FFC CCCC F( R R F F F F FF F R RF R R F FF F FFF R F FCF RF F R F F R FI FF FFF CC FRFF FF F RF FF F F F F F 1

R RR R RF RF RFFF R R R 1 R R R RR RR R R R RR FR RFR ]

RR R R F FRRR F RRR ' RFR F FFFFFF F FF RRRFFR FF RF RFF RR F FR R R R

FR RR

RR

F R F RFFFF FFFFF FFFF F R F

R R R R F VC A C CCCCCF CC A R RR GG M M M G GMMMGGM MM MGMGGG GGG Maastrichtian and Lower Palaeocene of Northern Saratov Region 29

Table 3. Distribution of calcareous nannofossils in the Maastrichtian of section Klyuchi 2

Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 AspidoUthus aff. parcus RRFRRRRRR constrictus Micula decussata VAAA C AVAA c V A VA A Y A Cribrosphaerella ekrenbergii A CCAACCCCAC A C AA Arkhangelskiella cymbiformis С AA CCVVAACCAVCC Arkhangelskiella spedllata СAAA V c CFCC Eiffellithus turriseiffelii A CAACCAV V VV VA CVV A Prediscosphaera intercisa FRR FR F Lithraphidites carniolensis F CCF F FRF FFFR Micula concava RR F RR F FRR R R Cretarhabdus conicus R FFFFR Vekshinella angusta RFFF Microrhabduhis decoratus FFCC CC CFFFFCCFFF Mwrorhabdulus attenuatus FFRRFR Chiastozygus platyrhethus RFF Markalius drcumradiatus FR R FRR Prediscosphaera cretacea RFF FF RRF Zygodiscus spiralis FCACACCFACC CACCF Ahnuiellerella octoradiata F C F C A CF AF Chiastozygus litter arius AAA AA AC CC AAA Prediscosphaera grandis C AA AFACC AACAAVAC Zygodiscus slaughter! FCC F Parhabdolithus embergerii R Rhagodiscus splenderts R Prediscosphaera spinosa F F F Zygodiscus acanthus R Kamptnerius magnifiais RRRR Obliquipithonella operculata R Traiwlithus manifestus R Chiastozygus fessus F F Luciarwrhabdus cayeuxii R F Obliquipithonella saxea RR Ceratolithus aculeus RR R Rhagodiscus angustus R Chiastozygus amphipons R Braarudosphaera bigeknvii RR Parhabdolithus asper R Biscutum constans F Nephrolithus firequens C AC Lthraphidites ijuadratus FF F Calculites obscurus F Cretarhabdus crenulatus Rhombolithum speetonensis Stradneria crenulata Vekshinella crux Uthraphidites praequadratus Cribrosphaerella daniae Cylindralithus dupeii Lithraphidites grossopectinatus Chiastozygus anceps Preservation MMMM MMGGMMGM M M M MM Table 3. Continued 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

V V V VVV AVAVAAA AAVV A V С R AAA A AC CVACA C A C A AСAAA A C AAC AC AA VAA F C CA C ACC VC F C V V V VC C CCAAVAACCA F CC RR RR F RR F CF CFF C FFC CF C R RRRF RF F FFF RFRR F F F FR FF F F F A FCFFFFFFFF A R RR R RFR

R R F CF F RFFR F ACAAC CCF F CCC C AA C F F C C ACCCAA AA VFAVAA V A VV AAVVV YУ F F FF F F RF

RRFR F ' F R RF R RR R

CFRRF F F RFRF

R R R

RRR R

A C AACAAA C AAC AAAA AA FFFFC F RF FFFFF C FF F F FFF A R F FR R R F R

MMMMMMMMMM M M MMPMM MM Table 4 Distribution of calcareous nannofossils in the Upper Maastrichtian of section Tj'oplovka 2 CO V) CO CO CO<: > H CO M VO N CO N CO<; > о C\ СЧ 00 ''t N CO VO со N N ^-1 H sс cs о 1—1

1 1 Specics ! > > > Ü О о < <: с с > < < •в t •а < с < < aоü о fa < Ü с с о Ъ ÿ is 5 РІ > С > > > 1 > < > > 1 Pi < < с < 1 1 й fa РІ РІ fa РІ fa aоО о fa fa 1 3 I S о о о < < <: < Ü fa о aо fa о о < < ü < aСеІ Пн fa Пн Ü .0 1 3 3 5 « a « afa fa fa Pi ab fa fa Pi § 1 Pi I ¥ y в s ï fa fa b Ü fa fa о b aÜ fa о h І •a •Ü aо fa О Рн О M ;§ 1 У S 1 9 < о о < Pi < < о о to о to •в І <6, Un ü h Ü о о 1 а I 4 к 0 ы 5

h h h h Ü О ь О О Ü fe to Ü ü to to I •h a N £ « u 3 8 0 ОÜ №О ь Pi Pi 1si Pi О .2 Pi 'Si Ь a to <: > 1 о ü h Ü < h ü ü Ü h <2L i 1 a s o< to <: Ü > Ü to to Ü 0 Pi I I Prediscosphaera cretacea I ü > > < < > < > О о № 1 < < ü о ü < < h < b ai 1 c asrcta n oe aaoeeo otenSrtvRgo 31 Region Saratov Northern of Palaeocene Lower and Maastrichtian aо№fa № о fa fa Ü fa о fa b № < fa P fa *C 1 ■8 Ü № t* b fa ■4 ■i i Ü 4 w в 0 9* h < to to s 'ît •a < C < < :a < fti c < < <: < < h < < < b. 1 ÎJ Ъ. 1 2? oi I I Manivitetlapemmatoidea I a b tu b •Ci 4 E ü о CEj О ü b aü fa b №№ U f 1 û 1 Q § S и k h ihfa h Pi •S 1 РІ h 1 1 1 b P 4 5 fa Ü h tk О 1 i -c < fa 1 5 Q h Pi fa fa fa 1 Pi Pi ! s X 9 < Ü < > 5 1 fa О ü tu 6 &< h О ï 1 £

< < ü C < 6 •S- < ü b Рч О ! ü ü в g ? < < < fa > > 1 i ü > dfa e ■55 d в a tü § о 1 *1 h г C § S Ci to to 1 § 3 e 1 (b, i ! E у «« 5 1 pi -a fa pi § Pi ! 5

\ Microrhabdulus attenuates 1 Pi a 3 1 fa -§ a0 fa a г u 3 с § Ù •& 1 •3 a

Table 5 Quantitative data for terminal Maastrichtian in section Klyuchi 1

Distance from Number of CaC03 Total Abundance of Abundance of Planktonic Heterocheli- Globigerinel- Globotrunca­ Other the top of sample content, counted planktonic benthic Foraminifera, cidae, % loides,% na planktonic Maastrichtian % specimens Foraminifera Foraminifera^ % (specimens Foraminifera, (m) (specimens (specimens per 50 g) % per 1 g) p e rlg )

-0.05 KL1-18 548 5684 621 90.1 75.7 21.3 24 2.2 -0.15 KL1-19 - 501 4989 990 83.4 76.6 14.6 30 8.4 -0.25 KL1-20 55 377 3793 376 91.0 72.0 25.1 36 2.6 -0.45 KL1-21 _ 647 5509 1116 83.2 78.8 19.0 44 2.0 -0.95 KL1-22 58 972 6117 1116 84.6 81.3 17.3 136 1.4 -1.45 KL1-23 57 514 9275 1735 84.2 89.1 6.5 52 3.7 -1.95 KL1-24 57 621 5679 745 88.4 68.8 26.0 - 4.7 -2.45 KL1-25 - 427 8290 763 91.6 81.6 15.1 5 3.3 -2.95 KL1-26 59 449 2098 374 84.9 73.2 25.7 4 1.1 -3.45 KL1-27 - 516 5938 353 87.4 81.6 16.6 4 1.8 -3.95 KL1-28 58 564 21217 1884 91.8 81.7 15.8 1 2.5 -4.45 KL1-29 58 621 2760 420 86.8 75.3 22.5 4 2.0 -4.95 KL1-30 55 721 6482 1130 85.2 76.1 9.8 13 14.2 -5.45 KL1-31 65 1044 2232 440 83.5 82.3 12.8 - 4.8 -5.95 KL1-32 63 750 3348 491 87.2 89.3 8.3 - 2.4

Unit Klyuchi В from the glauconite-rich basal bed However, the relatively abundant Obliquipithonella op­ (sample KL2-15) contains a nannofossil assemblage with erculata (Bramlette & Martini) and O. saxea (Stradner) Lithraphidites quadratus Bramlette & Martini and Ne- are characteristic features of the assemblage from unit phrolithus frequens Gôrka and therefore belongs to zone Klyuchi С and they are the only signature of Palaeocene CC26. Cribrosphaerella daniae Perch-Nielsen, a charac­ age for this unit. teristic taxon for the upper part of CC26 in high latitudes of the Southern Hemisphere (P o s p ic h a l & W is e , 1990), MACROFOSSILS has its first appearance in sample KL1-34. The abundance A single rostrum of Belemnella lanceolata gracilis Ar­ of Nephrolithus frequens and the absence of warm-water khangelsky (Plate 4, Figure 1) was found in situ, 1.8 m Micula mura (Martini) Bukry and M. prinsii Perch-Niel- above base of unit Lokh A, together with moulds of small sen are in agreement with the high latitude setting of the bivalves. The subspecies is characteristic for the lower Saratov sections. Lower Maastrichtian in the southern part of the Russian The nannofossil assemblage of unit Klyuchi Bb con­ Platform (N a id in , 1974). It was first described by A r­ tains Aspidolithus sp. aff. A. parcus constrictus and this k h a n g e l sk y (1912) from the Lower Maastrichtian of interval, as well as the lower unit Klyuchi A, might Saratov. The basal sandy bed of unit Lokh В contains belong to CC23a. However this taxon could be reworked rare moulds of Hoploscaphites sp. aff. H. constrictus (J. and the biozonation of this interval based on nannoplank­ Sowerby). This species is characteristic for the Maas­ ton remains unclear. trichtian in Europe. Eroded rostra of the Belemnella Unit Klyuchi В in section Klyuchi 2 belongs to Zone sumensis Group are also common in basal bed of unit CC26 because of the presence of N. frequens. Cribro­ Lokh В and occur together with moulds of small uni­ sphaerella daniae Perch-Nielsen has been found in one dentifiable bivalves. Belemnite rostra which were col­ level, 7.8 m above the base of unit Klyuchi В (sample lected on clays of unit Klyuchi Bb in section Klyuchi 2 KL2-31). could have been washed out from these clays or from the Nephrolithus frequens (first appearance in sample basal bed of unit Klyuchi В (the latter is more probable). TP2-16) and Cribrosphaerella daniae (first appearance They were identified as Belemnella sumensis praear- in sample TP2-18) are consistently represented through­ khangelskii Naidin. Their rostrum surface is smooth and out unit Tyoplovka A in section Tyoplovka 2 indicating the length of the first visible guard is 27-28 mm (Plate 4, the upper part of zone CC26. Figures 2 and 3). The juvenile rostra from unit Klyuchi В The Lower Palaeocene siliceous rocks in section Klyu­ are more cylindrical in outline, have no recognizable first chi 1, named Unit Klyuchi C, only contain reworked visible guard and their anterior part is ornamented with Cretaceous taxa indicative for CC26. Such Cretaceous weak vascular markings. These rostra belong to Neobe- species as Ludanorhabdus cayeuxii Deflandre, Cretar­ habdus conicus Bramlette & Martini, Calculites obscurus (Deflandre) Prins & Sissingh in Sissingh, Kamptnerius magnificus Deflandre, Stradneria crenulata (Bramlette & Martini) Noël, Zygodiscus diplogrammus Deflandre in Fig 6. — Correlation of Maastrichtian lithological units based Deflandre & Fert occur only in the lowermost part of on foraminiferal and calcareous nannoplankton evi­ Palaeocene Syzran Formation (up to sample KL1-11). dence. Maastrichtian and Lower Palaeocene of Northern Saratov Region 33

CAMPANIAN MAASTRICHTIAN Stage Upper L ow er U p p er Substage

B.langei najdini B.licharewi B.lanceolata B .su m en sis N.kazimiroviensis B elem n ite t t й О Bolivinoides paleocenicus- > U-L О -< № — w £ Neoflabellina reticulata N> n CL 9 S- W ft E* N S*ft * g - Ч S . 3 s. s s ft » S ft W g 03 2- 2- OQ voK ^o 2-es 4 ? s- Л w 0 s . Ê2. se -O S « Ï § = ? 3 5* ST 5* § I % §• = «• § ■e e. « M 1 I S T 1 3 E » 1 2 . -n es ft 5 ° <=> n B* £. § 1 - s g с. &Э 3 СЭ ЕГ СЛ ~ 2 л a Э 5 ft —- *=3 3. os -- 9S Ü as ^ ^ w O S- E ft S ' S" І ? w E S

o ■n tr ce r o k O Э o ?r ’ 7Г 7Г 3 “ n ft■n t*

ftC/3

'cr c r

ч ‘ ©

7Г fi»

г * О 2 - ( ? r 3 1 SP SP э - > n w

сл ft О ч ft to c Г! с ft ft рэft U I 3 ES 3

fis 3 ?г *г Êû

2ü ft G | e ft Н n » и\ 2^ с n Q te 3 < л SB 9-X1 » с. о ' 3 ft ^ 3- -i те 3 40 т О ІГ OO 2 g &■ п 2. 3mm, Вт ОЭ П ^ Qi П ^ ЕГ ftl сл ft* П Ss" Пк> ю ft ы 04 3 SU fid Upper Campanian Lower Maastrichtian Upper Maastrichtian Substages 34 Alexander S. ALEKSEEV et al.

! <ù Number of planktonic Number of benthic Globotruncana ьо РУВ ratio Heterohelicidae Globigerinelhides < Foraminifera per lg Foraminifera per lg specimens per 50g w § о о о w ! < m t

I g GOg

• -oJ■fe £

I I —i------1----- r 40 80% 5000 15000 500 1000 1500 60 70 80% 10 20% 50 100

Fig 7. — Evolution of the main lithological parameters and changes in composition of the foraminiferal assemblages in the terminal Maastrichtian of section Klyuchi 1.

lemnella kazimiroviensis (Skolozdrowna). According to gracilis Arkhangelsky, the characteristic subspecies for K o pa ev ic h et al. (1987) Belemnella sumensis praear- the younger Belemnella lanceolata Zone, co-occurs with khangelskii Naidin occurs in beds transitional from Low­ foraminiferal taxa of the B. licharevi Zone. er to Upper Maastrichtian and Neobelemnella kazimiro­ Units Lokh В and Lokh С belong respectively to the viensis (Skolozdrowna) is distributed in Eastern Europe uppermost Lower Maastrichtian and lower Upper Maas­ throughout the entire Upper Maastrichtian. Both taxa trichtian according to benthic foraminiferans, but have to were described and figured by N a id in (1975) from the be included in the lowermost Upper Maastrichtian on the Saratov Region. base of calcareous narmoplankton. Unit Klyuchi Bb in Thus, the belemnites support the age identifications section Klyuchi 2 may consist of condensed residual based on benthic Foraminifera and calcareous nannofos­ sediments of the same age. sils. Unit Klyuchi В is upper Upper Maastrichtian accord­ ing to both fossil groups and belongs to CC26. The closely situated sections Klyuchi 1 and Klyuchi 2 can Correlations be correlated on the basis of first appearance of Bolivina crassa Vasilenko. Thus, the level of sample KL1-37 is the The foraminiferal and calcareous nannofossil data cer­ same as that of sample KL2-22. In this case the total tainly confirm an earliest Early Maastrichtian age for thickness of unit Klyuchi В is about 12 m, and on top of units Lokh A and Klyuchi A (Figure 6). The upper Lower section Klyuchi 2 only the uppermost 2 m of the Maas­ Maastrichtian is not represented in the studied sections trichtian are not exposed. because of non-deposition or subsequent erosion. How­ According to the nannofossils unit Tyoplovka A from ever, the correlation of Zone BFlOa with the Belemnella the Tyoplovka area also belongs to the Upper Maastrich­ licharevi Zone is not proven as Belemnella lanceolata tian. It seems to be coeval to the upper part of unit Maastrichtian and Lower Palaeocene of Northern Saratov Region 35

Klyuchi B. The Maastrichtian succession in the North glauconite. Silification at this boundary interval is Saratov Region is very complete towards the top as more intensive than it is in the upper part of this unit. evidenced by the presence of Cribrosphaerella daniae Zones P0, Pla and Plb are probably missing in this Perch-Nielsen in the upper part of unit Klyuchi B. section. However, the sequence of events can be de­ The age of unit Klyuchi С (lower part of the Syzranian scribed for the uppermost Maastrichtian in this section Formation) in this locality, is uncertain, based on our (Figure 7). data. The benthic Foraminifera are mainly represented The planktonic Foraminifera dominate in the assem­ by Maastrichtian taxa and only very few, for example, blage and their number is constant. P/В ratios change in Cibicides succedens Brotzen, are characteristic for the narrow limits 83-91% and do not show a decrease to­ Palaeocene. Nannofossils are exclusively represented by wards the top of the Maastrichtian marls. The number of reworked Upper Cretaceous taxa. Fortunately D ig a s planktonic Foraminifera appears to increase upwards in (1976) and KURLAEV et al. (1981) reported an abundant the section up to sample KL1-23 (9275 specimens/g) and foraminiferal assemblage with about 50% of planktonic then decreases to 3700-5600 specimens/g in the interval forms at the base of the Syzranian in this area, but 1.5 m below the top of Maastrichtian. The abundance probably from another valley. This assemblage contains of benthic Foraminifera shows a very similar trend, show­ according to their identifications Globoconusa daubjer­ ing a maximum at the same level. The heterohelicids gensis (Brônnimann), Subbotina pseudobulloides (Plum­ are the most abundant group among planktonic Forami­ mer), S. tiiloculinoides Plummer and S. varianta (Sub- nifera (68-89%), but they decrease in the last 1.5 m from botina), taxa which are typical for the Danfan Zone 89 to 75%. The relative abundance of Globigerinelloides Pic. increases from 10 % at 6 m below the boundary to about Unit Klyuchi С may be time equivalent of the Belo­ 26 % in sample KL1-24, 2 m below the boundary. After grodnya Formation - glauconitic clays and siltstones a sharp minimum in sample KL1-23 (6.5%) it shows which outcrop about 40 km to the NE of Klyuchi on again an obvious tendency to increase. Globotruncanids the right bank of the Volga River (M u s a t o v & E r m o k h i- (Fig. 7), the most explicit deep-water component, are na, 1998). absent in the lowermost part of the section (6-5 m), occur rarely (1-5 specimens per 50 g) in interval 6 - 2 m, but show a sharp increase from sample KL1-23 (52 speci­ Cretaceous/Tertiary boundary mens/50 g) upwards at 1.5 m below the К/T 'boundary with a maximum in sample KL1-22 (136 specimens/ At section Klyuchi 1 it is possible to study the Cretac­ 50g). In the terminal 1.5 m of the Maastrichtian the eous/Tertiary boundary in the North Saratov Region. The content of globotruncanids is more or less constant (44- general opinion is that in this region the boundary be­ 24 specimens/50 g). tween the Maastrichtian and the Palaeocene is discontin­ These data together with the analysis of the taxonomi- uous (Arkhangelsk^ & D o b r o v , 1913; K a m y s h e v a - cal composition of the planktonic Foraminifera allow to Elpatievskaya, 1951; D e r v iz , 1959). reconstruct the succession of biotic and environmental Three kinds of КУТ transitions exist: events at the end of the Maastrichtian. (1) As a rale the top of the Maastrichtian is irregular 1. 6-5 m. The relatively abundant large Archaeoglo- with shallow depressions and with numerous burrows bigerina and heterohelicids are dominant components of penetrating the underlying marls or chalk to different the planktonic assemblage, reflecting outer shelf environ­ depths. These burrows are filled with siliceous material ments. The input of clastics was minor. The sediments are of Palaeocene Lower Syzranian “ opokas” . At the base of mostly carbonate-rich (63-65% CaC03). the “opoka” a thin (up to 0.5 m) conglomerate occurs 2. 5-1.5 m. The appearance of rare Globotinncana with clasts of Cretaceous marls or chalks, sometimes with and the increase in abundance of Globigerinelloides evi­ phosphoritic pebbles and abundant bryozoan fragments. dence the increase of water depth. This change coincides (2) In other sites, the К/T boundary is marked by a thin with a decrease in carbonate content from 65% in sample (1-5 cm) interbed of green clay with small chalk pebbles KL1-31 to 55% in sample KL1-30. The latter can reflect a overlying the Maastrichtian. more humid climate. The carbonate content in the re­ (3) up to 2-3 m deep depressions occur at the top of maining part of the Maastrichtian is 57-59%. Maastrichtian carbonate rocks in other localities. These 3. 1.5-0 m. The “ bloom” of Globoti-гіпсапа, Globo- depressions are filled with green-brown clay material tiimcanita, Planoglobidina, Pseudotextularia defonnis containing few mainly agglutinated Foraminifera and (Kikoine) and even the appearance of Racemiguembelina Palaeocene “ opokas” which often are intensively dis­ powelli Smith & Pessagno are signs of the terminal rupted and are generally considered as ancient karst Cretaceous transgression, marked by substantial deepen­ signatures. ing and input of warmer waters in this part of the Russian As in other sites of the Volga River area, in Klyuchi 1 marine basin. the КУТ boundary coincides with a important hiatus In the Danish Trough the increase of abundance of and belongs to type (1). The basal bed of unit Klyuchi Pseudotextularia elegans-Racemiguembelina fructicosa C, 15-20 cm thick, is heavily silicified and contains complex coincides with the interval 3-6 m below the small (1-2 cm) clasts of Maastrichtian marls and abundant К/T boundary in section Stevns Klint and 1-4 m in section 36 Alexander S. ALEKSEEV et al.

Kjtflby Gaard (H u l t b e r g & M a l m g r e n , 1987). These nannoplankton together with a few macrofossil records two events registered in both N and E European sites shows that during the Maastrichtian the North Saratov could have been contemporary. The presence of this Region was confined to the outer shelf. Correlation transgressive event supports the idea that in this section between local units described in sections situated 20-25 the youngest Maastrichtian sediments have been pre­ km apart is quite good. The long gap between lower served. Lower Maastrichtian and Upper Maastrichtian is typical for most of this area. On the top of the Tyoplovka Uplift the upper Upper Maastrichtian marls (upper part Hiatuses, transgressions and climatic warming of CC26) overlie the Upper Albian clays with a weak angular unconformity. This intra-Maastrichtian event The Maastrichtian of Saratov Region contains several related to tectonic movements during this time interval hiatuses. The first is at the base of the Lower Maastrich­ gives a good age estimation of the terminal Cretaceous tian that unconformably overlies older deposits. The sec­ deformations in the eastern part of the Russian Plat­ ond encompasses upper Lower Maastrichtian (zones form. CC23b and CC24) and it has the longest duration. The The Maastrichtian foraminiferal assemblages of the third gap coincides with an interval in the lower Upper Saratov Region are typical for the northern part of the Maastrichtian. In the nannofossil zonation the last hiatus Russian Basin and are very close to the contempora­ covers Zone CC25c and lowermost CC26, but at the top neous assemblages of Poland (Gawor-Biedowa, 1992) of the Tyoplovka uplift its duration was even longer and even to those from north of the Turgay Strait, because the sedimentation there occurred only during east of the Urals. The Turgay assemblages were de­ the younger half of CC26. scribed by Amon (1990) from the shallow-water Zhur- These hiatuses separate three sequences which reflect avlevka Formation in Kustanay Region (Kazakhstan) three transgressive pulses: lower Lower Maastrichtian, situated at the same latitude (52-53° N) as Saratov. The lower and upper Upper Maastrichtian. These transgres­ nannofossil assemblages of the uppermost Maastrich­ sions are mainly eustatic in origin. The existence of at tian contain abundant Nephrolithus frequens Gôrka in least two Maastrichtian transgressions was documented the Saratov Region. However, this species occurs only in W . Europe by H a n c o c k (1989). Two transgressive in a very limited interval of the Maastrichtian strato- pulses (early and late Maastrichtian) separated by a type area (51° N) and it is absent in the uppermost short-term regressive event were mentioned for the E. part of this stage (Romein et a l, 1996; Mai, 1999). European Platform by N a id in (1995). However, the long Probably, the seawater of the Saratov part of the Rus­ gap between lower Lower Maastrichtian and lower Upper sian Basin was colder than that in the Maastricht area Maastrichtian as well as the cutting of the Upper Albian as supported by foraminiferal and macrofossil data. at the top of the Tyoplovka Uplift by the uppermost We did not yet obtain arguments demonstrating that Upper Maastrichtian appear to be related to tectonic Nephrolithus frequens Gôrka appeared earlier in the activation of the Saratov dislocations in the mid-Maas- Saratov Region than in lower and intermediate lati­ trichtian. tudes. The terminal Maastrichtian short transgressive warm­ ing episode that was registered in section Klyuchi 1 The invasion of relatively warm waters and the deepen­ appears to be not only local, but even possibly global. ing of the basin during the latest Maastrichtian in the The sharp increase in the abundance of Pseudotextularia Saratov Region, as evidenced by the appearance of glo- in uppermost Maastrichtian sediments was recognised not botruncanids, Racemiguembelina and Pseudotextularia only in N . Europe [where it is well known as “ elegans in Klyuchi 1 section, confirm the widespread terminal transgression” (WlCHER, 1953)], but also in the N. Atlan­ Maastrichtian “ elegans-transgression” that was an even tic (Nederbragt, 1989), even though she attributed this more obvious event in eastern Europe than in western phenomenon to differential dissolution. Recently, in the Europe. mid-latitude S. Atlantic the warm episode was shown on isotope data to have occurred during the interval 65.45 - 65.11 Ma, i.e. 100 k.y. before the end of the Cretaceous (Li & K e l l e r , 1998). The recognition of a short-term warming in the upper­ Acknowledgements most Maastrichtian of the North Saratov Region could confirm the global extent of this climatic event, which be We greatly appreciated the technical assistance of Maxim S. Boiko and registered easily only in relatively high latitudes. the help of Vitaly G. Ochev and Dmitry A. Kukhtinov from Saratov University during field work, of Raisa A. Voinova in processing of samples, of Alexey N. Reimers in SEM photography. We are very grateful to Etienne Steurbaut and Hedi Oberhânsli for having reviewed Conclusions the manuscript and for having offered many useful comments and suggestions. We especially thank Annie Dhondt for editorial assis­ tance. This study was supported by INTAS grant 94-1414 and “Uni- The integrated study of Foraminifera and calcareous versitety Rossii” . Maastrichtian and Lower Palaeocene of Northern Saratov Region 37

References

Alekseev, A. S., Gorbachik, T. N., Smirnova, S. B. & B rag­ G u t sa k i, V. A., M o rozov , N . S., S h u m en k o , S. I., 1975. The in, N. Yu., 1996. Age of the Paramonovo Formation (the Albian experiment of multidisciplinary studies of Maastrichtian in of the Russian Platform) and global transgressive-regressive upper stream of Sukhaya Kazanla River (Saratov Pravoberez­ cycles of the Cretaceous. Stratigraphy and Geological Соітеіа- hie). Voprosy stratigrafii ipaleontologii, 1: 80-96. [in Russian], tion, 4: 341-361. H u b er, В. T., 1990. Maestrichtian planktonic foraminifer bios­ Alekseev, A. S., & Kopaevich, L. F., 1997. Foraminiferal tratigraphy of the Maud Rise (Weddell Sea, Antarctica): ODP biostratigraphy of the uppermost Campanian-Maastrichtian in Leg 113 holes 689B and 690C. Proceedings o f the Ocean SW Crimea (Bakhchisaray and Chakhmakhly sections). Bulle­ Drilling Program. Scientific Results, 113: 489-509. tin Institut Royal des Sciences Naturelles de Belgique. Sciences H u ltb e r g , S. U. & M a lm g r e n , B. A., 1986. Dinoflagellate and de la Tene, 67: 103-118. planktonic foraminiferal paleobathymetrical indices in the Bor­ Amon, E. 0., 1990. Foraminifera and radiolarians. In G. N. eal uppermost Cretaceous. Micropaleontology, 32: 316-323. Papulov, V. I. Z h e le z k o & A. P. L evina (eds.). Verkhneme- H u ltb er g , S. U. & M a lm g r en , B. A., 1987. Quantitative Iovye otlozheniya Yuzhnogo Zauraliya (raion verkhnego Pro- biostratigraphy based on late Maastrichtian dinoflagellates toboliya). Sverdlovsk, pp. 9-26. [In Russian]. and planktonic Foraminifera from Southern Scandinavia. Cre­ Arkhangelsky, A. D., 1912. Upper Cretaceous of eastern taceous Research, 8: 211-228. European Russia. Materialy dlya geologii Rossii, 25: 1-631. K a m y sh ev a -E lpatievskaya , V. G., 1951. On the boundary of [in Russian], Upper Cretaceous and Paleogene in Lower Povolzhie. Sara- Arkhangelsky, A. D. & Dobrov, S.A., 1913. Geological tovskii Gosudarstvennyi Universitet. Uchenye zapiski. Vypusk sketch of Saratov Govemement. Materialy po izucheniyu es- geologicheskii, 28: 36-44. [in Russian]. testvennykh uslovii Saratovskoi Gubemii, 1: 1-256. [in Rus­ K a m y sh e v a -E lpatievskaya , V. G. (ed.), 1967. Atlas of Me­ sian], sozoic fauna and spore and pollen assemblages of Lower Po­ Baryshnikova, V.I., 1966. Distribution and microfaunal char­ volzhie and adjacent areas. Saratov University Press, 1-257. [in acteristics of the Belemnitella americana Zone in Saratov Po- Russian], volzhie. Voprosy Geologii Yuzhnogo Urala i Povolzhiya, 3, 2: K o pa ev ich , L. F., B eniamovskii, V. N . & N a id in , D. P., 1987. 274-285. [in Russian]. Lower and Upper Maastrichtian boundary in the European Beniamovskii, V. N. & Kopaevich, L. F., 1998. Benthic for­ palaeobiogeographic province. Byulleten Moskovskogo Ob- aminiferal zonation in the Late Santonian-Maastrichtian of the shestva Ispytatelei Prirody. Otdel Geologicheskii, 62, 5: 43- European paleobiogeographical area (EPA). Zentralblatt fur 56. [in Russian]. Geologie und Palaontologie. Teil I, 1996, 11-12: 1149-1161. K rashenninikov, V. A. & B a so v , I. A., 1985. Cretaceous

B o n d a r en k o , N . A ., 1975. On the oscillating movements of the stratigraphy of Southern Ocean. Tmdy Geologicheskogo Insti­ Earth crust in northern part of Saratov Pravoberezhie during tuta Akademii nauk SSSR, 394: 1-174. [in Russian]. Late Cretaceous. Voprosy stratigrafii i paleontologii, 1: 97-106. K u rla ev , V. I., B o n d a ren k o , N . A . & A k h l estin a , E. F., [in Russian]. 1981. On the Danian of Saratov Pravoberezhie. Voprosy Geo­ Derviz, T. L., 1959. Volga-Ural oil-bearing region. Jurassic logii Yuzhnogo Urala i Povolzhiya, 22: 94-102. [in Russian]. and Cretaceous. Trudy Vsesoyuznogo neftyanogo nauchno-is- Li, L. & K e l l e r , G., 1998. Abrupt deep-sea warming at the end sledovatelskogo geologorazvedochnogo instituta, 145: 1-367. of the Cretaceous. Geology, 26: 995-998. [in Russian]. L o ng o ria , J. F. & G a m per , M. A., 1984. Subfamily Helvetiel- Digas, L. A ., 1976. New data on the Danian o f Srednee Po- linae, a new group of Late Cretaceous (Maastrichtian) plank­ volzhie territory. Voprosy Geologii Yuzhnogo Urala i Povolz­ tonic foraminifera. Micropaleontology, 30: 171 - 179. hiya, 10: 5 6 -6 3 . [in Russian]. Mai, H., 1999. Paleocene coccoliths and coccospheres in de­ Ehrenberg, C. G., 1854. Mikrogeologie. Das Erde und Felsen posits of the Maastrichtian stage at the “ type locality” and type schaffende wirken des unsichtbar kleinen selbstandigen Leben area in SE Limburg, The Netherlands. Marine Micropaleontol­ auf der Erde. Vol. 1: 1-374; Vol. 2: 1-88 + atlas, Leipzig. ogy, 36: 1 - 12. Flerova, О. V. & G u ro v a, A. D., 1958. Upper Cretaceous of M a lm g r e n , B. A., 1982. Biostratigraphy of planktonic Fora­ central region of Russian Platform. О. V. F le r o v a (ed.). Me- minifera from the Maastrichtian white chalk of Sweden. Geo- zozoiskie i tretichnye otlozheniya centralnykh oblastey Russkoi logiske Fôreningens i Stockholm Forhandlingar, 103: 357-375. Platformy. Gostoptekhizdat, Moscow, pp. 185-226. [in Rus­ M u sa to v , V. A., 1995. On the Danian Stage of the North Peri- sian]. Caspian and results of a study of calcareous nannoplankton. In: G artner, S., 1996. Calcareous nannofossils at the Cretaceous- E. M . B u gro v a (Ed.), Predely tochonosti biostratigraphiches- Tertiary boundary. In: N. M a c le o d & G. K e lle r (eds.). kikh korrelyatsii. Trudy 36 sessii Vsesoyuznogo Paleontologi- Cretaceous-Tertiary mass extinctions: Biotic and environmen­ cheskogo Obshchestva (yanvar 1990, Syktyvkar). Moscow, tal changes. W. W. Norton & Company, New York-London, pp. 61-66. [in Russian], pp. 27-47. M u sa to v, V. A. & E rm o k h in a , L. I., 1998. Stratotype of the Gawor-Biedowa, E., 1992. Campanian and Maastrichtian For­ Belogrodnya Beds. Nedra Povolzhiya i Prikaspiya, 15: 35 -42 aminifera from the Lublin Upland, Eastern Poland. Palaeonto- [in Russian], logiapolonica, 52: 188 pp. N a id in , D. P., 1960. The stratigraphy of the Upper Cretaceous Gerasimov, P. А., М., E. E., N aidin, D. P. & S te r lin , B. P., of the Russian Platform. Stockholm Contributions in Geology, 1962. Jurassic and Cretaceous of Russian Platform. Ocherki 6: 39-51. regionalnoi geologii SSSR, 5: 1-195. [in Russian]. N a id in , D. P., 1969. Biostratigraphie und Palâobiogeographie 38 Alexander S. ALEKSEEV et al. der Oberen Kreide der Russischen Tafel. Geologisches Jahr- campan-Untermaastricht von Lâgerdorf und Kronsmoor (SW- buch, 87: 157-186. Holstein). Newsletters on Stratigi-aphy, 7: 73-89. N aidin, D. P., 1973. On the relationship of palaeobiogeographic T h ier stein , H ., A saro , W. U., H uber, B., M ichel , H. & and palaeobiogeographic subdivisions of lowest rank. Byidleten S c h m it z, B., 1991. The Cretaceous/Tertiary boundary at Site Moskovskogo Obshestva Ispytatelei Prirody. Otdel Geologi- 738, southern Kerguelen Plateau. Proceedings o f the Ocean cheskii, 48, 6: 50-63 [in Russian]. Drilling Program. Scientific Results, 119: 849-861. N a id in , D. P., 1974. Class Cephalopoda, Superordo Belemni- W ich er, C. A., 1953. Mikropalâontologische Beobachtungen in tida. In: K ry m g o lz, G. Ya. (ed.) Atlas of the Upper Cretaceous der hoheren borealen Ober-Kreide, besonders im Maastricht. Donbass fauna. Moscow, “ Nedra” , pp. 197 - 240 [in Russian]. Geologisches Jahrbuch, 68: 1-26. N a idin , D. P., 1975. Late Maastrichtian belemnitellas of Eur­ W id m a r ç R. P., 1997. Benthic foraminiferal ecomarker species asia. In: S h im a n sk y , V. N. (éd.). Razvitie i smena organiches- of the terminal Cretaceous (late Maastrichtian) deep-sea kogo mira na rubezhe mezozoya i kainozoya. Novoe о faune. Tethys. Marine Micropaleontology, 31: 135-155. Publishing House “ Nauka” , Moscow, pp. 91-108 [in Russian]. N a id in , D. P., 1995. Eustacy and epicontinental seas of the East Alexander S. A lekseev European Platform. 2. Upper Cretaceous sequences. Byulleten Department of Palaeontology, Geological Faculty, Moskovskogo Obshestva Ispytatelei Prirody. Otdel Geologi- Moscow State University, Vorobiovy Gory, cheskii, 70, 5: 49-65 [in Russian]. 119899 Moscow GSP, Russia N ed erbra g t, A. J., 1989. Maastrichtian Heterohelicidae and (planktonic Foraminifera) from the North West Atlantic. Jour­ Palaeontological Institute, Russian Academy of nal of Micropaleontology, 8: 183-206. Sciences, Profsoyuznaya 123, 117647 Moscow, Russia N ik ish in , A. М., Z ie g l e r , P. A., Ste ph en so n , R . A. & U stin o ­ [[email protected]] v a, М. A., 1999. Santonian to Palaeocene Tectonics of the East- European Craton and adjacent areas. Bulletin Institut Royal des Lyudmila F. K opaevich Sciences Naturelles de Belgique. Sciences de la Teire, 69- Department of Historical and Regional Geology, supplement A: 147-159. Geological Faculty, P erch-N ielsen , K., 1985. Mesozoic calcareous nannofossils. Moscow State University, Vorobiovy Gory, H.M. B o lli, J.B . Sa unders & K. P er c h -N ielsen (ed.). Plank­ 119899 Moscow GSP, Russia ton Stratigraphy. Cambridge University Press, pp. 329-426. [[email protected]] P o spich al, J. J. & W ise Jr., S. W., 1990. Calcareous nanno­ fossils across the К /T boundary, O D P Hole 690C, Maud Rise, Mariya N. O vechkina Weddell Sea. Proceedings of the Ocean Drilling Program. Department of Palaeontology, Geological Faculty, Scientific Results, 113: 515-532. Moscow State University, Vorobiovy Gory, R o m ein , A. J. T., W ill em s, H. & M a i, H., 1996. Calcareous 119899 Moscow GSP, Russia. nannoplankton of the Geulhemmerberg К/T boundary section, Maastrichtian type area, the Netherlands. Geologie en Mijn­ Alexander G. O lferiev bouw, 75: 231-238. Geosintez, Varshavskoe Shosse 39a, S chmitz, B. & K e l l e r , O., 1992. Stable isotopic and forami­ 113105 Moscow, Russia. niferal changes across the Cretaceous-Tertiary boundary at Stevns Klint, Denmark; Arguments for long-term oceanic in­ stability before and after bolide-impact event. Palaeogeogra- phy, Palaeoclimatology, Palaeoecology, 96: 233-260. Typescript submitted: 5.1.1999 Sc hulz, M.-G., 1978. Zur Litho-und Biostratigraphie des Ober- Revised typescript received: 15.3.1999. Maastrichtian and Lower Palaeocene of Northern Saratov Region 39

Explanations of Plates

P late 1

Benthic Foraminifera from the north Saratov Region

Figure 1 — Arenobulimina vialovi Woloshyna; section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-7, PIN 4776/1 (X 75). Figure 2 — Spiroplectammina kelleri Dain; section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-6, PIN 4776/2 (X 55). Figure 3 — Heterostomella foveolata (Marsson); section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-19, PIN 4776/3 (X 100). Figure 4 — Bolivina decuirens (Ehrenberg); section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-19, PIN 4776/4, (X 100). Figure 5 — Bolivina plaita Carsey; section Lokh 1, unit Lokh B, Lower Maastrichtian, PIN 4776/5, sample LH1-34 (X 75). Figure 6 — Bolivina crassa Vasilenko in Vasilenko & Myatliuk; section Klyuchi 1, unit Klyuchi C, Palaeocene, sample KL1- 16a, PIN 4776/6 (X 55). Figure 7 — Dentalina basiplanata Cushman; section Klyuchi 1, unit Klyuchi C, Palaeocene, sample KL1-2, PIN 4776/7 (X 30). Figure 8 — Neoflabellina reticulata (Reuss); section Lokh 1, unit Lokh B, Lower Maastrichtian, sample LH1-34, PIN 4776/8 (X 100). Figure 9 — Nonionella communis (d’Orbigny); section Klyuchi 1, unit Klyuchi C, Palaeocene, sample KL1-10, PIN 4776/9 (X 120). Figure 10 — Pullenia jai-visi Cushman; section Klyuchi 1, unit Klyuchi C, Palaeocene, sample KL1-6, PIN 4776/10 (X 100). Figure 11 — Stilostomella sp. ; section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-7, PIN 4776/11 (X 100). Figure 12 — Pseudouvigerina nigosa (Brotzen); section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-7, PIN 4776/12 (X 150). Figure 13 — Bolivinoides draco draco (Marsson); section Klyuchi 1, unit Klyuchi B, Upper Maastrichtian, sample KL1-20, PIN 4776/13 (X 130). Figure 14 — Bolivinoides draco miliaris Hiltermann & Koch; section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-19, PIN 4776/14 (X 120). Figure 15 — Gyromorphina allomorphinoides (Reuss); section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-6, PIN 4776/15 (X 75). Figure 16 — Globulina lacrima (Reuss); section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-7, PIN 4776/16 (X 100). Figure 17 — Guttulina communis d’Orbigny; section Klyuchi 1, unit Klyuchi C, Palaeocene, sample KL1-6, PIN 4776/17 (X 100). Figure 18 — Cribrebella fusiformis (Gawor-Biedowa); section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-6, PIN 4776/18 (X 100). Figure 19 — Gyroidinoides globosns (von Hagenow); section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-7, PIN 4776/19 (X 130). Figure 20 — Cibicides succedens Brotzen; section Klyuchi 1, unit Klyuchi C, Palaeocene, sample KL1-6, PIN 4776/20 (X 120). Figure 21 — Cibicidoides aktulagayensisYasilenko; section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-7, PIN 4776/ 21 (X 100). Figure 22 — Cibicidoides commatus Vasilenko; section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-19, PIN 4776/22 (X 120). Figure 23 — Stensioeina pommerana Brotzen; section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-7, PIN 4776/23 (X 130). Figure 24 — Brotzenella taylorensis (Carsey); section Klyuchi 1, unit Klyuchi B, Upper Maastrichtian, sample KL1-20, PIN 4776/ 24 (X 100). Figure 25 — Hanzawaia ekblomi (Brotzen); section Klyuchi 1, unit Klyuchi В, Upper Maastrichtian, sample KL1-20, PIN 4776/25 (X 120).

P la t e 2

Planktonic Foraminifera from the north Saratov Region

Figure 1 — Heterohelix globulosa (Ehrenberg); section Lokh 1, unit LokhB, Lower Maastrichtian, sample LH1-34, PIN 4776/26 (X 170). Figure 2 — Heterohelix globulosa (Ehrenberg); section Lokh 1, unit Lokh B, Lower Maastrichtian, sample LH1-34, PIN 4776/27 (X 150). 40 Alexander S. ALEKSEEV et al.

Figure 3 — Pseudotextularia deformis (Kikoine); section Klyuchi 1, unit Klyuchi B, Upper Maastrichtian, sample KL1-20, PIN 4776/28 (X 100). Figure 4 — Pseudotextularia deformis (Kikoine); section Klyuchi 1, unit Klyuchi B, Upper Maastrichtian, sample KL1-20, PIN 4776/29 (X 100). Figure 5 — Planoglobulina brazoensis Martin; section Klyuchi 1, unit Klyuchi B, Upper Maastrichtian, sample KL1-20, PIN 4776/30 (X 100). Figure 6 — Globigerinelloides volutus (White); section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-7, PIN 4776/31 (X 200). Figure 7 — Globigerinelloides volutus (White); section Klyuchi 1, unit Klyuchi B, Upper Maastrichtian, sample KL1-20, PIN 4776/32 (X 180). Figure 8 — Globigerinelloides volutus (White); section Klyuchi 1, unit Klyuchi B, Upper Maastrichtian, sample KL1-20, PIN 4776/33 (X 130). Figure 9 — Archaeoglobigerina australis Huber; section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-7, PIN 4776/ 34, (X 130). Figure 10 — Archaeoglobigerina australis Huber; section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-7, PIN 4776/ 35, (X 130). Figure 11 — Archaeoglobigerina australis Huber; section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-7, PIN 4776/ 36, (X 100). Figure 12 — Rugoglobigerina rugosa (Plummer); section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-7, PIN 4776/ 37, (X 160). Figure 13 — Rugoglobigerina rugosa (Plummer); section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-7, PIN 4776/38 (X 130). Figure 14 — Rugoglobigerina nigosa (Plummer); section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-7, PIN 4776/39 (X 160). Figure 15 — Rugoglobigerina nigosa (Plummer); section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-7, PIN 4776/40 (X 150). Figure 16 — Globotruncanella havanensis (Voorwijk); section Lokh 1, unit Lokh B, Lower Maastrichtian, sample LH1-34, PIN 4776/41 (X 130). Figure 17 — Globotruncanella havanensis (Voorwijk); section Klyuchi 1, unit Klyuchi B, Upper Maastrichtian, sample KL1-20, PIN 4776/42 (X 120). Figure 18 — Globotruncanella petaloidea (Gandolfi); section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-10, PIN 4776/43 (X 130). Figure 19 — Globotruncana area (Cushman); section Lokh 1, unit Lokh B, Lower Maastrichtian, sample LH1-34, PIN 4776/44 (X 100). Figure 20 — Globotruncana area (Cushman); section Klyuchi 1, unit Klyuchi B, Upper Maastrichtian, sample KL1-20, PIN 4776/ 45 (X 120). Figure 21 — Globotiiincana mariei Banner & Blow; section Klyuchi 1, unit Klyuchi В, Upper Maastrichtian, sample KL1-20, PIN 4776/46 (X 130).

P la te 3

Calcareous nannofossils from the Maastrichtian of the north Saratov region

Figure 1 — Cribrosphaerella ehrenbergii (Arkhangelsky) Deflandre in Piveteau; section Tyoplovka 2, unit Tyoplovka A, Upper Maastrichtian, sample TP2-28 (X 5000). Figure 2 — Cribrosphaerella daniae Perch-Nielsen; section Tyoplovka 2, unit Tyoplovka A, Upper Maastrichtian, sample TP2- 28 (X 4400). Figure 3 — Micula decussata Vekshina, partially dissolved; section Tyoplovka 2, unit Tyoplovka A, Upper Maastrichtian, sample TP2-28, (X 5000). Figure 4 — Arkhangelskiella cymbiformis Vekshina; section Klyuchi 1, unit Klyuchi B, Upper Maastrichtian, sample KL1-43 (X 6300). Figure 5 — Prediscosphaera stoveri (Perch-Nielsen) Shafik & Stradner; section Tyoplovka 2, unit Tyoplovka A, Upper Maastrichtian, sample TP2-18 (X 7500). Figure .6 — Corollithion exiguum Stradner; section Tyoplovka 2, unit Tyoplovka A, Upper Maastrichtian, sample TP2-28 (X 6300). Figure 7 — Kamptnerius magnifiais Deflandre; section Tyoplovka 2, unit Tyoplovka A, Upper Maastrichtian, sample TP2-18 (X 6300). Figure 8 — Stradneria crenulata (Bramlette & Martini) Noël; section Tyoplovka 3, unit Tyoplovka A, Upper Maastrichtian, Maastrichtian and Lower Palaeocene of Northern Saratov Region 41

sample ТРЗ-18 (X 6300). Figure 9 — Micula concava (Stradner in Martini & Stradner) Verbeek, partially dissolved; section Lokh 1, unit Lokh C, Upper Maastrichtian, sample LH1-53 (X 5000). Figure 10 — Lithraphidites grossopectinatus Bukry; section Tyoplovka 3, unit Tyoplovka A, Upper Maastrichtian, sample TP3-18 (X 6300). Figure 11 — Nephrolithus frequens Gôrka; section Tyoplovka 2, unit Tyoplovka A, Upper Maastrichtian, sample TP2-28 (X 6000). Figure 12 — Rhombolithion speetonensis Rood & Barnard; section Tyoplovka 2, unit Tyoplovka A, Upper Maastrichtian, sample TP2-18 (X 6300). Figure 13 — Aspidolithus sp. aff. A. parcus constrictus (Hattner et al.) Perch-Nielsen; section Klyuchi 2, unit Klyuchi A, Lower Maastrichtian, sample KL2-3 (X 5400). Figure 14 — Vekshinella angusta (Stover) Verbeek; section Klyuchi 2, unit Klyuchi B, Upper Maastrichtian, sample KL2-16 (X 6300). Figure 15 — Lithraphidites quadratus Bramlette & Martini; section Tyoplovka 3, unit Tyoplovka A, Upper Maastrichtian, sample ТРЗ-18 (X 6300)

P la t e 4

Macrofossils from the Maastrichtian of the north Saratov Region

Figure 1 — Belemnella lanceolata gracilis (Arkhangelsky); a - ventral side, b - dorsal side; section Lokh 1, unit Lokh A, Lower Maastrichtian, sample LH1-9, PIN 4775/1 (X 1). Figure 2 — Belemnella sumensispraearkhangelskii Naidin; a - ventral side; b - dorsal side; section Klyuchi 2, condensed clay bed of unit Klyuchi Bb, upper Lower and lower Upper Maastrichtian, sample KL 2, PIN 4775/2 (X 1). Figure 3 — Belemnella sumensis praearkhangelskii Naidin; section Klyuchi 2, condensed clay bed of unit Klyuchi Bb, upper Lower and lower Upper Maastrichtian, sample KL 2, view of split guard showing internal characteristics, PIN 4775/3 (X 1). Figure 4 — Neobelemnella kazimiroviensis (Skolozdrowna); a - ventral side; b - dorsal side; section Klyuchi 1, unit Klyuchi 2, Upper Maastrichtian, sample KL 1, PIN 4775/4 (X 1). Figure 5 — Neobelemnella kazimiroviensis (Skolozdrowna); a - ventral side (X 1), b - lateral side (X 1), с - view of split guard showing internal characteristics (X 2); section Klyuchi 1, unit Klyuchi B, Upper Maastrichtian, sample KL 1, PIN 4775/5 (X 1). Figure 6 — Neobelemnella kazimiroviensis (Skolozdrowna); view of split guard showing internal characteristics; section Klyuchi 1, unit Kluychi B, Upper Maastrichtian, sample KL 1, PIN 4775/6 (X 1). Figure 7 — Hoploscaphites aff. H. constrictus (J. Sowerby); a - lateral side, b - dorsal side; section Lokh 1, base of unit Lokh B, Lower Maastrichtian, sample LH1-34, PIN 4775/7 (X 1). 42 Alexander S. ALEKSEEV et al.

P l a t e 1 Maastrichtian and Lower Palaeocene of Northern Saratov Region 43

P l a t e 2 44 Alexander S. ALEKSEEV et al.

P l a t e 3 Maastrichtian and Lower Palaeocene of Northern Saratov Region 45

3

P l a t e 4 BULLETIN DE L’INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE SCIENCES DE LA TERRE, 69-SUPP. A: 47-54, 1999 BULLETIN VAN НЕТ KONINKLIIK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN AARDWETENSCHAPPEN, 69-SUPP. A: 47-54, 1999

Platyscaphites, a new ammonite from the Lower Campanian (Upper Cretaceous) of the United States Western Interior

by William A. COBBAN, W. James KENNEDY & Neil H. LANDMAN

Abstract Ключевые слова: Cephalopoda, , Platyscaphites , Кампанский ярус, США. A diminutive genus of scaphite, Platyscaphites gen. nov., probably arose from the Scaphites hippocrepis (D eKa y , 1828) stock during early Campanian time in the northern part of the United States Western Interior. Three species, all new, are described; they reveal a trend towards progressive size reduction and recoiling to a planispiral shell Introduction morphology, accompanied by a possible reduction in adult size. Pla­ tyscaphites groatensis sp. nov., the oldest species, occurs low in the zone of Baculites sp. (smooth), and P. elginensis sp. nov., occurs high Recoiling is a widespread evolutionary trend in scaphitid in that zone; P. fremontensis sp. nov., is found in the succeeding zone heteromorph ammonites that leads ultimately to planis­ of Baculites sp. (weak flank ribs). piral shells in which the body chamber is in contact Key-words: Cephalopoda, Ammonoidea, Platyscaphites, Campanian, with the phragmocone throughout ontogeny, rather USA. than separated at maturity. The trend has been recognized in several U.S. Western Interior lineages of scaphitid ammonites that lead to taxa such as Desmoscaphites R eeside, 1927a, Clioscaphites Cobban, 1952, Binneyites Résumé R eeside, 1927b, Pontexites W arren, 1934, and Rhaebo- Platyscaphites gen. nov., un genre de scaphite de toute petite taille, ceras M eek, 1876. Acanthoscaphites N owak, 1911, and s’est vraisemblablement détaché de la lignée de Scaphites hippocrepis Indoscaphites Spath, 1953, are recoiled genera known (DeKay, 1828) au cours du Campanien inférieur, dans la partie septen­ from western Europe, South , and Tunisia. We trionale du “ Western Interior” des Etats Unis. Trois espèces, toutes describe below an additional dwarf genus of recoiled nouvelles, sont décrites; elles montrent une tendance à une réduction progressive de la taille et à un réenroulement planispiral de la coquille, scaphite as Platyscaphites gen. nov., that occurs in accompagnée d’une réduction possible de la taille adulte. Platyscaphi­ the lower Campanian in the central and northern parts tes groatensis sp. nov., l’espèce la plus ancienne, est présente dans la of the Western Interior in Colorado, Wyoming, South partie inférieure de la zone à Baculites sp. (lisse) et P. elginensis sp. nov. dans la partie supérieure de cette même zone; P. fremontensis Dakota, and Manitoba. Three species are described, from se rencontre dans la zone suivante à Baculites sp. (avec de faibles côtes oldest to youngest, Platyscaphites groatensis sp. nov., sur les flancs). P. elginensis sp. nov., and P. fremontensis sp. nov., the Mots-clefs: Cephalopoda, Ammonoidea, Platyscaphites, Campanien, last named being the type species. The lineage is be­ USA. lieved to be derived from Scaphites (Scaphites) hippo­ crepis (D eKay, 1828), which immediately predates P. groatensis. The lineage shows progressive recoiling; the microconchs of the two earlier species have body cham­ Реноме bers detached from the spire, and dimorphism is obvious. In the last species, P. fremontensis, the whorls are in Входящий в род скафигов, Platyscaphites gen. nov. вероятно происходит от скопления Scaphites hippocrepis (DEKAY, contact throughout, and macroconchs and microconchs 1928) во времена нижнего Каштана на севере «Western cannot be separated. The lineage also possibly shows Interior» США. Описаны, в частности, 3 совершенно новых progressive size decrease, although the sample sizes of вида, подтверждающих общее направление развития two of the species are too small to demonstrate this благодаря прогрессивному сокращению размеров и conclusively. возвращению к спирально-плоскостной ракушечной These ammonites were originally referred to as Indos­ морфологии, с возможным сокращением взрослых размеров. caphites sp. by Cobban & Scott (1964, fig. 2), but are Platyscaphites groatensis sp. nov., самый старый вид, редко встречается в зоне Baculites sp. (пологой), а P. elginensis heterochronous homeomorphs of that genus, which is sp.nov. встречается в ней часто; P. fremontensis sp.nov. найден known only from the upper Maastrichtian of Pondicherry, в последующей зоне (хрупкие боковые линии нарастания). South India, and Tunisia. 48 William A. COBBAN, W. James KENNEDY & Neil H. LANDMAN

Lower Campanian Scaphite Sequence in the Western 109°______107° 105° 103° Interior 1 1 1 1

The following six ammonite zones were recognized by G il l & C o b b a n (1966) in rocks of early Campanian age CANADA in the Western Interior of the United States (youngest at UNITED STATES top): Baculites obtusus, Trachyscaphites praespiniger Baculites sp. (weak flank ribs), Trachyscaphites prae­ spiniger NORTH Baculites sp. (smooth), “Indoscaphites” DAKOTA Haresiceras natronense, Scaphites hippocrepis (fine MONTANA ribbed) Haresiceras placentiforme, Scaphites hippocrepis (coarse ribbed) Haresiceras montanaense, Scaphites hippocrepis ------(coarse ribbed) BILLINGS The “Indoscaphites” is the Platyscaphites of the present • BROADUS report. Although shown only in the zone of smooth • i baculites by G il l & C o b b a n (1966, table 2) as well as in an earlier report by C o b b a n & S c o t t (1964, fig. 2), ■j x D2503 • SHERIDAN Platyscaphites is now known to range up into the over- i SOUTH lying zone of baculites that have weak flank ribs. ! DAKOTA x D3434 i 1 I Localities of Platyscaphites in the Western Interior X D4266 i I I Localities at which Platyscaphites has been collected in the 23121 I------Western Interior of the United States are shown in Fig. 1. The x D4725 USGS Mesozoic locality number, the collector(s), the year of 21762 х x • CASPER i D4734 collection, the locality, and the stratigraphie assignment are i i as follows (prefix D indicates Denver Mesozoic locality num­ v D4580 bers; the others are Washington, D.C., Mesozoic locality num­ x 10459 j NEBR. bers): D3434. J.R. G ill, 1961. Elgin Creek in the N1/2 sec. 13, T. 49 WYOMING i N., R. 83 W., Johnson County, Wyoming. Cody Shale, CHEYENNE ! 222 meters (m) below top, from a grey-weathering _____ i______limestone concretion in a bed of bentonite. D4287. J.R. G ill & R.E. Burkholder, 1963. Elgin Creek in T D3515 the NW1/4 sec. 13, T. 49 N., R. 83 W., Johnson ! D3890 County, Wyoming. Cody Shale, from yellowish- ^ ; **D1344 brown, calcareous sandstone concretions 7.6 m above ^ 1 COLORADO • DENVER base of Shannon Sandstone Member. I D4266. R.E. Burkholder & W.A. C obban, 1963. Near North 1 Fork oil field, in deep gully in the SE1/4NE1/4 sec. 26, : i i i i T. 44 N., R. 82 W., Johnson County, Wyoming. Cody 0 100 200 miles Shale, about 4.6 m below a 0.9 m thick bed of h ~ ■ ^1-----r*---- 1--- 1------1 bentonite that underlies the Shannon Sandstone Mem­ 0 [ 100 200 km ber. Figure 1 — Map of part of the Western Interior of the United 21762. J.D. Love & Keith Yenne, 1949; J.R. G ill & R.C. States showing localities where Platyscaphites G ivens, 1964. Near Conant Creek, in the NE1/4 sec. 5, was found. T. 33 N., R. 93 W., Fremont County, Wyoming. Cody Shale, from sandy, limestone concretions 60 m below top. 23116. J.B. Reeside, Jr., and others, 1950. Near Muskrat gas 92 W., Fremont County, Wyoming. Cody Shale, 53 m field, in sec. 20, T. 34 N., R. 92 W., Fremont County, below top, from ridge-forming bed of brown-weath- Wyoming. Cody Shale. ering sandy, limestone concretions [same bed as at 23121. Keith Yenne, J.C. B elsh e, & J.B. C o llin s, 1950. Near 23116]. Muskrat gas field, in the SE1/4NE1/4 sec. 27, T. 34 N., D4725. J.R. G ill & W.A. C obban, 1964. Ervay Basin, in the R. 92 W., Fremont County, Wyoming. Cody Shale NW1/4SE1/4SW1/4 sec. 14, T. 34 N., R. 89 W., [same bed as at 23116]. Natrona County, Wyoming. Cody Shale, 506 m below D4734. J.R. G ill & W.A. C obban, 1964. Near Muskrat gas top, from low ridge-forming bed of brown-weathering field, in the NW1/4SW1/4NE1/4 sec. 27, T. 34 N., R. sandy, limestone concretions. Platyscaphites, a new ammonite from the Lower Campanian 49

D4580. J.R. G ill , 1964. Near Lost Soldier oil field, in center of the microconch of the oldest species, P. groatensis n. the NW1/4NE1/4 sec. 8, T. 26 N., R. 89 W., Carbon sp. (Pl. 1, Figs. 7-24). The origin of Platyscaphites seems County, Wyoming. Cody Shale, from a limestone con­ to lie in the older Scaphites (Scaphites) hippocrepis (D e - cretion in a bentonitic unit. K a y , 1828) lineage described in detail by C o b b a n (1969). 10459. A.E. F ath & C.Y. H sieh , 1920. SW1/4 sec. 1, T. 26 N ., The two genera differ in the tendency to recoil in Pla­ R. 89 W., Carbon County, Wyoming. Steele Shale, 1,200 m above base. tyscaphites, which has flat sides and no umbilical and D2503. G.R. S cott & W.A. C o b b a n , 1960. About 24 km north lateral tubercles. Scaphites (S.) hippocrepis has umbilical of Belle Fourche, in the SW1/4 sec. 27, T. 11 N., R. 2 and ventrolateral tubercles and occasional lateral tuber­ E., Butte County, South Dakota. Pierre Shale, from cles. sandy, limestone concretions in Groat Sandstone Bed of Gammon Ferruginous Member. O c c u r r e n c e D3515. W.J. H a il, 1961. North bank of Muddy Creek about Lower Campanian of Colorado, South Dakota, and 0.6 km northwest of Haworth Ranch, in the SW1/ Wyoming; southern Manitoba; and possibly northeast 4NW1/4 sec. 20, T. 4 N., R. 81 W., Grand County, Texas and New Jersey. Colorado. Pierre Shale. D3890. W.J. H a il, 1962. SE1/4NW1/4 sec. 30, T. 4 N., R. 81 W., Grand County, Colorado. Pierre Shale, about 427 m above base. Platyscaphites groatensis n. sp. D1344. G.R. S cott & W.A. C o bban , 1957. East side of U .S. (Pl. 1, Figs. 7-24; Fig. 2) Highway 40, 21 km north-northwest of Kremmling, in the NE1/4NE1/4 sec. 10, T. 3 N., R. 81 W., Grand Derivation of name: From the Groat Sandstone Bed of the County, Colorado. Pierre Shale, from iron-stained Gammon Ferruginous Member of the Pierre Shale that limestone concretions. yielded the type material.

T y pes SYSTEMATIC PALAEONTOLOGY Holotype is USNM 481620 (Pl. 1, Figs. 16-18), paratypes Superfamily Scaphitaceae G il l , 1871 are USNM 481621-481626 (Pl. 1, Figs. 6-15,19-24), from Family Scaphitidae G il l , 1871 the lower Campanian zone of Baculites sp. (smooth). The Subfamily Scaphitinae G il l , 1871 types are from USGS Mesozoic locality D2503, about 24 Genus Platyscaphites gen. nov. km north of Belle Fourche, in the SW1/4 sec. 27, T. 11 N., R. 2 E., Butte County, South Dakota. Type spec ies: Platyscaphites fremontensis n. gen. et sp. , lower Campanian, Cody Shale, Wyoming. D ia g n o sis Derivation of name: Platys (Greek), flat and skaphe Platyscaphites that has the body chamber of the micro­ (Greek), a type of boat. conch markedly detached from the spire, and the body chamber of the macroconch slightly detached from the Diagnosis spire. Inner whorls may have ventrolateral bullae that Small, weakly to strongly dimorphic scaphites, recoiled give rise to groups of flexuous ribs. The flanks of the in type species (youngest), but body chambers of micro- early body chamber are smooth, but ribbing rejuvenates conchs detached from spire in older two species. Flanks towards the aperture. are flat and weakly ribbed on adult body chambers; small conical ventrolateral tubercles present on last part of D e sc r ipt io n phragmocone and body chamber. The inner whorls are very involute and range from com­ pressed (Pl. 1, Figs. 7, 8, 13-14) to depressed (Pl. 1, Discussion Figs. 9-12). The earliest growth stages seen are smooth. The type species, P. fremontensis n. sp. (Pl. 1, Figs. 25- At a later growth stage in compressed variants, delicate 61) has a planispiral shell in which the whorls are in prorsiradiate ribs are present on the inner flank and contact throughout, such that dimorphs cannot be differ­ branch into pairs or threes on the outer flank, where entiated. The species is a homoeomorph in shell shape additional ribs intercalate; all ribs strengthen and sweep and coiling of Indoscaphites S p a t h , 1953 (type species forward to cross the venter in a broad convexity (Pl. 1, Ammonites cunliffei F o r b e s , 1846, p. 109, pi. 8, fig. 2; Figs. 7, 8, 22-24). Some specimens of this type may lectotype designated by K en n e d y & H e n d e r so n , 1992, develop stronger, widely separated primaries on the inner p. 724) from the upper Maastrichtian of Pondicherry, flank (Pl. 1, Fig. 14), although this is a typical feature of South India, the two differing in the well-developed depressed, robust individuals (Pl. 1, Figs. 9-12), where umbilical bullae of Indoscaphites. Similarities of juve­ the ribs are prorsiradiate and slightly flexuous and termi­ niles is, however, striking (compare Pl. 1, Figs. 38-40 and nate in well-developed ventrolateral bullae. The bullae Forbes, 1846, pi. 8, fig. 2c). Flat sides and style of give rise to groups of two or three ribs with others ornament connect P. fremontensis to the slightly older intercalated. Ribs on the depressed specimens cross the P. elginensis n. sp. (Pl. 1, Figs. 1-6), where the hook of venter with less convexity than on the compressed var­ microconchs is clearly detached from the spire, as it is in iant. 50 William A. COBBAN, W. James KENNEDY & Neil H. LANDMAN

The holotype (Pl. 1, Figs. 16-18) is an adult macro­ D isc u ssio n conch 16.5 mm long. Its last one-half whorl of spire has Platyscaphites groatensis sp. nov., most closely resem­ strong, bullate ventrolateral tubercles that give rise to bles Scaphites hippocrepis III of C o b b a n (1969, p. 21, groups of two or three relatively coarse ribs, with addi­ pi. 3, figs. 1-25; pi. 4, figs. 35-39; pi. 5, figs. 36-40; text tional intercalated ribs crossing the venter in a broad figs. 2, 4, 10, 11), of which it is believed to be the convexity. Flat, parallel sides characterize the shaft of descendant. The two differ in the much smaller size of the body chamber; its umbilical wall follows a straight P. groatensis, the flat sides of the macroconch body course when viewed from the side, and has a low chamber, and absence of umbilical and lateral tubercles convex wall; it is rather worn, but may have borne on the hook. distant, prorsiradiate ribs. The venter is also abraded, but ornament appears to have been weak. The final O c c u r r e n c e hook is barely separated from the spire, and is strongly Known with certainty only from USGS Mesozoic locality recurved. Outer flank ornament rejuvenates as long, D2503. A single fragment of a small scaphite from the delicate, distant bullae that weaken towards the adult upper part of the Vermilion River Formation in south­ aperture. Bullae on the first section of the hook give western Manitoba may represent this species. rise to single distant ventral ribs that are slightly concave on the curved sector (Pl. 1, Fig. 18). These break down into groups of weaker ribs that arise in pairs or threes Platyscaphites elginensis sp. nov. from the bullae (Pl. 1, Fig. 17). The adult aperture is (Pl. 1, Figs. 1-6) marked by a strong, narrow constriction and a weak ventral rostrum. Derivation of name: From the type locality on Elgin USNM 481621 (Pl. 1, Figs. 19-21) is an adult micro­ Creek, Johnson County, Wyoming. conch 10.5 mm long. The phragmocone has weak ornament of ventrolateral bullae and ventral ribs. Its T y pes body chamber is compressed and flat-sided, but much Holotype is USNM 481627 (Pl. 1, Figs. 1-3) from a narrower than that of the macroconch, and has a concave limestone concretion in a bed of bentonite 222 m below umbilical wall when viewed from the side. Flanks are the top of the Cody Shale at USGS Mesozoic locality initially distantly ribbed followed by a smooth sector D3434, at Elgin Creek in the N1/2 sec. 13, T. 49 N., R. 83 preceding the final hook. Large, bullate to conical, ven­ W., Johnson County, Wyoming. Paratype USNM 481628 trolateral tubercles give rise to pairs of coarse ventral (Pl. 1, figs. 4-6) is from the Cody Shale about 4.6 m below ribs that loop across the venter to the tubercle on the a 0.85 m-thick bed of bentonite that underlies the Shan­ opposite ventrolateral shoulder. Distant, straight, prorsir­ non Sandstone Member at USGS Mesozoic locality adiate flank ribbing rejuvenates on the final hook. Ribs D4266, near the North Fork oil field in a deep gully in terminate in the conical ventrolateral tubercles that weak­ the SE1/4NE1/4 sec. 26, T. 44 N., R. 82 W., Johnson en towards the adult aperture; the tubercles are linked County, Wyoming. over the venter by a weak rib or pair of ribs with some additional intercalated ribs. The adult aperture is not D ia g n o sis preserved. The very simple suture has a subtrifid first Platyscaphites that has the body chamber of the macro­ lateral saddle between the ventral and lateral lobes conch in contact with the spire. Hook of the microconch (Fig. 2). is widely detached. Conical ventrolateral tubercles on the phragmocone and the body chamber.

D e sc r ipt io n E /L E The holotype (Pl. 1, Figs. 1-3) is a complete macroconch 26 mm long. Its very involute phragmocone has a small, deep umbilicus and a narrowly rounded umbilical shoulder. Whorl section of the phragmocone is equidi- mensional and has flattened, subparallel flanks and a broadly rounded venter. Distant, relatively coarse, straight, prorsiradiate ribs, 12 per one-half whorl, arise at the umbilical shoulder and extend to well-developed conical ventrolateral tubercles. These tubercles give rise to groups of two or three ribs with an occasional intercalated rib. All ribs strengthen over the venter Figure 2 — Part of the external suture of Platyscaphites groa- and cross it in a broad convexity. The body chamber tensis sp. nov., (PL 1, Figs. 19-21), from USGS is somewhat crushed but appears to have been in Mesozoic locality D2503 (Fig. 1). E is the exter­ contact with the spire. The umbilicus is only slightly nal lobe, L is the lateral lobe, and E/L is the occluded, and the umbilical wall is low and concave. saddle that separates the lobes. The body chamber is compressed and has flattened Platyscaphites, a new ammonite from the Lower Campanian 51 flanks and a broadly arched venter. Ornament is of deli­ cate flank ribs that are weaker on the body chamber than on the phragmocone; some arise as mere striae at the umbilical seam. All ribs terminate in conical ventrolateral tubercles that weaken progressively towards the adult aperture. These tubercles give rise to groups of two or three narrow, convex ribs that loop between tuber­ cles across the venter with additional intercalated single ribs. Paratype USNM 481628 (Pl. 1, Figs. 4-6) is a large adult microconch 23 mm long. Its phragmocone is badly preserved and crushed, but appears to have been similar Figure 3 — Part of the external suture of Platyscaphites fre­ to that of the macroconch; ornament consists of conical montensis sp. nov., (Pl. 1, Fig. 44, from USGS ventrolateral tubercles and ventral ribs. The body cham­ Mesozoic locality 10459 (Fig. 1). E is the exter­ ber has a concave umbilical wall when viewed in profile; nal lobe, L is the lateral lobe, and E/L is the the hook is widely separated from the phragmocone. saddle that separates the lobes. Flanks are ornamented by weak, distant, straight, prorsir­ adiate primary ribs. These ribs terminate in strong, con­ ical ventrolateral tubercles that decline in strength to­ wards the adult aperture. The ribs give rise to groups of County. Paratype USNM 481642 (Pl. 1, Figs. 58, 59) is two or three coarse, slightly convex ventral ribs that loop from the Cody Shale at locality 21762 in sec. 5, T. 33 N., between tubercles; occasional intercalatory ribs are pre­ R. 93 W., Fremont County. Paratype USNM 481643 sent. The imperfectly exposed suture is simple and little- (Pl. 1, Figs. 60, 61) is from the Pierre Shale at locality incised. D3890 in sec. 30, T. 4 N., R. 81 W., Grand County, Colorado. Discu ssio n The tighter coiling of the macroconch distinguishes D ia g n o sis this species from P. groatensis sp. nov., as does the Macroconchs planispiral with whorls in contact through­ presence of primary ribs and conical ventrolateral out; the final section of the hook may barely detach in tubercles on the flanks of both spire and body chamber. microconchs. Flanks ornamented by weak to strong pro­ Large size, coarseness of flank ribs, shape of tuber­ rsiradiate ribs and striae that terminate in very weak to cles, and wide separation of the later part of the body strong ventrolateral tubercles. Ventral ribbing variable, chamber from the phragmocone distinguish it from generally weak. P. fremontensis sp. nov. The holotype (now lost) of Scaphites similis W h it fie l d (1 8 9 2 , p. 2 6 7 , p. 4 4 , figs. 1, D e sc r ipt io n 2) resembles P. elginensis but lacks tubercles on the Dimorphism is poorly developed in this recoiled species spire. inasmuch as both macro- and microconchs usually have their whorls in contact throughout growth. They are adult Oc c u r r e n c e at sizes between 15.5 and 20 mm diameter. Coiling is Platyscaphites elginensis is a rare species that has been moderately involute on the phragmocone, but becomes found high in the zone of Baculites sp. (smooth) at eccentric and progressively more evolute on the outer­ localities D4266 and D4287, and in the zone of Baculites most whorl. The whorl section is compressed, with sub­ sp. (weak flank ribs) at locality D3434. parallel, flattened flanks, narrowly rounded ventrolateral shoulders, and a very broadly rounded venter. The umbi­ lical wall is low and subvertical, and the umbilical Platyscaphites fremontensis sp. nov. shoulder is narrowly rounded. Ornament of the phragmo­ (Pl. 1, Figs. 25-61; Fig. 3) cone and early body chamber is variable. Nearly smooth individuals have delicate, prorsiradiate growth lines, Derivation of name: From Fremont County, Wyoming. striae, and riblets that cross the venter in a broad con­ vexity (Pl. 1, Figs. 47-49). Other individuals have distant, TYPES: prorsiradiate primary ribs of variable strength that devel­ Holotype is USNM 481629 (Pl. 1, Figs. 50-52); it and op into massive, conical ventrolateral tubercles with the paratypes USNM 481637-481641 (Pl. 1, Figs. 44-49, interspaces ornamented by delicate growth lines and 53-57) are from a sandstone bed in the Cody Shale, striae (Pl. 1, Figs. 38-40, 55-57). Groups of two or three zone of Baculites sp. (weak flank ribs), at USGS Meso­ convex ribs loop between tubercles across the venter, and zoic locality 23116 in sec. 20, T. 34 N., R. 92 W., additional ventral ribs are intercalated. Ribbed and tuber- Fremont County, Wyoming. Paratypes USNM 481630- culate ornament of this type may extend over much of the 481636 (Pl. 1, Figs. 25-43) are from the Cody Shale at body chamber (Pl. 1, Figs 55-57), or the ribs may efface locality D4734 in sec. 27, T. 34 N., R. 92 W., Fremont (Pl. 1, Figs. 58, 61). Towards the adult aperture, tubercles 52 William A. COBBAN, W. James KENNEDY & Neil H. LANDMAN

weaken markedly, but ribs may strengthen (Pl. 1, Figs. 53, O c c u r r e n c e 54). The relatively simple suture has a broad, subtrifid E/ P. fremontensis, the most widely distributed species of L and narrow L (Fig. 3). Platyscaphites, occurs at USGS Mesozoic localities D3515, D3890, D4580, D4725, D4734, D1344, 10459, D iscu ssio n 21762, 23116, and 23121. Planispiral coiling that has the body chamber in contact with the phragmocone throughout growth distinguishes P. fremontensis sp. nov., from P. elginensis sp. nov., Acknowledgments and P. groatensis sp. nov., Platyscaphites fremontensis most closely resembles Indoscaphites cunliffei (F o r b e s , Photographs are by R.E. B urkholder, form erly of the U.S. Geological 1846, p. 109, pi. 8, fig. 2) from the upper Maastrichtian Survey (USGS), Denver. All specimens are deposited in the U.S. National Museum of Natural History (USNM) in Washington, D.C. of Pondicherry, South India, of which it is a hetero- Casts of selected specimens are kept at the U.S. Geological Survey in chronous homeomorph; they differ in that the Indian Denver. K ennedy acknowledges the financial support of the Natural species is much larger (the holotype, an adult is 34.5 Environment Research Council (U.K.), and the technical assistance of the staff of the Geological Collections, Oxford University Museum, mm in diameter) and has well-developed umbilical bul­ and the Department of Earth Sciences (Oxford). The U.S. Geological lae. Survey provided the specimens studied.

References

C o bban , W.A., 1951 [1952]. Scaphitoid of the United States. U.S. Geological Survey Professional Paper, Colorado Group. U.S. Geological Survey Professional Paper, 151: 87 p. , 45 pis. 239: 42 p. , 21 pis. R ee sid e, J.B. Jr., 1927b. Cephalopods from the lower part of the C o b b a n , W.A., 1969. The Late Cretaceous ammonites Sca­ Cody shale of Oregon Basin, Wyoming. U.S. Geological Sur­ phites leei R eeside and Scaphites hippocrepis (D eK a y ) in the vey Professional Paper, 150-A: 1-19, 8 pis. western interior of the United States. U.S. Geological Survey S pa t h , L.F., 1953. The Upper Cretaceous fauna of Professional Paper, 619: 29 p. , 5 pis. Graham Land. Falkland Islands Dependencies Survey, Scien­ C o b b a n , W.A. & S c o tt , G.R., 1964. Multinodose scaphitid tific Reports, 3: 60 p., 13 pis. cephalopods from the lower part of the Pierre Shale and equiva­ W a r r en , P.S., 1934. Palaeontology of the Bearpaw Formation. lent rocks in the conterminous United States. U.S. Geological Royal Society of Canada Transactions (3), 28, 4: 81-100. Survey Professional Paper, 483-Е: E1-E13, 4 pis. W hitfield , R.P., 1892. Gasteropoda and Cephalopoda of the D eK a y , J.E., 1828. Report on several multilocular shells from Raritan Clays and Greensand Marls of New Jersey. U.S. Geo­ the State of Delaware; with observations of a second specimen logical Survey Monograph, 18: 402 p. , 50 pis. of the new fossil genus Eurypterus. Lyceum o f Natural History o f New York, Annals, 2: 273-279, pi. 5, figs. 2-5 (only).

F o r b es, E., 1846. Report on the fossil Invertebrata from south­ William A. C obban ern India, collected by Mr. Kaye and Mr. Cunliffe. Transactions 70 Estes Street of the Geological Society o f London,{2), 1: 97-174, pis. 7-19. Lakewood, Colorado 80226

G il l , J.R. & C o b b a n , W.A., 1966. The Red Bird section of the USA Upper Cretaceous Pierre Shale in Wyoming, with a section on A new echinoid from the Cretaceous Pierre Shale of eastern W. James K ennedy Wyoming by P.M. Kj e r . U.S. Geological Survey Professional Geological Collections Paper, 393-A: A1-A73, 12 pis. Oxford University Museum of Natural History Oxford OX1 3PW G il l , T., 1871. Arrangement of the families of mollusks. United Kingdom Smithsonian Miscellaneous Collections, 227: 49 p.

K ennedy, W.J. & H en d erso n , R.A., 1992. Heteromorph am­ Neil H. L andm an monites from the Upper Maastrichtian of Pondicherry, South Department of Invertebrates India. Palaeontology, 35: 693-731, 10 pis. American Museum of Natural History M eek , F.B., 1876. A report on the invertebrate Cretaceous and Central Park West at 79th Street Tertiary fossils of the upper Missouri country. U.S. Geological New York, New York 10024 Swvey o f the Territories Report (Hayden), 9: 629 p. , 45 pis. USA

N ow a k , J., 1911. Die Skaphiten, Pt. 2 of “ Untersuchungen iiber die Cephalopoden der oberen Kreide in Polen” . Bulletin International de l ’Académie des Science de Cracovie, 1911 (В): 547-589, pis. 32, 33.

R ee sid e, J.B. Jr., 1927a. The cephalopods of the Eagle sand­ Typescript submitted: 15.10.1998 stone and related formations in the western interior of the Revised typescript received: 15.1.1999 Platyscaphites, a new ammonite from the Lower Campanian 53

P l a t e 1 54 William A. COBBAN, W. James KENNEDY & Neil H. LANDMAN

P late 1

Figs. 1-6 — Platyscaphites elginensis sp. nov. 1-3, holotype USNM 481627, a macroconch, from USGS locality D3434. 4-6, paratype USNM 481628, a microconch, from USGS locality D4266.

Figs. 7-24 — Platyscaphites groatensis sp. nov. 7-8, paratype USNM 481622, from USGS locality D2503. 9-10, paratype USNM 481623, from USGS locality D2503. 11-12, paratype USNM 481624, from USGS locality D2503. 13-15, paratype USNM 481625, from USGS locality D2503. 16-18, holotype USNM 481620, a macroconch, from USGS locality D2503. 19-21, paratype USNM 481621, a microconch, from USGS locality D2503. For suture, see text Figure 2. 22-24, paratype USMN 481626, from USGS locality D2503.

Figs. 25-61 — Platyscaphites fremontensis sp. nov. 25-28, paratype USNM 481630, a microconch, from USGS locality D4734. 29, 30, paratype USNM 481631, a microconch, from USGS locality D4734. 31-33, paratype USNM 481632, a microconch, from USGS locality D4734. 34, 35, paratype USNM 481633, a microconch, from USGS locality D4734. 36, 37, paratype USNM 481634, a macroconch, from USGS locality D4734. 38-40, paratype USNM 481635, from USGS locality D4734. 41-43, paratype USNM 481636, a microconch, from USGS locality D4734. 44, paratype USNM 481638, a microconch, from USGS locality 10459. For suture, see Fig. 3. 45, 46, paratype USNM 481637, a microconch, from USGS locality 23116. 47-49, paratype USNM 481639, a microconch, from USGS locality 23116. 50-52, holotype USNM 481629, a microconch, from USGS locality 23116. 53, 54, paratype USNM 481640, a macroconch, from USGS locality 23116. 55-57, paratype USNM 481641, a microconch, from USGS locality 23116. 58, 59, paratype USNM 481642, a microconch, from USGS locality 21762. 60, 61, paratype USNM 481643, from USGS locality D3890.

Figures 1-6, 19-21, 25-37, are x 1. Figures 7-18, 22-24, 38-61 are x 2. BULLETIN DE L’INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE SCIENCES DE LA TERRE, 69-SUPP. A: 55-65, 1999 BULLETIN VAN НЕТ KONINKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN AARDWETENSCHAPPEN, 69-SUPP. A: 55-65, 1999

Upper Maastrichtian bivalve faunas from the Crimea, Maastricht and Mangyshlak

by Annie V. DHONDT

Abstract widest marine expansion in Europe (Z ie g l e r , 1990). In the Lower Maastrichtian marine strata are still very Upper (but not uppermost) Maastrichtian bivalve faunas in the strato- widely distributed — from England to the Aral Sea in typical Maastrichtian area and in the Crimea are extremely diverse and species rich, and represent a very littoral shallow and warm environ­ Kazakhstan — but on average they represent a somewhat ment. Uppermost Maastrichtian bivalve faunas and in the Maastrich­ shallower facies than in the Campanian. During the tian stratotypical area and in the Crimea indicate a somewhat deeper, Upper Maastrichtian large areas, which were still marine cooler environment. The Upper Maastrichtian bivalves from Mangysh­ lak are much less diversified and indicate a cold environment, compar­ in the Lower Maastrichtian, had become continental. This able with the “ upper sh elf’ in today’s seas. was especially true in extensive Tethyan areas of southern Europe with the development of the Garumnian facies. Key-words: Upper Cretaceous, Bivalves, Maastricht, Crimea, Man­ In western, northern and eastern Europe, and into gyshlak. western Asia, the white chalk facies is found in the Campanian and Maastrichtian (Fig. 1). In this “White Résumé Chalk Sea” a fairly homogenous fauna is found. Specif­ ically, the Upper Maastrichtian strata which were depos­ Les faunes de bivalves du Maastrichtien supérieur (mais non terminal) ited by this white chalk, still represent a fairly deep dans la région stratotypique de l’étage Maastrichtien et de la Crimée sont très diversifiées et riches en espèces. Elles représentent un envi­ marine facies. ronnement littoral, chaud et peu profond. On the southern border of this white chalk sea, well- Les bivalves du Maastrichtien terminal des mêmes régions indiquent developed, very fossiliferous Upper Maastrichtian depos­ un environnement plus profond et plus froid. Les bivalves du Maastrichtien supérieur du Mangyshlak sont moins its exist, sometimes overlain by Danian deposits. Across diversifiés et indiquent un environnement de “ sh elf’, franchement the К/T boundary sedimentation was only rarely continu­ plus profond. ous, and the Upper (uppermost) Maastrichtian sea was Mots-clefs: Crétacé supérieur, Bivalves, Maastricht, Crimée, Man­ relatively shallow in this southern part. In three areas [ (1) gyshlak. the Maastrichtian stratotypical area, Limburg, The Neth- erlands-Belgium; (2) south western Crimea, The Ukraine; (3) Mangyshlak Peninsula, W. Kazakhstan] which knew a Резюме more or less continuous sedimentation across the КУТ boundary, the faunal evolution of the bivalves in the Фауны двухстворчатых верхнего (но не высшего) Маастрихта uppermost Maastrichtian and near the К/T boundary в статотипичной области Маастрихтского яруса и в Крыму was followed. невероятно разнообразны и богаты породами. Они представляют теплую и мелководную прибрежную фацию. Фауны двухстворчатых высшего Маастрихта в статотипичной области Маастрихтского яруса и в Крыму Stratigraphy указывают на более глубокую и холодную фацию. Фауны двухстворчатых верхнего Маастрихта Мангышлака менее In the Maastricht area (Limburg, Belgium-The Nether­ разнообразны и указывают на холодную фацию, сравнимую с lands) the Upper Maastrichtian is mainly represented by «верхним шельфом» современных морей. the generally calcarenitic Maastricht Fm. (Figs. 1, 2 and map in Ja g t , this volume, p. 104). Stratigraphically most Ключевые слова: Верхний мел, двухстворчатые, Маастрихт, Крым, Мангышлак of the Maastricht Fm. is part of the junior Zone. Only the uppermost member (Meerssen Chalk) belongs partially to the kazimiroviensis Zone (J a g t , 1996). At the quarry Introduction Curfs-Ankerpoort (near Geulhem, Zuid Limburg, The Netherlands) the Meerssen Chalk contains a clearly The Campanian represents possibly the moment of marked thin layer the “ Berg en Terblijt Horizon’ ’ (formal 56 Annie V. DHONDT

Figure 1 — Distribution of the White Chalk Sea (map from D hon d t et al., 1996); the “ white chalk sea” is shaded; 1: Maastrichtian stratotypical area; 2: Upper Cretaceous of Crimea; 3: Mangyshlak.

definition in F e l d e r & B o s c h , in press); this horizon is based on belemnites (macrofauna) and on planktonic now considered the К/T boundary (J a g t et al., 1996, Foraminifera and calcareous nannofossils (microfauna) Fig. 3). The upper Meerssen Chalk, above this horizon, (N ik ish in et al., 1993; A l e k se e v & K o p a e v ic h , 1997, is lowermost Danian. It is unconformably overlain by p. 110, fig. 6). Also used are “ units” representing faunal younger Palaeocene calcarenites. The Houthem Fm. of assemblages (A l e k s e e v , 1989). early to late Danian age (? Thanetian), is outcropping also It must be noted that the kazimiroviensis Zone in as a calcarenite. The age of the Geulhem Member is Crimea comprises a large part of the Upper Maastrich­ Middle Danian (Ja g t , 1996 & 1999). In the Geulhem- tian, overlying a thin junior Zone. merberg section the КУТ transition is more complete and the transitionary clay forms the Berg en Terblijt Horizon, In Mangyshlak the complete Upper Maastrichtian, as was which is a little older than the Vroenhoven Horizon at the already noted by N a id in (1973), belongs to the kazimir­ top of the Meerssen Chalk. The Vroenhoven Horizon was oviensis Zone. For details on the stratigraphy see N aid in previously considered to equate with the К/T boundary in (1986, 1987) and N a id in et al. (1990a, b; 1996). that area (J a g t et al., 1996).

N e a r Bakhchisaray and near Belogorsk (S. Crimea, the Faunas and environment Ukraine), extensive Maastrichtian chalks (sometimes marly sandstones) are overlain generally unconform­ M a t e r ia l a n d M eth o d s ably by Palaeocene and/or Eocene limestones (sand­ The taxonomy used for bivalves herein is based on the stones) (N a id in et al., 1984; N ik ish in et al., 1993; A l e k ­ “Treatise” , but changes introduced by W a l ler (1978) see v & K o p a e v ic h , 1997; Fig. 4). Further east on the for the pteriomorphs and by M a l ch u s (1990) for the Crimean Peninsula (near Topolevka Koktebel) the Maas­ oysters, have been taken into account. The material stu­ trichtian is present in a flysch facies, deposited in deep died in personal or museum collections was in all three water. regions complemented by fieldwork. The zonation generally used for the Maastrichtian is I have studied the bivalves from the Maastrichtian Maastrichtian bivalve from Maastricht, Crimea, Mangyshlak 57

Figure 2 — Lithostratigraphy and biozonation of Campanian, Maastrichtian an Danian strata in the stratotypical region of the Maastrichtian Stage (after J a g t , this volume).

stratotypical part for the last 35 years mainly in the studied in the personal collection of Prof. D. P. Naidin at collections of the Royal Belgian Institute of Natural the MGU, in the collections of the late V. A. Sobetski at Sciences; in the list provided herein the taxa in steinkem the PIN, and in the collections at the Baza MGU at preservation are not taken into consideration. Prokhladnoe in the Crimea. Bivalves from the Crimean outcrops have been mainly Bivalves from Mangyshlak were studied in the collec- 58 Annie V. DHONDT

J a n s s e n , 1988). Faunas of similar age from the colliery shafts in nearby Belgian Limburg were last revised by G l ib e r t & V a n d e P o e l (1973).

Among the macrofaunas from the Upper Maastrichtian Maastricht Fm. (Fig. 2) the very numerous and diverse bivalve fauna is probably one of the most species rich. Because of the limitations of the preservation in calcar- enites not all taxa were preserved but only those with a mainly calcitic shell such as Pectinidae, Limidae, Spon- dylidae, Anomiidae, Mytilidae, modiolids, Ostreacea, Pinnidae; also recognisable are those with a very thin shell such as Pholadomyidae, and Liopistha. Rarely also taxa of the genus Glycymeris, arcids, Nucula s.l., Cucullaea sp., “ Trigonia ”, crassatellids, cardiids, dosiniids are more or less identifiable as steinkems or composite external moulds. The only “monograph” on these faunas was written by V o g e l (1895). The pectinids and some limids were revised by D h o n d t (1971; 1972a & b; 1973 a & b; 1976; 1989) and Liopistha by D h o n d t & J a g t (1988). This Upper Maastrichtian Maastricht Fm., in the stra­ totypical area is characterised by a highly diversified fauna, which is fairly different from the fauna known from the underlying strata of the Gulpen Fm. Thus, the Lower to lower Upper Maastrichtian Vijlen Chalk Member (top of the Lower Gulpen Fm.), which is a typical white chalk deposit, contains a fauna comparable to that found in the typical Schreibkreide/ Skrivekridt deposits of northern Europe (D h o n d t & J a g t , 1987) - (Table 1), and also further east around Lwow in the Ukraine and on the Russian Platform, onto the Precaspian Depression. From the Lanaye Chalk Member (top of the Gulpen Figure 3 — Uppermost Maastrichtian section in quarry Fm.) upwards a strong southerly (shallower, sublittoral, Curfs-Ankerpoort, Geulhem (after Ja g t et al., 1996) indicating the level of the Berg en Terblijt subtropical) influence is visible in the faunas: e.g. the Horizon. echinoid Hemipneustes, the bivalve Pinna decussata, ostracodes (B l e s s , 1989), mosasaurs and cheloniid turtles (Ja g t , 1995). The Maastricht Fm. starts with the Valkenburg Chalk tions of Prof. D. P. Naidin at MGU. In the Mangyshlak Member (formerly named unit Ma - U h l e n b r o e k , 1912), outcrops of Maastrichtian age, bivalves are relatively which represents a less open environment, but with the rare. same fauna as in the underlying Lanaye Chalk Member. The Gronsveld, Schiepersberg, and Emael Members M a a st r ic h t form a virtually homogenous sediment (formerly named The fossils from the strata of the Maastrichtian Fm. in the unit Mb - U h l e n b r o e k , 1912) which according to V il ­ stratotypical area were already described, figured and/or l a in (1977) was deposited at a depth of 20 to 40 m, free mentioned by F a u ja s d e Sa in t F o n d (1799-1802), von from oceanic influences. L ie b a u (1978) considered the S c h l o t h e im (1813, 1820), G o l d fu ss (1833-1841), d’OR- setting as middle sublittoral, with subtropical tempera­ b ig n y (1850). Changes throughout the faunas of the tures and with seagrass communities. These strata contain Maastricht Fm. were recognised early on (e.g. “ couche a diversified fauna in which especially the bivalves are à coprolithes, couche à bryozoaires” ), but detailed strati- numerous (Table 2), often largish and some typical for graphical occurrences of bivalves were only rarely noted. sea grass communities. The Nekum Member (formerly unit Me - U h l e n b r o e k , More recent work has clearly shown that changes within 1912) consists mainly of fairly coarse-grained biocalcare- the Maastricht Fm. were important. Herein we shall try to nites and contains in its lowermost part a serpulid horizon give an account of bivalve faunas within the members of with numerous bivalves and the ammonites Sphenodiscus the Maastricht Fm.. From the overlying Houthem Fm. binckhorsti and Hoploscaphites felderi. bivalves are known but they have not so far been de­ The upper strata of the Nekum Member contain nu­ scribed in detail from the Maastricht region (Ja g t & merous crustaceans and a coquina with tegulated inoce- Maastrichtian bivalve from Maastricht, Crimea, Mangyshlak 59

ramids (Spyridoceramus tegulatus) and Belemnitella ju­ these strata immediately attracted the attention of geolo­ nior. gists and palaeontologists. Thus Fischer de W aldheim The Meerssen Member (formerly unit Md - U hlen- already in 1835 described Alectryonia deshayesi (= Ras- broek, 1912), youngest member of the Maastricht Fm., tellum deshayesi) and Pycnodonte radiata from the M aas­ should ecologically be divided into two parts; the lower trichtian of “Mountain” Crimea. In 1842 R ousseau in part contains a fauna similar to that of the Nekum Mem­ H uot in D emidoff described Ostrea mirabilis {Pycno­ ber and even contains rudists; the upper part (youngest donte mirabilis) from the same area. These descriptions Maastrichtian levels) contains a different fauna probably of Crimean Cretaceous taxa were widely known. Fossils of cooler origin. The terminal Maastrichtian event (within from the uppermost Cretaceous strata in Bakhchisaray are the Meerssen Member of the Maastricht Fm., Jagt et al., present in the d’Orbigny collection (Institut de Paléonto­ 1998) in the Maastricht area is accompanied by a cooler logie, Muséum National d’Histoire naturelle in Paris) and water fauna with rare Neobelemnella gr. kazimiroviensis, are m entioned in d ’O rbigny ( 1850) e.g. and most museum and Tenuipteria argentea. Among the bivalves most of collections contain specimens from “ Bakhshisarai” . the larger taxa which could live among the sea grass have No monographs on these faunas were written in the 19 gone - numerous smaller oysters and smooth pectinids th century. remain (Table 2 and Jagt, 1996). In the last 50 years only two papers have described Upper Cretaceous Crimean bivalves: the inoceramids The Crimea were treated by D obrov & Pavlova in M oskvin The Upper Cretaceous strata from the Bakhchisaray re­ (1959) and many other bivalve taxa were described by gion in the Crimea have been studied since the beginning Sobetski (1977). Danian Crimean mollusks have been of the 19 th century. The numerous bivalves typical for studied e.g. by M akarenko (1961), G orbach (1972).

Table 1 White Chalk Sea taxa

Vylen Hemmoor Crimea Mangyshlak Precaspia Pseudoptera coerulescens ** •k * Limatula decussata ** * * Pseudolimea geinitzi ** * Microchlamys subinflexa ** ? ? Mimachlamys striatissima **** 60 Annie V. DHONDT

Table 2 — Upper Upper Maastrichtian bivalves from the In the Crimea in several localities (near Bakhchisaray: Maastrichtian type area; Kunrade contains an Up­ Salachik; Skalistoe; near Belogorsk: Belaja Skala - also per but not uppermost Maastrichtian fauna. called Akkaja - and a few others), the assemblage unit XXIII of A l e k s e e v (1989) contains a very rich bivalve Me Md Kunrade fauna (Table 3) indicating a very shallow, warm environ­ + + + Pinna decussata ment. A s in Maastricht, mainly the taxa with calcitic “Pteria” approximata + shells are preserved, and others such as nuculids, luci- Hypoxytoma danica + nids, pholadomyids are only found in steinkem preserva­ Pseudoptera coerulescens + + tion. Spyridoceramus tegulatus + The youngest Crimean Cretaceous strata, i.e. member Tenuipteria argentea + + XXIV of A l e k s e e v (1989), best visible at Belbek, with a thickness of up to 5 m, form a short transgressive impulse, Isognomon tripterus + + + resulting in marls with numerous Neobelemnella kazimir- Limatula decussata + oviensis, and numerous bivalves (Table 3) /large smooth Li. kunradensis + + + pectinids, and more planktonic Foraminifera than in the Plagiostoma hoperi + + very shallow-water member XXIII (A l e k s e e v & K o p a e ­ + PI. sowerbyi v i c h , 1997) (Table 3). Pseudolimea denticulata + + 9

Ps. granulata + + M a n g y s h l a k Ctenoides dunkeri + + In N. Mangyshlak the relatively deep-water chalk Maas­ Ct. muricata + + trichtian sections at Kyzylsay and Koskak (see in K o p a e ­ Ct. tecta + + v ic h & B enjamovskii , this volume, p. 000) have a ter­ minal Cretaceous chalk unit (2-2.5 m) with an assem­ Ct. vogeli + blage of more belemnites and diverse planktonic forami­ Limaria ovata + nifera; bivalves are relatively rare. As in the Maastrich­ + + + Pycnodonte vesicularis tian near Maastricht and in the Crimea only pteriomorphs P. vesicularis “minor” + are preserved with shells. Probably because the Mangysh­ Hyotissa semiplana + + lak chalks are fairly “ deep water” deposits they contain a Amphidonte auricularis + relatively poor bivalve assemblage: A. decussata + + Lower Maastrichtian: pteriids (Pseudoptera coerules­ Ceratostreon pliciferum + cens), oysters (Pycnodonte sp. , Hyotissa semiplana,? Giyphaeostrea canaliculata + Amphidonte sp. ), pectinids (Microchlamys “pulchella”, Agerostrea ungulata + + Neithea sexcostata); Upper and uppermost Maastrichtian: pteriids (Pseu­ Rastellum s p . + doptera coerulescens), a few limids (Plagiostoma sp. , Acutostrea s p . + + Pseudolimea sp. ), oysters (Pycnodonte similis, Hyotissa Entolium membranaceum + + + semiplana,? Amphidonte sp. ) almost no pectinids (a few Syncyclonema haeggi + + Microchlamys sp., Merklinia sp. and Neithea sexcostata), Sy. nilsoni + + spondylids (Spondylus dutempleanus). Also present in Sy. semiplicata + + the Upper Maastrichtian of Mangyshlak until just under Camptonectes virgatus + + the К/T boundary is the inoceramid Tenuipteria argentea. Microchlamys acuteplicata + Mi. campaniensis + + D a n ia n Mi. pulchella + In the Danian in Mangyshlak, as is also the case in some localities on the Russian platform (A rkhanguelsky , Mi. subinflexa + 1905), just above the К/T boundary level Pycnodonte Lyropecten ternatus + + + similis is still found but none of the other bivalve taxa Chlamys faujasi + + known from the Maastrichtian (see above) seem to cross Mimachlamys cretosa + + + this boundary. Merklinia trigeminata +

Me. variabilis + + The Danian, as far as present in the three areas (J a g t , Neithea quinquecostata + 1996; N a i d i n , 1987; 1997; N a id in & K o p a e v i c h , 1988) is Ne. regularis + + + often separated from the Maastrichtian by a short time Ne. sexcostata + + hiatus. The Lower (but not lowermost) and “ middle” Ne. striatocostata + + + Danian contain a not very diversified, fairly cool water molluscan fauna (G l i b e r t , 1973; G l i b e r t & V a n d e Spondylus dutempleanus + + + P o e l , 1973; J a g t & J a n s s e n , 1988). The climate must + + Sp. subplicatus have warmed up progressively and the Upper Danian Liopistha aequivalvis + + + fauna, especially in the Crimea, is definitely a warm Maastrichtian bivalve from Maastricht, Crimea, Mangyshlak 61

Table 3 — Maastrichtian bivalve faunas from Crimea. Abbreviations: Ак: Akkaya; St: Starocelje; Sk: Skalistoe; others: i.e. Beshkosh, Glubokij Yar, Feodosia; 1: Lower Maastrichtian; 2: Upper Maastrichtian.

Ak 1 Ak 2 St 1 St 2 Sk 1 Sk 2 oth 1 oth 2 Hypoxytoma danica + Pseudoptera coerulescens Tenuipteria argentea + Pycnodonte mirabilis + + + P. vesicularis + + + + + + Hyotissa semiplana + + + Amphidonte auricularis + + + A. decussata + + + + + + + A. goldfussiana + + Ceratostreon pliciferum + + Gryphaeostrea canaliculata + + + Agerostrea ungulata + + Rastellum sp. + + + + Acutostrea sp. + "Ostrea” biconvexa + Entolium membranaceum + Camptonectes virgatus + + Microchlamys acuteplicata + + + + Mi. pulchella + Chlamys denticulata + + + Lyriochlamys septemplicata + + Merklinia trigeminata + + + Neithea sexcostata + + + + Spondylus dutempleanus + + + + Limatula decussata + + + Li. kunradensis + Li. semisulcata + Plagiostoma cretaceum + PI. hoperi + PI. marrotianum + + + PI. sowerbyi + Pseudolimea granulata + ? Ps. geinitzi + + + Crassatella arcacea + Leptosolen sp. + Panope sp. + Liopistha aequivalvis + + +

water fauna. A similaj change in climate is also illustrated uppermost Campanian (lower Maastrichtian in the Maas­ for the microfauna of Mangyshlak by K o p a e v i c h & tricht area) to shallow limestones, calcareous sandstones B eniamovskii (this volume). and siltic limestones (in Crimea) at the top Maastrichtian] and in community structures in the Maastrichtian (envir­ onments vary from deep to extremely shallow water) are Conclusions seen. — The Upper (but not uppermost) Maastrichtian bivalve — In the Maastricht area, Mangyshlak, and the Crimea faunas in the stratotypical Maastricht area (Nekum and similar trends in sedimentology [from chalk facies in lower Meerssen Members) and in the Crimea (assem­ 62 Annie V. DHONDT

blage XXIII of A l e k s e e v , 1989) are highly diversified tellum pectinatum (Lamarck) and R. deshayesi (Fischer and typical of a shallow, probably littoral, relatively de Waldheim) in literature] and from the large and warm environment with a Tethys influence. Near Maas­ equally thick-shelled Pycnodonte radiata (Fischer de tricht these faunas even contain rudists. Waldheim) and P. mirabilis (Rousseau in Huot). — The uppermost Maastrichtian bivalve faunas in the The Upper Maastrichtian faunas (Nekum and stratotypical area (“ middle” Meerssen Member up to the p. p. Meerssen members) in the Maastrichtian type area Berg en Terblijt Horizon) contain a less diverse fauna contain, at approximately the same level as assemblage with no obvious warm water taxa. The bivalve fauna of XXIII in Crimea, small rudists indicating a Tethyan warm faunal assemblage XXIV in the Crimea is also more water influence, but the oysters (and other pteriomorph restricted (mainly oysters and smooth pectinids). taxa) do not reach the shell thickness nor the size of the — The Upper Maastrichtian bivalve fauna in the Man­ Crimean specimens. I assume that the sea grass commu­ gyshlak outcrops is not diverse. It contains no real littoral nity in which they lived was deeper/colder than the taxa, and its fauna can be considered as a ‘ ‘white chalk’ ’ Crimean environment - possibly about 5 - 15 m depth. fauna, representing a deeper/colder water fauna. It does As stated above, the Mangyshlak Upper Maastrichtian not contain all typical Lower Maastrichtian “ Schreib- was even deeper and definitely colder, without littoral kreide” taxa, which do occur in the Crimea and in the taxa. Vijlen Member of the Gulpen Formation in the Maas­ — The bivalve faunas from the three areas concerned trichtian stratotypical area. bring complementary data for the evolution and extinc­ — Biostratigraphically, the uppermost Maastrichtian tion of such bivalve groups as the rudists (only around strata of the three regions considered contain the belem­ Maastricht), inoceramids (Tenuipteria only in Maastricht nite Neobelemnella kazimiroviensis and the inoceramid and Mangyshlak in sufficient numbers), exogyrine oy­ Tenuipteria argentea. However, N. kazimiroviensis has a sters and the Neitheinae. They also illustrate that e.g. the different vertical extension in the three regions - in Man­ Pycnodonteine oysters survived the К/T boundary with­ gyshlak it is present throughout the Upper Maastrichtian, out the slightest problem. This can be explained by their whereas in the Maastricht area only the uppermost Maas­ adaptation to deeper seawater. trichtian “middle” Meerssen Member contains rare N. kazimiroviensis. Similarly, Tenuipteria argentea occurs often in the Nekum and Meerssen members of the Maas­ tricht Fm. and also in Mangyshlak it is present throughout Acknowledgements the Upper Maastrichtian. In the Crimea it is extremely rare: I have seen so far only two specimens - one from Many colleagues and friends over the years helped in this bivalve the Besh Kosh outcrop near Bakhchisaray and one from research. For the present paper I would especially like to thank A. S. Alekseev, A. A. Atabekian, V. N. Beniamovskii, J. M. Hancock, near Feodosia. J. W. M. Jagt, L. F. Kopaevich, D. P. Naidin, A. M. Nikishin, E. — Environmentally, the Crimean Maastrichtian bivalve Steurbaut. I am also very grateful to the MGU students at Polygon (1996, 1997, 1998) who collected a surprising number of unexpected faunas of assemblage XXIII (A l e k s e e v , 1989) probably and interesting taxa. represent the “warmest” episode, as can be assumed At the KB IN I thank for various help in the course of this research D. from the very large and thick-shelled Rastellum sp. [itas- Anne, R. Cremers, H. De Potter and W. Miseur.

References

A l e k s e e v , A . S., 1989. Cretaceous System. In: M a z a r o v ic h , valvia, ) of the European boreal Cretaceous. Bulletin O. A . & M il e e v , V. S., Geologic structure of the Kacha uplift of Institut royal des Sciences naturelles de Belgique 47, 32: 95 pp. Mountain Crimea. Mesozoic Stratigraphy, pp. 123-157. Mos­ D h o n d t , A. V., 1972a. Systematic revision of the Chlamydinae cow University, Moscow (in Russian). (Pectinidae, , Mollusca) of the European Cretaceous. A l e k s e e v , A . S. & K o p a e v ic h , L. F., 1997. Foraminiferal Part 1 : Camptonectes. Bulletin Institut royal des Sciences natu­ biostratigraphy of the uppermost Campanian-Maastrichtian in relles de Belgique - Sciences de la Terre, 48, 3: 60 pp. SW Crimea (Bakhchisaray and Chakhmakhly sections). Bulle­ tin Institut royal des Sciences naturelles de Belgique. Série D h o n d t , A. V., 1972b. Systematic revision of the Chlamydinae Sciences de la Terre 67: 103-120. (Pectinidae, Bivalvia, Mollusca) of the European Cretaceous. Part 2: Lyropecten. Bulletin Institut royal des Sciences natu­ A rkhanguelsky , A . D., 1905. Sur quelques Ostrea du Paléo­ relles de Belgique - Sciences de la Terre, 48, 7: 80 pp. cène et du Crétacé supérieur de la Russie. Annuaire géologique et minéralogique de la Russie, VII, 7: 1 - 27. D h o n d t , A. V., 1973a. Systematic revision of the subfamily

B l e s s , M., 1989. Event-induced changes in Late Cretaceous to Neitheinae (Pectinidae, Bivalvia, Mollusca) of the European Early Paleocene ostracode assemblages of the SE Netherlands Cretaceous. Mémoires Institut royal des Sciences naturelles de and NE Belgium. Annales de la Société géologique de Belgi­ Belgique, 176: 101 pp. que, 112: 19 - 30. D h o n d t , A. V., 1973b. Systematic revision of the Chlamydinae D h o n d t , A. V., 1971. Systematic revision of Entolium, Pro- (Pectinidae, Bivalvia, Mollusca) of the European Cretaceous. peamussium (Amusiidae) and Syncyclonema (Pectinidae, Bi- Part 3: Chlamys and Mimachlamys. Bulletin Institut royal des Maastrichtian bivalve from Maastricht, Crimea, Mangyshlak 63

Sciences naturelles de Belgique - Sciences de la Terre, 49, 1 : (d’Orbigny, 1841) from The Netherlands and Belgium. Bulletin 134 pp. Institut royal des Sciences naturelles. Sciences de la Terre, 68:

Dhondt, A . V ., 1976. Systematic revision of the Chlamydinae 129-154. (Pectinidae, Bivalvia, Mollusca) of the European Cretaceous. J a g t , J. W. М., F e l d e r , W. М., D o r t a n g s , R. W. & S e v e r ijn s , Part 4: Merklinia. Bulletin Institut royal des Sciences naturelles J., 1996. Cretaceous-Tertiary boundary in the Maastrichtian de Belgique - Sciences de la Terre, 51, 7: 38 pp. type area (SE Netherlands, NE Belgium); a historical account. D h on dt, A. V., 1989. Late Cretaceous Limea (Pseudolimea) Geologie en Mijnbouw 75, 2-3: 107-118. species of Europe. Bulletin Institut royal des Sciences natu­ J a g t , J. W. M. & J a n s s e n , A. W., 1988. The Danian in the relles de Belgique - Sciences de la Terre, 59: 105-125. Maastrichtian type area (SE Netherlands, NE Belgium): past,

D hondt, A. V. & Ja g t , J. W. М., 1987. Bivalvia uit de Kalk- present and future research. Mededelingen Werkgroep Tertiair steen van Vijlen in Hallembaye (België). Grondboor en Hamer, Kwartair Geologie, 25: 213-223. 41: 78-90. K o p a e v ic h , L. F. & B eniamovskii, V. N ., 1999. Foraminiferal D hondt, A. V. & J a g t, J. W. М., 1988. Upper Cretaceous distribution across the Maastrichtian/Danian boundary of Man­ Liopistha species in North Western Europe. Bulletin Institut gyshlak Peninsula (West Kazakhstan). Bulletin Institut royal royal des Sciences naturelles de Belgique - Sciences de la des Sciences de la Terre, 69, Supplement A: 129-145. Terre, 58: 187-197. L ie b a u , A., 1978. Palâobathymetrische und palâoklimatische Dhondt, A. V., N a id in , D. P., L e v in a , A. P. & S im o n , E., 1996. Verànderungen im Mikrofaunenbild der Maastrichtter Tuffk- Maastrichtian faunas from the Turgay Strait (northern Kazakh­ reide. Neues Jahrbuch jiir Geologie und Palàontologie, Abhan- stan). Mitteilungen aus dem Geologisch-Palâontologischen In­ dlungen, 157: 233-237. stitut der Universitat Hamburg, 77: 49-65. M a k a r e n k o , D. E., 1961. Moliyuski paleotsenovikh vidkladiv D ob rov, S. A. & P a v lo v a , М. М., 1959. “ Inoceramidae” in Krimu. Akakemii Nauk Ukrainsjkoi RSR, Kiiv. I l l pp. (in M oskvin, М. М., (Editor). Atlas of the Upper Cretaceous fauna Ukrainian). of the Northern Caucasus and Crimea. Trudy V n iig a z , Mos­ M a l c h u s , N ., 1990. Revision der Kreide-Austem (Bivalvia: cow. pp. 130-165 (in Russian). Pteriomoiphia) Àgyptens (Biostratigraphie, Systematik). Berli­ Faujas-d e-S a in t -F o n d , B. 1799? 1802. Histoire naturelle de la ner Geowissenschaftliche Abhandlungen A 125: 231 pp. Montagne de Saint-Pierre de Maëstricht. Paris, 263 pp. N a id in , D. P., 1973. On the relationship between small units in Felder, W. M. & B o sc h , H. W., in press. Afzettingen uit het biostratigraphy and those in palaeobiogeography. Byulletin Boven-Krijt en Danien in Zuid-Limburg en omgeving. Geolo­ moskovskogo Obshchestva Ispitatiley Prirody, otdel geologi- gie van Nederland (Rijks Geologische Dienst). cheskij, 48: 50 - 63 (in Russian).

Fischer de W a l d h eim , G., 1835. Lettre à Monsieur le Baron de N a id in , D. P., 1986. Cretaceous/Tertiary boundary in Mangysh­ Férussac sur quelques genres de coquilles du Muséum Démi- lak and proposed events on the limit of the Maastrichtian and doff et en particulier sur quelques fossiles de la Crimée. Bulletin Danian. Izvestia vuzov. Geologia i razvedka, 9: 3-13 (in Rus­ Société impériale des Naturalistes de Moscou, 8: 101-119 sian). Glibert, M., 1973. Revision des Gastropoda du Danien et du N a id in , D. P., 1987. The Cretaceous-Tertiary boundary in Montien de la Belgique. I. Les Gastropoda du Calcaire de Mangyshlak, USSR. Geological Magazine, 124: 13-19. Mons. Mémoires Institut royal Sciences naturelles de Belgique, N a id in , D. P., 1997. On the two types of Cretaceous/Paleogene 173: 116 pp. boundary. Doklady Akademii Nauk, 352: 369-373 (in Russian).

Glibert, M. & V a n d e P o e l , L., 1973. Les Bivalvia du Danien N a id in , D. P., B e n ja m o v s k y , V. N ., & K o p a e v ic h , L. F., 1984. et du Montien de la Belgique. Mémoires Institut royal Sciences Methods of transgression and regression study (exemplified by naturelles de Belgique, 175: 89 pp. Late Cretaceous Basins of West Kazakhstan). 164 pp. Moscow Goldfuss, A., 1833-1841. Petrefacta Germaniae. Arnz & С о, University Press (in Russian). Düsseldorf. 312 pp. N a id in , D. P., B e n ’y a m o v s k y , V. N . & K o p a e v ic h , L. F., 1996. Gorbach, L. P., 1972. Stratigrafiya i fauna molliuskov rannego Palaeocene reference sections of Mangyshlak. Stratigraphy and Paleotsena Kryma. Izdatelstvo “ Nedra” , Moskva. 115 pp. (in geological Correlation, 4, 3: 254 - 268. Russian). N a id in , D. P. & K o p a e v ic h , L. F., 1988. Intraformational Jagt, J. W. M., 1995. The Maastrichtian of the Type Area breaks in the Upper Cretaceous of Mangyshlak. 140 (Southern Limburg, The Netherlands): recent developments. pp. Moscow University Press (in Russian).

Field excursion Al. Second International Symposium on Cre­ N a id in , D. P., K o p a e v ic h , L. F., M o s k v in , М. М., S h im a n s - taceous Stage Boundaries Brussels 8-16 September 1995, 15 k a y a , N . V., K alinichenko , G. P. & A n d r e e v , Yu. N ., 1990a. pp. Macropalaeontological data on the Maastrichtian/Danian Jagt, J. W. М., 1996. Late Maastrichtian and Early Palaeocene boundary from continuous sections in Mangyshlak. Izvestia index macrofossils in the Maastrichtian type area (SE Nether­ Akademii Nauk SSSR, Serija Geologija, 11: 3-15 (in Russian). lands, NE Belgium). Geologie en Mijnbouw 75, 2-3: 153-162. N a id in , D. P., K o p a e v ic h , L. F., M o s k v in , М. М., S h im a n s - Jagt, J. W. М., 1999. An overview of Late Cretaceous and k a y a , N . V., K alinichenko , G. P. & A n d r e e v , Y u . N ., 1990b. Early Palaeogene echinoderm faunas from Liège-Limburg Micropalaeontological data on the Maastrichtian/Danian (Belgium-The Netherlands). Bulletin Institut royal des Scien­ boundary from continuous sections in Mangyshlak. Izvestia ces naturelles. Sciences de la Terre, 69 - Supplement А: ЮЗ- Akademii Nauk SSSR, Serija Geologija, 12: 68-82 (in Russian).

118. N ik is h in , A . М., A l e k s e e v , A . S ., K o p a e v ic h , L. F., Y a n in , B. Jagt, J. W. М., D o n o v a n , S. К., D e c k er s, M. J. М., D o r t a n g s, T., B araboschkin , E. J. & V. V. Y u t s is , 1993. Crimea Field R. W., K u y p e r s, М. М. M. & V eltk a m p, C. J., 1998. The Late Guide Book. Cretaceous-Eocene sedimentation in the Shelf Maastrichtian bourgueticrinid crinoid Dunnicrinus aequalis Alma Basin of the Cimmerian mobile belt (Crimea): eustatic 64 Annie V. DHONDT

and tectonic influences. Sequence stratigraphy workshop. Book Zuid-Limburg. Jaai-verslag van de Rijksopsporing van Delf- 4. Crimea Field Guide Book. University of Amsterdam and stoffen over 191 T. 48-57. Moscow State University. Department of Historical Geology V il l a in , J.-M., 1977. Le Maastrichtien dans sa région type and Centre for Marine Geology and Geophysics. 74 pp. (Limbourg, Pays-Bas). Etude stratigraphique et micropaléonto- O r b ig n y , A. d’, 1850. Prodrome de Paléontologie stratigraphi- logique. Palaeontographica A 157: 1-87. que universelle des animaux mollusques et rayonnés. II. Bival­ via cretacica: 72-84, 117-120,135-139,151-171,194-198,233- V o g e l , F., 1895. Beitràge zur Kenntniss der hollàndischen 257. Kreide. 66 pp. Brill, Leiden & Friedlander, Berlin. R o u s s e a u , L. in Ниот, J.J.N. in D e m id o f f , A. 1842. Descrip­ W a l l e r , T. R., 1978. Morphology, morphoclines and a new tion des principaux corps organiques fossiles, in: Voyage dans classification of the Pteriomoiphia (Mollusca: Bivalvia). Phi­ la Russie méridionale et la Crimée. Tome II. losophical Transactions o f the royal Society of London, В 284: S c h l o t h e im , E. T. von, 1813. Beitràge zur Naturgeschichte der 345-365.

Versteinerungen in geognostischer Hinsicht. Leonhard’s Z ie g l e r , P. A., 1990. Geological Atlas of Western and Central Taschenbuch fur Mineralogie, 7: 112-113. Europe. Second Ed. Shell Internationale Petroleum Maatschap- S c h l o t h e im , E. T. von, 1820 -1823. Die Petrefactenkunde und pij В. V., 239 pp., 56 enclosures, The Hague. Nachtràge zur Petrefactenkunde. pp. III-LXII, 1-437, Gotha.

S o b e t s k i, V . A., 1977. Dvustvorchatie Mollyuski pozdneme- Annie V. D h o n d t lovikh platformennikh morej. Trudy paleontologicheskogo in­ Paléontologie, stituta Akademii nauk SSSR 159: 256 pp. (in Russian). Koninklijk Belgisch Instituut

S o b e t s k i, V . A., N e k h r ik o v a , N. I., B a l a n , T. M ., P l a m a d y a - voor Natuurwetenschappen l a , G. S ., M aslennikova , L. N ., S avchinskaya , О. V ., K u z ­ Vautierstraat 29, m ic h e v a , E. I., B eniamovskii, V . N ., V olchegurskij, L. F., В - 1000 Brussels, Belgium 1982. Atlas bespozvonochnikh pozdnemelovikh morej Prikas- [[email protected]] pijskoj vladini. Trudy paleontologicheskogo instituta Akademii nauk SSSR, 187: 254 pp. (in Russian).

U h l e n b r o e k , G. D., 1912. Het Krijt van Zuid-Limburg. Toe- Typescript submitted: 15.2.1999 Iichting bij eene geologische kaart van het Krijt-gebied van Revised typescript received: 20.4.1999

Explanation of Plate

Some Maastrichtian bivalves from the Crimea

' Fig. 1 — ? Hypoxytoma danica (Ravn): left valve, Upper Maastrichtian, Starocelje, S. side of the valley, near Bakhchisaray; Museum of MGU at Polygon, Crimea; no n°; x 4. Fig. 2 — Pseudolimea geinitzi (von Hagenow): left valve, Upper Maastrichtian, Skalistoe, Bakhchisaray region; Museum of MGU at Polygon, Crimea; n° m 143, x 4. . Fig. 3 — Neithea striatocostata (Münster in Goldfuss): convex valve, Upper Maastrichtian, quarry at 455.7 lower than southern side, at 150 m from the road Stavok, Bakhchisaray region; Museum of MGU at Polygon, Crimea; n° m 183, x 2.5. Fig. 4 — Liopistha aequivalvis (Goldfuss): right valve, Upper Maastrichtian, near Glubokii Yar, Bakhchisaray region; Museum of MGU at Polygon, Crimea; n° m 180, x 2. Fig. 5 — Pseudolimea cf. granulata (Nilsson): right valve, steinkem, Upper Maastrichtian, “ assemblage XXIII” of A l e k s e e v (1989), Skalistoe, Bakhchisaray region; Museum of MGU at Polygon, Crimea; no number, x 4.5. Fig. 6 — Tenuipteria cf. argentea (Conrad): right valve, Upper Maastrichtian, near Feodosia, E. Crimea, Museum of MGU at Polygon, Crimea; n° m 15/2, x 3.

BULLETIN DE L’INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE SCIENCES DE LA TERRE, 69-SUPP. A: 67-86, 1999 BULLETIN VAN НЕТ KONINKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN AARDWETENSCHAPPEN, 69-SUPP. A: 67-86, 1999

Biostratigraphical and sequence correlation of the Cenomanian successions in Mangyshlak (W. Kazakhstan) and Crimea (Ukraine) with those in southern England by Ал drew S. GALE, Jake M. HANCOCK & W. James KENNEDY

Abstract Резюме

Cenomanian successions in southern England (UK), Crimea (Ukraine) Сеноманские отложения на юге Англии, в Крыму (Украина) и and Mangyshlak (Western Kazakhstan) are briefly described and the на полуострове Мангышлак (Западный Казахстан) кратко evidence for biostratigraphical correlation, based on ammonites and описаны, и данные биострахиграфической корреляции, inoceramid bivalves is reviewed in the light of new discoveries. Our опирающиеся на аммонитов и иноцерамид, заново изучены в conclusions differ significantly from those of previous authors in that: i) we date the base of the Cenomanian in Crimea as early M. dixoni свете новых открытий. Наши заключения значительно Zone age, rather than M. mantelli Zone age, and ii) most of the отличаются от заключений предыдущих авторов по supposed Middle Cenomanian in Mangyshlak is more correctly следующим пунктам: і) основание Сеномана в Крыму placed within the Lower Cenomanian M. dixoni Zone. Sedimentologi- относится к нижней части зоны М. dixoni, а не к зоне М. cal evidence from the Crimea and Mangyshlak is used to construct mantelli, и іі) большая часть предполагаемого среднего a sequence stratigraphical interpretation for each of these regions. Сеномана на полуострове Мангышлак на самом деле The sequences thus identified are correlated by ammonite and inocer­ находится в зоне М. dixoni нижнего Сеномана. amid biostratigraphy with those described previously (1-6) from the Anglo-Paris Basin. The Crimean succession is very similar in Седиментологические признаки пород, наблюдаемых в both facies development and the distribution and extent of hiatuses Крыму и на полуострове Мангышлак, используются для to the marly chalk succession of the northern Anglo-Paris Basin, установления стратиграфических секвенций в разрезах and sequences 3-6 are identified. In the shallower water sandy and каждого из этих районов. Секвенции, идентифицированные marly successions in Mangyshlak sequences 1, 2, 3, 5 and 6 are таким образом, сопоставляются на основе аммонитов и identified. 4 is missing within a major hiatus which extends across иноцерамид с секвенциями, описанными ранее ( 1 - 6 ) в Mangyshlak. англо-парижском бассейне. Последовательность отложений в Key words: Cenomanian, Europe, Kazakhstan, biostratigraphy, se­ Крыму очень похожа на последовательность карбонатных quences. отложений северной часта англо-парижского бассейна, как с точки зрения фациальной изменчивости, так и положения и объемов перерывов. Были идентифицированы секвенции 3 - Résumé 6. В мелководных мергелистых и песчаных отложениях на Мангышлаке установлены секвенции 1, 2, 3, 5 и 6. Des successions cénomaniennes dans le sud de l’Angleterre (UK), 4 попадает внутрь главного перфыва, развитого на всем en Crimée (Ukraine) et dans le Mangyshlak (Kazakhstan occidental) полуострове Мангышлак. sont brièvement décrites et les critères de corrélation biostratigraphi- que basés sur les ammonites et les bivalves inocéramidés sont réexa­ Ключевые слова: Сеноман, Европа, Казахстан, minés à la lumière de nouvelles découvertes. Nos conclusions diffè­ биостратшрафия, секвенции rent de façon significative de celles des auteurs précédents sur les points suivants: i) l’âge de la base du Cénomanien en Crimée est celui de la Zone à M. dixoni inférieure plutôt que de la Zone à M. mantelli, et ii) la majeure partie du Cénomanien moyen supposé du Mangyshlak est placée plus exactement dans la Zone à M. dixoni du Cénomanien Introduction inférieur. Des critères sédimentologiques observés en Crimée et dans le Mangyshlak sont utilisés pour établir une interprétation stratigra- phique séquentielle dans chacune de ces régions. Les séquences The Cenomanian Stage affords one of the best opportu­ ainsi identifiées sont corrélées sur base des ammonites et des ino­ nities for development of ultra-high resolution stratigra­ céramidés avec celles décrites précédemment (1-6) dans le Bassin phy in the Mesozoic, because it contains an ammonite anglo-parisien. La succession en Crimée est très semblable à la fois dans le développement des facies ainsi que la distribution et l’exten­ fauna of widespread distribution which enables correla­ sion des hiatus, à la succession de craie marneuse de la partie nord tion with a resolution of nearly 0.3 Ma and displays a du Bassin anglo-parisien; les séquences 3-6 ont été identifiées. Dans strong decimetre-scale rhythmicity which provides the les successions gréseuses et marneuses, d’eau moins profonde du Mangyshlak, les séquences 1, 2, 3, 5 et 6 ont été reconnues. 4 est basis for an orbitally-tuned timescale (G a l e , 1989a, absent et se place dans un important hiatus présent dans le Man­ 1995; G a l e et al., in press.). Furthermore, the overall gyshlak. (“ first order” ) sea-level rise which occurs throughout the Mots-clefs: Cénomanien, Europe, Kazakhstan, biostratigraphie, sé­ Cenomanian (H a q et al. 1988) is expressed in shallow quences. marine successions as a series of progressively onlapping 68 Andrew S. GALE, et al. 1000km Biostratigraphical and sequence correlation 69 sequences of which 6 have been identified in western succession, from 20-40% near the base to <5% in the Europe (R o b a s z y n s k i et al., 1992, 1998; O w e n , 1996) White Chalk. The Lower Chalk is conspicuously rhyth­ and Tunisia, north Africa (R o b a s z y n s k i et al., 1993). mic on a decimetre-scale in many sections, and beds of These sequences have a mean duration of 0.8 m.y. and more carbonate-rich fine grained calcisphere-foraminif- represent eustatic sea-level rises. A 513 С curve through eral packstone or wackestone alternate with marlier the Cenomanian contains a number of distinctive positive wackestones. The rhythmic couplets can be correlated excursions which aid correlation with successions lacking between sections and have been used as the basis for an a good biostratigraphical record (J e n k y n s et al., 1994). orbital timescale (G a l e , 1990, 1995). Ammonites are common in the Lower and Middle Cenomanian but rather In this paper, we describe in outline the lithological and scarce in the Upper Cenomanian (K e n n e d y , 1969). In­ faunal successions of selected Cenomanian localities in oceramid bivalves are common throughout. The carbon southern England, Crimea and Mangyshlak (Fig. 1). The and oxygen isotope stratigraphy of the Cenomanian has localities are separated by very considerable distances; been described by J e n k y n s et al. (1994). Crimea is 2,600 km east of southern England, and Man­ gyshlak is 1,300 km east of the Crimea. Our descriptions LOWER CENOMANIAN are based both on the available literature and our own The basal Cenomanian rests with sharp disconformity observations, which provides a personal overview of the upon the Late Albian Gault Clay, the disconformity re­ successions, although our experience of the Mangyshlak presenting a gap of about 1-2 Ma (G a l e et al., 1996). The sections was limited to a week. We review the evidence basal few metres comprise the Glauconitic Marl Mem­ for biostratigraphical correlation between the 3 regions, ber, a sandy glauconitic marl which locally (e.g. Isle of on the basis of material described and figured in the Wight; K e n n e d y , 1969, 1971) yields abundant phospha- literature and new specimens which we have collected tised ammonites of the Neostlingoceras carcitanense ourselves and figure here. Lastly, we use sedimentologi- Subzone. The lower part of the overlying Chalk Marl cal data to identify the Cenomanian sequences described Member (marly chalks) contains ammonites character­ in western Europe by O w e n (1996) and R o b a s z y n s k i et istic of the overlying Sharpeiceras schlueteri Subzone al. (1998) in the Crimea and the Mangyshlak Hills. (G a l e , 1995) associated with an acme of large Inocer­ amus crippsi crippsi Mantell (G a l e , 1989b, 1995). In more condensed successions, like those developed at South-east England, Anglo-Paris Basin Eastbourne in Sussex and on the Isle of Wight, unphos- phatised fossils of this assemblage are incorporated in the The Anglo-Paris Basin is situated in northern France and matrix of the Glauconitic Marl, which contains a rich southern England, and during the Cenomanian was sur­ phosphatised fauna of the carcitanense Subzone (K e n n e ­ rounded by the Comubian, Armorican and London-Bra- d y 1969, 1971; W r ig h t et al., 1984). The highest part of bant Massifs and the Massif Central (R o b a s z y n s k i et al., the M. mantelli Zone is poorly fossiliferous at Folkestone, 1998). In these marginal areas the sea was shallow, and but to the west (Sussex, Isle of Wight) includes abundant thin, frequently condensed clastic deposits accumulated Mantelliceras saxbii (Sharpe) and comprises the M. sax- (e.g. JuiGNET, 1974; K e n n e d y , 1970). In the deeper north­ bii Subzone (K e n n e d y , 1969; G a l e , 1995). ern part of the Anglo-Paris Basin, a more complete succession of marly chalks was deposited. Our account The upper boundary of the M. mantelli Zone coincides here is based upon the section between Dover and Folk­ approximately with a burrowed erosion surface at Folk­ estone, Kent, UK (J u k e s -B r o w n e & H il l , 1903; K e n n e ­ estone and elsewhere in the northern Anglo-Paris Basin dy, 1969; G a l e , 1989b; J e n k y n s et al. 1994; Fig. 2 here­ (G a l e , 1989b; R o b a s z y n s k i et al., 1998). The surface is in) with faunal and other data drawn from correlative overlain by coarse chalks containing mineralised intra- sections in Sussex and the Isle of Wight. clasts which locally yield indigenous, unmineralised spe­ cimens of the ammonite M. dixoni Spath. The first ap­ LITHOLOGY AND GENERAL FEATURES pearance of this species in southern England is coincident In south-east England, the Cenomanian Stage is repre­ with the first appearance of virgatus (Schlue- sented by 50-70 metres of variably marly chalks (Lower ter) which occurs in great abundance in the lower part of Chalk Formation) and the basal 1-7 metres of the over­ the M. dixoni Zone. Five metres above the base of the lying White Chalk Formation (Fig. 2). At the base of the zone, there is a marked increase in carbonate, and a group Lower Chalk a thin transgressive unit containing quartz of 5 closely spaced limestones (В 11-15) contain an acme sand and glaucony is generally present. There is an over­ of I. virgatus and numerous ammonites. The higher part all decrease in clay content up through the Lower Chalk of the M. dixoni Zone yields few age-diagnostic ammo­ nites in the Anglo-Paris Basin, and there is a gap of some 10 metres above the highest Mantelliceras and beneath

KENT ammonite li th. lithology faunal qz. gl. ph. omission sy st ems sequences zones units abundance surfaces tracts

cr /4 nodaso ides

< 5 0 - : 2 О HS z Ш A сап th. u DIS СГ rhotom . d) Ш W _I Q C0- Q Om.J T5T

TS

C unningt. .c in e rm e SMW c S3 Эc о HS 25- Mantelliceras OLS n 2 dix a ni < O jnJ d " 2 MS

m Stoticzkaia < d is p a r Biostratigraphical and sequence correlation 71 occurrence of Cunningtoniceras inerme (Pervinquière) UPPER CENOMANIAN which first occurs in a marly interval (P a u l et al., The Upper Cenomanian contains few poorly preserved 1994; Couplet В37). This species is common at Folkes­ ammonites in the chalk facies of the Anglo-Paris Basin tone and at Southerham in Sussex. The lowest Acantho- (K e n n e d y , 1969) and the contact between the Middle ceras rhotomagense (Brongniart), marking the base of the Cenomanian A. jukesbrownei Zone and the Upper Cen­ eponymous zone, appear in a hard limestone 4 metres omanian C. guerangeri Zone cannot be accurately placed. higher. The top of this limestone (couplet B43) is a The C. guerangeri Zone at Folkestone is a clay-poor, pale burrowed/erosional surface, and is overlain by a dark grey to white chalk which contains two levels containing marly bed containing abundant calcitic bivalves and bra­ abundant small oysters, Amphidonte obliquatum (Pulte- chiopods called the “ Cast Bed.” ney), in the middle part. The same oyster horizons are found in northern Germany (E r n s t & R e h f e l d , 1997; The “Cast Bed” , so-called because of the local abun­ K a p l a n , in press) and the Crimea (see below). The top dance of composite moulds of aragonitic gastropods of the C. guerangeri Zone is ubiquitously marked by the (Ga l e , 1989b), contains rare specimens of the belemnite sub-plenus erosion surface (J e f f e r ie s , 1962, 1963), over- Actinocamaxprimus (Arkhangelsky) (P a u l et al., 1994). lain by the rhythmically bedded marly chalks of the Four metres above, a group of thin limestones contain Plenus Marls Member (M. geslinianum Zone) which abundant Sciponoceras baculoides (Mantell) and the are 2-10 metres in thickness. J e f f e r ie s (1962, 1963) rhynchonellid Orbirhynchia mantelliana (d’Orbigny) to­ was able to trace each of 8 beds within the Plenus Marls gether with diverse ammonites of the Turrilites costatus throughout the expanded succession in the Anglo-Paris Subzone (K e n n e d y , 1969). A correlative abundance of Basin. Features of the Plenus Marls important for correla­ Sciponoceras and Orbirhynchia is present in northern tion into eastern Europe and central Asia include the Germany (M e y e r , 1990) and in the Crimea (M a r c in o w s - abundance of the belemnite Actinocamax plenus (Blain- Kl, 1980; see below). A basinwide increase in carbonate a ville) in Bed 4, and the presence of a S13C positive short distance above the acme of 0. mantelliana marks excursion in the Plenus Marls and the overlying white the base of the Grey Chalk Member. This boundary is chalks (G a l e et al., 1993). approximately coincident with the base of the Turrilites acutus Subzone. The summit of the Plenus Marls marks an important The marls and marly chalks of the A. rhotomagense Zone lithological boundary in the Anglo-Paris Basin; below are very conspicuously rhythmic in southern England and this level, grey-hued marly chalks of the Lower Chalk the couplets (20-40 cm thick) represent the precession Formation include up to 30% clay whereas the overlying cycle (mode at 20 K.y.), with bundles reflecting the short chalks of the White Chalk Formation contain little clay eccentricity cycle (100 K.y.; G a l e , 1989a). Bundles and (generally less than 5%). The basal Ballard Cliff Mem­ couplets can be correlated precisely with the Selbukhra ber comprises nodular calcisphere-rich chalks with thin section in the Crimea (see below). flaser marls and numerous intraclasts. This unit includes rare ammonites of the M. geslinianum and N. juddii The base of the A. jukesbrownei Zone is taken at the first Zones, and the base of the Turonian, defined by the first occurrence of the species. 2 metres above the base of the appearance of rare Watinoceras spp. at Merstham, Kent, zone, 3 thin dark marl beds containing the oyster Pycno­ and Eastbourne, Sussex (W r ig h t & K e n n e d y , 1981), donte are present, overlain by 2-4 metres of massive, falls close to the summit of the Ballard Cliff Member coarse, calcisphere-rich chalk containing laminated struc­ (G a l e , 1996). tures (probably burrow-fills) and large Acanthoceras ju ­ kesbrownei (Spath) (K e n n e d y , 1969). The stratigraphy of SEQUENCE STRATIGRAPHY these beds is constant across the northern Anglo-Paris The criteria used to recognise sequences in the marly Basin (G a l e , 1995, fig. 12), and precisely correlative Cenomanian chalks of the Anglo-Paris Basin have been beds are found in northern Germany and the Crimea described by O w e n (1996) and R o b a s z y n s k i etal. (1992, (see below). 1998). The basal transgressive systems tract of each sequence typically rests upon an erosional surface (se­ quence boundary) and includes a condensed lag, com­ <— monly containing glauconite, quartz sand and mineralised Text-figure 2 — Succession in the Cenomanian Lower ChaUc (phosphatised and glauconitised) intraclasts at the base; Formation between Dover and Folkestone sand and glaucony decrease above in the higher part of (Kent, UK) to show main lithological hori­ the transgressive systems tract. The maximum flooding zons, biostratigraphy and sequence stratigra­ surface is marked by an increase in carbonate content/ phy. Modified after R o b a s z y n s k i et al. decrease in clay, representing the maximum distancing of (1998, fig. 6). Ml-6 refer to marker beds clastic source. Highstand chalks are relatively carbo­ described by G a l e (1989b). I.с .= Inocera- mus crippsi, I.v. = Inoceramus virgatus, nate-rich and evenly rhythmic on a decimetre scale. At O.m. = Orbirhynchia mantelliana, P.v. = the top they are truncated by the succeeding sequence Pycnodonte vesicularis, A. = Amphidonte boundary, marked by an increase in clay content repre­ sp. senting the lowstand. In more marginal condensed sue- 72 Andrew S. GALE, et a l

?*-> erosion surface org-rich maris; fish scales

fine sandy white chalks л disappearance of glauconitic containing thin Rotalipora cushmani marls flaser marls erosion surface E о с 6 0 - hard CD white chalk О 0 о Amphidonte 0с > 1 2 3 4 5 6 7 8 13 VI сг TOC CD CD Aksudere D

5 0 - Amphidonte

massive chalk unit marls о poorly developed toел \ bentonite? Sciponoceras baculoide

4 0 - rhythmically bedded chalk-marl 4t- alternations; a Orbirhynchla on^!?L?t, „? о 0 20 and lOOKyr ) * тзпгеШзпз « Я. cushmani о — Intraclasts. — erosion surface с cyclicity visible -о 0 glauconite ■о Л сг о 0 > СО -о ОQ) /. virgatus common; 0) О rare Mantelliceras m £ С 30- thin hard limestones; ES Sciponoceras in Bed 5 l Orbirhynchla IV \ hiatus: clasts and Selbukhra (N) glauconite

20- ВТ 3 _c Lл common I. virgatus 4-» о irregularly > О) bedded marly С с chalks; B12 0) о I. virgatus'’ +J со common то сз 1 abrupt Increase о “О ВТ 1 L. Ц- tп 0 In carbonate l_ О О o СО С и 4-J і:0 0) 0) сг B8-10 .О CL 4) 0 W +j to о С 10- Ü га CD bentonite? О 5 o _ m I. virgatus common Mantelliceras sp. limestones containing I virgatus coarse glauconitic lag over erosion surface thin conglomerate rests on erosionai glauconitic sandstones ' ï î ÿ/ surface • containing Stoliczkaia 8- glauconitic sandstones В IKacha River Biostratigraphical and sequence correlation 73 cessions, as on the borders of the Anglo-Paris Basin, an stand. An increase in clay content at the level of B34 erosional sequence boundary is commonly overlain di­ marks the contact with the lowstand of overlying se­ rectly by a condensed representative of the overlying quence 4. C. inerme appears a short distance above in transgressive systems tract. In more distal, basinal devel­ B38. 3 therefore corresponds approximately with the M. opments, there is little hiatus between successive se­ dixoni Zone. quences, and marly lowstand deposits are often present; neither glauconite nor intraclasts are present in the trans­ Sequence 4 gressive units. The 6 sequences described in outline The base of couplet Cl (“ Cast Bed” ; G a l e , 1989) con­ below have been identified from the sedimentological tains abundant calcitic fossil debris at Folkestone, and criteria outlined above and correlated biostratigraphically elsewhere in southern England phosphates and glauconite between four separate regions of the Anglo-Paris Basin are present. It is the basal transgressive unit of 4. The (Ro b a s z y n s k i et al., 1998). For a different sequence conspicuous increase in carbonate at the base of the Grey nomenclature, see H a r d e n b o l et al. (1998). Chalk is taken as the maximum flooding surface of this sequence and falls close to the boundary between T. Sequence 1 costatus and T. acutus Subzones. The highstand com­ At Folkestone, the Glauconitic Marl is a condensed trans­ prises strikingly rhythmic chalks which show bundling gressive systems tract at the base of the Cenomanian that corresponds to the short eccentricity cycle. The base succession, resting upon a composite sequence boundary of the A. jukesbrownei Zone falls in the summit of the of Late Albian age (G a l e et al., 1996). The Glauconitic highstand. Marl at Folkestone rarely yields phosphatised ammonites of the N. carcitanense Subzone, but these are abundant in Sequence 5 the southern Isle of Wight (K e n n e d y , 1969, 1971). The An erosional surface at the level of couplet B45 is iden­ lower part of the overlying Chalk Marl represents a tified as a sequence boundary. The overlying couplets maximum flooding surface which lies at the base of the B46-49 contain lenses of winnowed calcite bioclasts and S. schlueteri Subzone (G a l e , 1995). constitute a lowstand deposit. The overlying massive, coarse bed (Dl-8) containing laminated structures Sequence 2 (“Jukes-Browne Bed VII” ; J u k e s -B r o w n e & H il l , The base of this sequence contains phosphatised intra­ 1903) represents slight condensation and contains abun­ clasts and glaucony grains representing a transgressive dant calcispheres and locally phosphatised intraclasts systems tract, and rests non-sequentially upon a hard (Eastbourne). It is identified as a transgressive systems limestone (M 4 of G a l e , 1989b) which is a sequence tract. At the level of couplet D12 an increase in carbonate boundary. The upper part of 2 is developed as marly content and loss of conspicuous rhythmicity represents a chalks at Folkestone. The entire sequence falls within maximum flooding surface. Sequence 5 falls in the upper the M. saxbii Subzone. Sequence 2 is not recognised part of the A. jukesbrownei Zone and includes the entire widely elsewhere in northern Europe (O w e n , 1996). overlying C. guerangeri Zone.

Sequence 3 Sequence 6 The marly chalks of 2 are widely surmounted by an The base of the highest sequence in the Cenomanian is erosional surface, which at Folkestone and elsewhere is taken at the sub-plenus erosion surface which is ubiqui­ overlain by a coarse glauconitic calcisiltite containing tously developed in the northern Anglo-Paris Basin (se­ phosphatised intraclasts representing the basal transgres­ quence boundary at the limit of the C. guerangeri and M. sive part of 3 (Couplet B1 of G a l e , 1995, fig. 4). At geslinianum Zones). Beds 1-3 of the Plenus Marls com­ Southerham, this bed contains the lowest specimens of prise a lowstand, and the Bed 3-4 erosional contact M. dixoni, and is taken as the base of the M. dixoni Zone. represents a transgressive surface (mid - M. geslinianum An increase in carbonate content several metres higher Zone). The prominent increase in carbonate content at the (B11/12 of G a l e , 1995) represents the maximum flood­ top of the Ballard Cliff Member (N. juddii - W. devonense ing surface. The overlying marly chalks represent a high- Zones) marks maximum flooding. For a slightly different interpretation of this sequence, see H a n c o c k (1993).

<— Text-figure 3 — Cenomanian of the Crimea. A, general The Crimea, the Ukraine. succession after N a id in & A l e k s e e v (1980), with their Members I-VII indicated. The Cenomanian succession in the Crimean Highland, 30 B, details of basal Cenomanian in Kacha km south of Simferopol, was described by N a id in & River; possible correlation with precession couplets (Bl-13) in western Europe, numbe­ A l e k s e e v (1981) and N a id in & K iy a s h k o (1994a, b). M a r c in o w s k i red after G a l e (1995). C, Lower-Middle (1980) has described the Cenomanian am­ Cenomanian contact, Selbukhra. D, Late Ce­ monite faunas from the Crimea. Localities in the Crimea nomanian succession at Aksudere. The total described by N a id in & A l e k s e e v (1981) were visited by organic carbon (TOC) data is new. AS G in the summers of 1996 and 1997 with the generous 74

ALBIAN _LOWER CENOMANIAN______MIDDLE CENOMANIAN______UPPER CENOMANIAN Tur M. mantelli Zone M. dixoni Zone A. jukesbrownei Zone M. geslinianum | /V. judd/7 | Sequence 1 Sequence 2 Sequence 3 ■ Sequence 5 | Sequence 6 Andrew S. GALE, GALE, S. Andrew Koksyirtau single fragm ent of of ent fragm single containing pyritised ammonites: ammonites: pyritised containing marls sandy and marls phosphatic conglom erate; erate; conglom phosphatic itted om clebci varians, Schloenbachia dixoni Mantelliceras Schloenbachia etres m 10 Scaphites obliquus. Scaphites Marcinowski r afte Turrilites scheuzerianus Turrilites Watinoceras amadurlense, Watinoceras jukesbrownei Marcinowski Marcinowski juddii, Neocardioceras Actinocamax plenus - Actinocamax nites belem abundant containing containing concretions carbonate throughout; Marcinowski Marcinowski throughout; sands containing containing sands 3 concentrations of phosphatic phosphatic concretions: of concentrations 3 crippsi crippsi crippsi 1995 record record 1995 gentoni G.) ( Mantelliceras erate: Schloenbachia conglom phosphatic et al. et Inoceramus a t base, oysters oysters base, t a etal. Calycoceras sp. Acanthoceras sp. sp., sp., 1995 etal. , after

1995 ,

tai a et

IVa IVb H о и C\J ^ - 0 3 20 Shakh-Bogota 10 - 5 - - & » & » Sulukapy V ? 11 < ^ sparse phosphatic phosphatic sparse ^ tr bde sand -bedded storm storm -bedded sand -bedded storm marls and sandy marls marls sandy and marls limonitised ammonites; ammonites; limonitised small numerous containing Hyphoplites (Karamaites) Placenticeras aumalense, Submanteiliceras mantelli, Mantelliceras erate conglom ammonites; limonitised abundant containing marls Sciponoceras roto Sciponoceras varians, Schloenbachia Turrilites scheuzerianus, Turrilites unfossiliferousfine sands Scaphites Hamites duplicatus Hamites Worthoceras Acanthoceras phosphatic IVb conglomerate; Ophiomorpha containing containing conglomerate phosphatic containing remanié Lower Lower remanié containing conglomérat, phosphatic clebci varians Schloenbachia Inoceramus crippsi crippsi crippsi Inoceramus Mantelliceras ammonites; Cenomanian Turrilites scheuzerianus Turrilites sp., spp. (diverse), (diverse), spp. Schloenbachia sp., ? abundant sp., sp.

sp., sp., sp.

IVa IVa.b

Biostratigraphical and sequence correlation 75

help of A. S. Alekseev, R. R. Gabdullin, L. F. Kopaevich, section. The entire Lower Cenomanian thickens north­ T. A. Kuzmicheva and A. M. Nikishin from Moscow wards to Kremennaya Mountain (Naidin & Alekseev, University. The succession is summarised in Fig. 3. 1981). The highest few metres of the Lower Cenomanian again contains thin, evenly spaced limestones, and has LITHOLOGY AND GENERAL FEATURES yielded Mantelliceras cf. dixoni (Marcinowski, 1980, The Cenomanian of the Crimea comprises 50-60 metres pi. 2) and common I. virgatus', it thus falls within the of rhythmically bedded (decimetre-scale) marly chalks, M. dixoni Zone. which show an overall decrease in the clay component towards the top. The succession includes several region- MIDDLE CENOMANIAN wide erosional surfaces. Macrofossils are not abundant The top of the Lower Cenomanian is truncated by a throughout, and diagnostic ammonites are restricted to a conspicuous erosion surface everywhere in the Crimea few levels (M a r c in o w s k i, 1980). The Middle and Upper (Naidin & Alekseev, 1981); the following description is Cenomanian were deposited in deeper water than their based on the Selbukhra section (Fig. 3 herein; see map in equivalent strata in southern England. In terms of facies, Marcinowski, 1980). The erosion surface is overlain by a rhythmicity and some of the faunas the succession is coarse green-grey marl containing glauconitised intra­ similar to that developed in the northern Anglo-Paris clasts, inoceramid debris, and rare exotic clasts, including Basin (G a l e , 1995). or Jurassic siltstones (A. S. Alekseev, personal communication). Thalassinoides pipe the marl down LOWER CENOMANIAN 20 cm from the erosion surface through the underlying The lowest one to several metres of the Cenomanian are limestone into the marl beneath. The beds above the sandy glauconitic marls, and a thin (<20cm) basal con­ erosion surface comprise an alternation of marls and glomerate includes glauconitised sandstone pebbles, well-lithified limestones which contain Sciponoceras ba- gravel grade quartz and other clasts. This bed rests dis- culoides (Mantell); rare Acanthoceras sp. confirm the conformably on glauconitic sandstones of Late Albian S. Middle Cenomanian A. rhotomagense Zone age of these dispar Zone age (Marcinowski & N aidin, 1976). The beds. The basal metre yields a rich and diverse fauna of basal part of the Cenomanian succession is well exposed calcitic fossils including echinoids, crinoids, brachio­ in the Kacha River section (Fig. 3), where a bed o f silty pods, serpulids and bivalves (Naidin & Alekseev, glauconitic marl 2m above the basal erosion surface 1981). The brachiopods include abundant Orbirhynchia yields poorly preserved Mantelliceras sp. and common mantelliana (d’Orbigny) which occurs in 2 intervals with­ Inoceramus virgatus (Schlüter) which occurs frequently in the Middle Cenomanian of southern England (Kenne­ up to the highest levels accessible. I. virgatus first occurs dy, 1969; G ale, 1995). The co-occurrence of abundant O. in the M. dixoni Zone in the Anglo-Paris Basin (not in the mantelliana and S. baculoides, coincident with the first M. saxbii Subzone, as recorded by Trôger, 1989) for the occurrence of Rotalipora cushmani (40 cm above erosion base of which it can be taken as a proxy marker (Gale, surface; L. F. Kopaevich, personal communication) es­ 1995). More expanded basal Cenomanian successions in tablishes a firm correlation with the band of O. mantelli­ the Crimea, like those in the Bodrak Valley (e.g. Kre- ana in the Tuirilites costatus Subzone found in northern mennaya; N aidin & A lekseev, 1981) also yield I. virga­ France (Amedro, 1993), southern England (Kennedy, tus near the base of the Cenomanian. The ubiquitous 1969) and northern Germany (Meyer, 1990). At this presence o f I. virgatus at or near the base o f the Cen­ horizon, the faunas and facies are closely similar in the omanian successions in the Crimea is therefore taken as Crimea and the northern Anglo-Paris Basin, and indivi­ evidence that chalk sedimentation here commenced low dual limestone-marl couplets can be correlated precisely in the M. dixoni Zone. The zonal ammonite species has between the two, a confirmation of the accuracy of the however only been found near the top of the Lower Milankovitch timescale proposed by G ale (1989a, 1995). Cenomanian in the Crimea (Marcinowski, 1980). The break between the Lower and Middle Cenomanian in The silty glauconitic beds of the basal Cenomanian pass the Crimea can thus be demonstrated to include an un­ upwards into alternating marls and marly limestones, known part of the upper M. dixoni Zone, the entire C. which display a regular thickness for the lowest 5 or so inerme Zone (Gale, 1995; Robaszynski et al., 1998), and metres, but above become of very variable thickness. the basal part of the A. rhotomagense Zone, and probably There is a marked increase in carbonate content above represents more than 0.5 m.y. 5m from the base of the Cenomanian in the Kacha River The higher part of the Middle Cenomanian is strikingly rhythmic in the Kacha and Selbukhra sections and time- series analysis has provided firm evidence of orbital Text-figure 4 — Cenomanian of Mangyshlak, Kazakhstan. frequencies representing the precession cycle (mode at Sections at Siilukapy and Koksyirtau. The 20 K.y.) and bundling by both long and short eccentricity major nodule beds (III, IVa, IVb) of M a r­ cycles (100 and 400 K.y.; Gale et al., in press). This part cinow ski et al. (1995) are marked. Stages, of the succession is poorly fossiliferous, and has not zones and sequences are marked. yielded age-diagnostic ammonites. However, the pre- 76 Andrew S. GALE, et al. sence o f Inoceramus cf atlanticus Heinz at 25m above the by flaggy chalks containing marl partings. Neither local­ basal erosion surface at Selbukhra is indicative of a late A. ity contains diagnostic macrofossils. At Aksudere (Fig. 3), rhotomagense or early A. jukesbrownei Zone level, in­ a metre of organic-rich, variably laminated marls (Mem­ dicative of the “ I. atlanticus Event’ ’ in the Lower Saxony ber VI3) containing fish-scales is present (N a id in , 1993; Basin (Ernst & Rehfeld, 1997). Large, poorly preserved N a id in & K iy a s h k o , 1994a, b), representing deposition puzosiid ammonites between 25 and 30m at Selbukhra within the oxygen minimum zone. This is a local repre­ are associated with a diverse benthic fauna, not pre­ sentation of the Late Cenomanian “ Oceanic Anoxic viously recorded, which includes serpulids, calcitic bi­ Event” (J e n k y n s , 1980). The base of the Turanian H. valves, echinoids (Poriocidaris sp. ), brachiopods, and Helvetica planktic foraminiferan Zone boundary falls abundant isocrinid columnals. The conspicuous thin 2.7 m above the base of Member VI3, according to marls at 28.5, 29.4 and 30.2m perhaps correlate with A l e k s e e v et al. (1997). the “Pycnodonte Event” of northern Germany (Ernst, Schmid & Seibertz, 1983) and the Dl-3 marls of Gale SEQUENCE STRATIGRAPHY ( 1995). The condensed “Jukes-Browne Bed VII” of The detailed similarity of facies between the Cenomanian southern England (Gale, 1995) is represented in Sel­ of the Crimea and chalks in the northern Anglo-Paris Basin bukhra by seven coalesced couplets of calcisphere-rich enables us to apply identical criteria for the recognition of chalk. A conspicuous 10 cm thick orange marl, possibly a sequences and systems tracts to those used weathered bentonite, is present at 32.5 m in Selbukhra by R o b a s z y n s k i et al. (1998) in basinal marly chalks (Naidin & A l e k s e e v , 1981). There is a sharp increase in in southern England and northern France. In the follow­ the percentage of СаСОЗ just beneath the bentonite, and ing section, the correlation of Cenomanian sequences the highest 25 m of Cenomanian chalks are very pure recognised in the Anglo-Paris Basin by R o b a s z y n s k i et (85% carbonate) and white and contain thin flaser marls al. (1998) with those developed in the Crimea is discussed. every 50-100 cm. Sequence 3 UPPER CENOMANIAN The lowest Cenomanian sequence present in the Crimea Ammonites are not recorded from the higher part of the rests directly on Upper Albian sandstones; its base can be Crimean Cenomanian succession, so the boundary of the dated as M. dixoni Zone from the presence of I. virgatus Middle and Upper Cenomanian cannot be fixed precisely. low in the succession (see above). The pronounced in­ However, the oyster Amphidonte obliquatum (Pulteney) crease in carbonate 5 m above the base of the Cenoma­ is common at 2 levels in the succession at Selbukhra nian in the Kacha River is taken as the maximum flooding (40 m, 58 m), which correspond with abundances of the surface of this lowest sequence,, and can probably be same species in the Münster and Lower Saxony Basins in correlated on a bed scale with the successions in the northern Germany (E r n s t & R e h f e l d , 1997; K a p l a n , in Anglo-Paris and Saxony Basins (see Gale, 1995, fig. 4). press) and in southern England (G a l e , 1995). The overlying highstand chalks are entirely of M. dixoni Zone age and are truncated by the erosional surface at the White chalks containing marls at 0.5-1.0 m intervals Lower-Middle Cenomanian contact. This sequence there­ (Member VI of N aidin & A lekseev, 1981) are termi­ fore corresponds with 3 in the Anglo-Paris Basin (Robas­ nated by a planar, lithified, but unbored erosional surface zynski et al., 1998) which falls entirely within the M. cut in hard white chalk in all three sections examined dixoni Zone and provides evidence of late Cenomanian (Selbukhra, Mender, Aksudere). This surface, sparsely onlap in the Crimean region. This is similar to the pro­ burrowed by Planolites, is overlain by grey or brown gressive onlap of successive Cenomanian zones recorded sandy marls (Alekseev et al., 1997) and represents the by Kennedy (1970) across Dorset and Devon in southern “ sub-plenus erosion surface” (Jefferies, 1962, 1963) in England. the Anglo-Paris Basin and the “ Fazieswechsel” ( M e y e r , 1990) in northern Germany. This correlation is confirmed Sequence 4 by the highest occurrence of Rotalipora cushmani 50 cm The erosional surface at the Lower-Middle Cenomanian above the erosion surface at Selbukhra (A l e k s e e v et al., boundary in the Crimea is identified as a transgressive 1997). This species is last found immediately beneath the surface resting directly upon a sequence boundary. The Plenus Bank in northern Germany (S c h ô n f e l d et al., transgressive systems tract is represented by the residual 1991) and at the top of Bed 3 of the Plenus Marls in glauconitic lag at the base of the Middle Cenomanian southern England (Jarvis et al., 1988). succession and the overlying marly chalks and thin lime­ stones mark the maximum flooding surface. An erosional There is considerable lateral variation in the succession break at the Lower-Middle Cenomanian boundary is immediately overlying the Late Cenomanian erosion sur­ widely developed in thinner successions across Europe face in the Crimea. At Selbukhra 1 m of marly and sandy (G a l e , 1995; O w e n , 1996). The duration of the hiatus at chalks are overlain by redeposited chalks containing this level in the Crimea is similar to that developed over debris flows (conglomerates, flow lamination) and micro­ the London Platform in eastern England, where highstand faults. At Mender, a highly condensed glauconitic marl M. dixoni Zone Chalks are overlain with erosive contact resting directly upon the basal erosion surface is overlain by the condensed Tottemhoe Stone (a calcarenite con- Biostratigraphical and sequence correlation 77 taming phosphatised and glauconitised intraclasts), the units which may represent storm events. The silty marls matrix of which contains abundant Orbirhynchia man- contain abundant limonite burrows which replace pyrite. telliana from the T. costatus Subzone acme of the species. Ammonites are preserved as a) infrequent worn steinkems Sequence 5 among the phosphatic clasts, b) as internal moulds of The highstand chalks of 4 display a very even rhyth- limonite after pyrite which are locally very abundant in micity, but at 30-33 m above the Lower-Middle Ceno­ the marls, c) as calcite replacements of original shell filled manian erosion surface there is a slight but distinct con­ with phosphate. It is quite difficult to collect material in densation and the couplets thin and fuse as a result of the situ, and many of the specimens were collected as float. disappearance of the intervening marls. The sediment becomes coarser and contains more calcispheres. We LOWER CENOMANIAN interpret this a a weakly developed transgressive systems The base of the Lower Cenomanian in Mangyshlak is tract which correlates with the sequence which com­ marked by a 0.2 m thick phosphatic conglomerate (Fig. 4) mences within the A. jukesbrownei Zone in the Anglo- which rests upon Upper Albian sands containing Calli- Paris Basin (Robaszynski et al., 1998). hoplites spp. (Marcinowski et al., 1995). The conglom­ erate is poorly fossiliferous, but has yielded Schloenba­ Sequence 6 chia sp. which indicate a Cenomanian age at Sulukapy The sharp, planar erosion surface which is found region­ (Marcinowski et al., 1995) and at Koksyirtau (personal ally at the summit of the white coccolith chalks of Upper observation). This latter record indicates that the base Cenomanian age at Mender, Selbukhra and Aksudere is of the Cenomanian is 17.4 m lower than shown by lithified but apparently not bored or encrusted, and re­ Marcinowski et al. (1995, fig. 9). At 9-13 m above the presents a sequence boundary correlative with the sub- basal conglomerate at Sulukapy, small limonitised am­ plenus erosion surface in the Anglo-Paris Basin (base of monites are common, and include abundant and diverse sequence 6). Overlying this surface at Aksudere and Hyphoplites spp., including#, costosus Wright & Wright' Selbukhra are about 1 m of sandy and silty marls which (PI. 2, Figs. 1, 2, 18-20), H. curvatus curvatus (Mantell) ' locally contain glauconite. Rotalipora cushmani disap­ (PI. 2, Figs. 23, 24), H. curvatus (Mantell) arausionensis pears about 0.5 m above the basal erosion surface, in a (Hébert & Munier-Chalmas) (PI. 2, Figs. 21, 22), H. marly bed probably equivalent to Bed 3 of the Plenus curvatus (Mantell) pseudofalcatus (Semenov) (PI. 2, Marls. Immediately overlying this bed, laminated organic Figs. 3, 4, 16, 17), and H. falcatus falcatus (Mantell) rich-marls at Aksudere represent the transgressive sys­ (PI. 2, Figs. 7, 8). Other taxa we have collected from tems tract of sequence 6. this level include Schloenbachia varians (J. Sowerby) (PL 2, Figs. 5, 6, 11, 12), Sciponoceras roto Cieslinski (PI. 2, Fig. 15), Submantelliceras aumalense (Coquand) Mangyshlak Hills, west Kazakhstan (PL 2, Figs. 13, 14), and Placenticeras (Karamaites) sp. (PI. 2, Figs. 9, 10). Marcinowski et al. (1995) record Excellent exposures of Cretaceous rocks exist in the Man- other ammonites including Neostlingoceras morrisifor- gyshlakHills, and are present in the pericline 100 kmnorth- mis (Collignon), Mantelliceras mantelli (J. Sowerby), east of AJstau (Naidin et al., 1984). ASG and JMH visited Anisoceras spp. and Hamites spp. from their Bed 8 at three of these sections (Sulukapy, Shakh Bogota and Kok- Sulukapy (8.2-10.7 m above the base of the Cenomanian). syirtau) in a party led by Professor D. P. Naidin and his Altogether, this assemblage is indicative of a Lower colleagues in 1994. The lithological and faunal succession Cenomanian, Neostlingoceras carcitanense Subzone age. at Sulukapy has been briefly described by Marcinowski (1980) and this and other localities described in detail by The Lower Cenomanian is well represented at Besakty, Marcinowski et al. (1995). Our observations differ in about 150 km ESE of Koksyirtau (Marcinowski et al., some details from those of previous authors. 1995, fig. 12) where it yields diagnostic taxa of the two lower subzones of the mantelli Zone, the N. carcitanense LITHOLOGY AND GENERAL FEATURES and .S', schlueteri assemblages (Gale, 1995). We have not The Cenomanian in Mangyshlak comprises 5 to 50+ seen this section, but the fauna collected and figured from metres of sands, silts, marls and thin phosphatic conglom­ Bed 25 by Marcinowski et al. (1995) includes N. carci­ erates that were deposited in a shallow marine setting tanense (Matheron) and Idiohamites spp. which are diag­ (Marcinowski, 1980; Marcinowski et al., 1995). The nostic of the carcitanense Subzone. From Bed 30, Mar- conglomerates comprise variably sized (1 to 10 cm) cinowski et al. record Sharpeiceras schlueteri and com­ often well rounded clasts which according to Marci­ mon Inoceramus. crippsi crippsi Mantell, which charac­ nowski (1980) have a complex mineralogy including terise the schlueteri Subzone (Gale, 1995). silica and iron oxides as well as calcium phosphate. The conglomerates have a sandy matrix which is A conspicuous 0.2 m thick phosphatic conglomerate is locally glauconitic. The sands fall into two categories; present 14 m above the base of the Cenomanian succes­ structureless, bioturbated sands which commonly contain sion at Koksyirtau (Marcinowski et al., 1995, Bed 11; silt and a little clay, and thin trough-cross laminated herein Text-fig. 4,14 m) and an equivalent bed is found at 78 Andrew S. GALE, et al.

CD < LU s O O z z ш LU Z3 CJ o ' Ш со

ю < ш z U < Z s LU O ID z O' LU LU if)

СО

LU о Z LU ZD O’ LU со < z < S O z LU O

CNJ

LU U z LU Z3 o’ LU СО

Sulukapy

Text-figure 5 —■ Correlation of Cenomanian sections in Mangyshlak, showing condensation of the Middle and Upper Cenomanian westwards to Shakh Bogota. Biostratigraphical and sequence correlation 79

a m m o n ite FOLKESTONE-DOVER, KOKSYIRTAU, SELBUKHRA, SEQUENCES zones KENT, U.K. CRIMEA, MANGYSHLAK, UKRAINE KAZAKHSTAN C. woollgari SYSTEMS TRACTS О M. nodosoides cd О F. catin us HST h W. devonense CD j Ш N. juddii h " " Ballard Cliff Mbr О « O Org-rich VII = Org-rich TST ! r» M. geslinianum ■_~_~_PIenus Marl E/ \ A. plenus LST Sub-plenus erosion surface Calycoceras guerangeri HST VI LO ------Amphidonte

Acanthoceras J-B Bed VII -bentonite? phosphates TST jukesbrownei T5T~

V HST A. rhoto­ magense 0.mantelliana І.АІ. IV-i TST Cast Bed •II I I I I И I I I I II I ГІ ГІ 1 C. inerme LST

Ш и I m ! о HST ■ M. dixoni ro

TST І I I f l I f 11 I ГП I I I f І I I ж

HST CNJ :< ~T5T~ : m M. LST m antelli :> а сэ о concretions HST Glauc. Marl TÔT

LST

< Stoliczkaia, CÛ dispar

Text-figure 6 — Correlation of Cenomanian sequences and system tracts between southern England, Crimea and Mangyshlak. Column A shows Stages, В the precession timescale of G a le (1995). 80 Ал drew S. GALE, et al.

Sulukapy (Fig. 4, 20 m) not marked on the Marcinowski phosphatised ammonites of A. jukesbrownei Zone age, log). It does not.yield zonally diagnostic ammonites. which at Koksyirtau are set in a sandy matrix of which the Overlying this conglomerate, the highest 10 m o f the precise age is unknown. Lower Cenomanian comprises marls containing thin units of fine sand, either bioturbated or with small-scale UPPER CENOMANIAN trough cross-sets. When freshly exposed, the marls yield The Upper Cenomanian is only identified in the succes­ bivalve taxa very similar to those common in Cenoma­ sion at Koksyirtau; in the western part of the Mangyshlak nian marly chalks of the Aaglo-Paris Basin including inlier (Sulukapy and Shakh Bogota) it is presumably the bivalves Euthymipecten beaveri (J. Sowerby) and incorporated (together with the Middle Cenomanian) Plicatula inflata (J. Sowerby). The marls at both local­ within the phosphatic conglomerate at the base of Tur- ities contain numerous limonitised ammonites which are onian sands which rests upon Lower Cenomanian marls particularly abundant at Sulukapy (Text-fig. 4, 25-29.5 (Text-fig. 5). m), from which Marcinowski (1980) and Marcinowski etal. (1995, Bed 14) recorded abundant Turrilites costa­ The Upper Cenomanian at Koksyirtau is represented by tus Lamarck (figured by Marcinowski, 1980, pi. 4, about 8 m of fine sands, silts and clays, of which the lowest figs. 1-10). These authors used this identification to as­ 4 m is weakly to strongly laminated and coloured dark grey sign a Middle Cenomanian age to Bed 14 at Sulukapy, but by up to 5% organic matter. An abundance level of the curiously, placed equivalent strata at Koksyirtau, from belemnite Actinocamaxplenus (Blainville) probably cor­ which they also record T. costatus (Beds 19-22), in the relates with the acme occurrence of the species in the Lower Cenomanian- Because they possess interrupted Anglo-Paris Basin in Bed 4 of the Plenus Marls (J e f f e r ie s, ribs, but entirely lack tubercles, these ammonites are 1963) within the Metoicoceras geslinianum Zone correctly identified as immature T. scheuchzerianus B ose (W r ig h t & K e n n e d y , 1981). At a level 2.7 m above the (Pl. 1, Figs. 23-25; see also W right & Kennedy, 1996). A. plenus horizon at Koksyirtau, M a r c in o w s k i et al. At Koksyirtau (Text-fig. 4, 18-23 m), T. scheuchzerianus (1995; their Bed 26) record Neocardioceras juddii (Bar­ is associated with a single specimen of Mantelliceras rais & Gueme), index of the N. juddii Zone. 4 m higher, dixoni (Pl. 1, Figs. 9-11) which confirms the Lower they record Watinoceras amaduriense (Arkhangelsky) in­ Cenomanian, M. dixoni Zone age of this assemblage. At dicating the Lower Turonian zone of W. devonense. Southerham, Sussex, UK, T. scheuchzerianus first ap­ pears as a rarity in the middle part o f the M. dixoni Zone, SEQUENCE STRATIGRAPHY but becomes abundant in the upper part of the zone, and Sequences in the Cenomanian of Mangyshlak are persists as a rarity into the Middle Cenomanian. The T. clearly defined by sedimentological criteria. The base of scheuchzerianus at Sulukapy are associated with each sequence comprises a thin (20-30 cm) lag of Schloenbachia varions (Pl. 1, Figs. 14, 15, 17, 18), Hy- worn phosphatic concretions which rest on an erosion phoplitesfalcatus (Mantell), Scaphites (Scaphites) sp. juv. surface which is sometimes strongly burrowed and repre­ (Pl. 1, Figs. 21, 22, 28-31), Hamites duplicatus Pictet & sents an abrupt lithological break. We interpret these Campiche (Pl. 1, Figs. 26,27) and Worthoceras sp. (Pl. 1, surfaces as sequence boundaries which are directly over- Fig. 16). The specimens of Schloenbachia varians are of lain by transgressive surfaces. The phosphatic conglom­ Lower Cenomanian rather than Middle Cenomanian as­ erates are thus residual lags formed during the early stages pect. At Koksyirtau, levels 18-23 m above the base of the of transgression and are very similar to other transgressive Cenomanian yield T. scheuzerianus, M. dixoni and S. accumulations of phosphatic pebbles such as the Cam­ varians (Pl. 1, Figs. 1, 2, 12, 13). bridge Greensand in the UK and the “ Tourtias” of Bel­ gium. The basal conglomerates are overlain by silty sands MIDDLE CENOMANIAN which formed during the latter part of transgressive sys­ The marls of M. dixoni Zone age are disconformably tems tracts. They are overlain by silty marls representing overlain by a 5 m succession of sands with 3 levels of the deepest water (most distal) facies in the succession and phosphatic intraclasts at Koksyirtau, the lowest of which are interpreted as highstand deposits! (Text-fig. 4, 25.2 m) has yielded 3 phosphatised stein- kems of Calycoceras (Gentoniceras) gentoni (Brong- Sequence 1-2 niart) (PL 1, Figs. 3-8). M a r c in o w s k i etal. (1995) record The lowest part of the Cenomanian of Mangyshlak in­ Acanthoceras cf. jukesbrownei (Spath) from their Bed 23, cludes the basal phosphatic conglomerate (Shakh Bo­ which is probably equivalent to the 25.2 m level on our gota, Sulukapy, Koksyirtau) which is interpreted as a Text-fig. 4. The beds containing numerous phosphates transgressive lag, and the overlying sands and marls alternate with sandstones containing sparser gravel-grade which are possibly highstand deposits (Text-fig. 4). This chips of phosphate and oysters. At Sulukapy, the phos­ part of the succession is dated as M. mantelli Zone phatic conglomerate which rests disconformably upon from the ammonite faunas (M a r c in o w s k i, 1980; Mar­ Lower-Cenomanian marls (see above) and underlies Tur- c in o w s k i et ah, 1995). The presence of large carbonate onian sands has yielded a single remanié A. jukesbrownei concretions at 15-18 m above the base of the Cenomanian (M a r c in o w s k i et al., 1995). Thus, the Middle Cenoma­ at Koksyirtau, and in Bed 30 at Besakty (M a r c in o w sk i nian in Mangyshlak is represented only by remanié, et al., 1995), both in the middle part of the M. mantelli Biostratigraphical and sequence correlation 81

Zone, is taken as tentative evidence of the 1-2 sequence show very similar development in terms of carbonate boundary, because widespread concretion development content and thickness to those in southern England. In often occurs beneath significant hiatuses (e.g. H u g g e t t , the Crimea, we are able to tentatively identify couplet 1995). However, there is no conclusive sedimentological B ll (G a l e , 1995 - thin prominent limestone; see Text- evidence to separate the two sequences. The concretions fig. 3 herein) and an overlying group of carbonate rich at Besakty contain a S. schlueteri Subzone assemblage beds (B12-13). similar to that occurring at the summit of sequence 1 at b) The major hiatus between the Lower Cenomanian Folkestone (G a l e , 1989b). In Mangyshlak there is thus M. dixoni Zone and the overlying Middle Cenomanian is limited evidence of two separate sequences (1 and 2) of very similar extent in the Crimea, over the London within the mantelli Zone, as found in the Anglo-Paris Platform, and in the Lower Saxony Basin, involving the Basin (R o b a s z y n s k i et al., 1998), but these are not uppermost M. dixoni Zone, the C. inenne Zone and the ubiquitously separable even within the Anglo-Paris Basin lower part of the T. costatus Subzone of the A. rhotoma- (G a l e , 1995; O w e n , 1996). gense Zone. c) The faunas of the lowest part of the Middle Cen­ Sequence 3 omanian in the Crimea are closely comparable to those of The summit of the M. mantelli Zone sequence 1-2 in the upper T. costatus Subzone in the Anglo-Paris Basin Mangyshlak (Sulukapy, Koksyirtau) is truncated by an (K e n n e d y , 1969; A m e d r o , 1993) and Lower Saxony erosional surface overlain directly by a phosphatic con­ Basins (M e y e r , 1990), including abundances of the bra- glomerate, interpreted as a transgressive surface overlying chiopod Orbirhynchia mantelliana and the ammonite a sequence boundary. The marl succession above the con­ Sciponoceras baculoides. glomerate contains limonitic ammonites of the M. dixoni d) Chalk-marl couplets and bundles, representing Mi- Zone, and represents the highstand of the same sequence. lankovitch cycles, of Middle Cenomanian age, can be We correlate this sequence with 3 in the Anglo-Paris individually correlated between the Crimea, southern Basin, which is there co-eval with the M. dixoni Zone. England and northern Germany (cf. G a l e , 1995; G a l e et al., in press), a total distance of 3,900 km. Sequences 4-5 e) In the Middle-Upper Cenomanian of the Crimea, The succession of 3 phosphatic conglomerates which three thin marls (“ Pycnodonte-Event” in Germany, cou­ rest non-sequentially upon marls of M. dixoni Zone age plets Dl-3 in southern England), the overlying amalga­ at Koksyirtau are tentatively interpreted as lag deposits mated couplets (“Jukes-Browne Bed VII” of G a l e , formed during a transgression. The lowest conglomerate 1995; “ Pycnodonte Limestone” of E r n s t & R e h f e l d , contains poorly preserved steinkems of Middle Cenoma­ 1997) and two acme abundances of Amphidonte (recog­ nian ammonites indicative of the A. jukesbrownei Zone nised in northern Germany and southern England) can be (M a r c in o w s k i et al., 1995), and the sequence is tenta­ correlated. tively identified as the transgressive systems tract of 5 in f) The sub-plenus erosion surface of J e f f e r ie s (1963) the Anglo-Paris Basin, the lower part of which falls within and an unfossiliferous equivalent of the Plenus Marls of the A. jukesbrownei Zone (R o b a s z y n s k i et al., 1998). the Anglo-Paris Basin are present in the Crimea. Sequence 4, which includes the C. inenne and A. rhoto- magense Zones, is therefore missing in Mangyshlak, with­ — The ammonite biostratigraphy described in the Cen­ in the erosional surface underlying the lowest of the Mid­ omanian of southern England by K e n n e d y (1969, 1970, dle Cenomanian phosphatic conglomerates at Koksyirtau. 1971) can be recognised in outline in the Crimea and western Kazakhstan (Mangyshlak). We modify previous Sequence 6 work by identifying the M. dixoni Zone in these regions At Koksyirtau, the organic-rich silts and laminated fine from both ammonite evidence and associated inoceramid sands of Late Cenomanian age (M. geslinianum and N. taxa. The lower part of the “Middle Cenomanian” of juddii Zones, A. plenus near the base) are interpreted as M a r c in o w s k i (1980) and M a r c in o w s k i et al. (1995) in an overall transgressive event, a local representative of Mangyshlak is shown to belong to the M. dixoni Zone. the Oceanic Anoxic Event which is developed globally at this horizon (Jenkyns, 1980). This corresponds with — The 3rd/4th order sedimentary sequences described in the lower part of sequence 6 in the Anglo-Paris Basin the Anglo-Paris Basin by R o b a s z y n s k i et al. (1992, (Robaszynski etal., 1998). 1998) and O w e n (1996) can be identified in the Crimea and Mangyshlak (Text-fig. 5). In the Crimea, late onlap resulted in sequence 3 (M. dixoni Zone) resting directly Conclusions upon Upper Albian sandstones. Sequences 4, 5, and 6 display a very similar development to that seen in the — Facies, faunas and detailed lithological successions are marly chalk facies of the northern Anglo-Paris Basin, and remarkably similar in the Crimea, the northern Anglo-Paris individual system tracts can be identified and correlated. Basin (southern England and northern France) and the In Mangyshlak, three sequences are tentatively identified Lower Saxony and Münster Basins, north-west Germany, in the Lower Cenomanian (1,2, 3), but 4 is missing on an a) Beds at the base of the M. dixoni Zone in the Crimea erosional surface, as in Devon, SW England, UK (Ro- 82 Andrew S. GALE, et al.

made the fieldwork possible, and who has greatly increased collabora­ b a s z y n s k i et al., 1998). Sequences 5 is thin but identifi­ tion and understanding between western European and Russian scien­ able, and 6 is present in one locality in Mangyshlak, tists. The hospitality and generous help of Russian colleagues from where progressively increased condensation towards the Moscow State University who made it possible for ASG to visit the top of the Cenomanian results in amalgamation of se­ Crimea is gratefully acknowledged; in particular, Ludmilla Kopaevich provided unpublished data on the distribution of Rotalipora ciishmani quences within a phosphatic conglomerate underlying at Selbukhra, and Ruslan Gabdullin helped greatly with the field work. Turonian sands (Text-fig. 4). We also thank Professor D. P. Naidin for leading the field excursion in Mangyshlak, and generously making known his views about Upper Cretaceous stratigraphy of the region. A. S. A lekseev and Jan Hardenbol kindly reviewed an earlier draft o f Acknowledgements this paper. David Ward and other members of the field party generously pro­ We wish to thank especially Annie Dhondt, whose enthusiastic support vided help with fossil collecting.

References.

Alekseev, A. S., Vengertsev, V. S., Kopaevich, L. F. & timescale for the Late Cretaceous. Philosphical Transactions Kuzmichaeva, T. A ., 1997. Lithology and micropalaeontology o f the Royal Society, London, Series A. of Cenomanian-Turonian boundary interval in South-Western Ha n c o c k , J. М., 1993. Sea-level changes around the Cenoma­ Crimea. Essays on the geology of the Crimea. Transactions of nian-Turonian boundary. Cretaceous Research, 14, 553-562. the A.A. B o g d an o v Crimean geological scientific-educational H a q , B. U., H a r d e n b o l , J. & V a il , P. R ., 1988. Mesozoic and center. Moscow State University Geological Faculty Publica­ Cenozoic chronostratigraphy and cycles of sea-level change. tion, 1: 54-74. [In Russian]. In: W il g u s, С. К., H a s t in g s , B. S., K e n d a l l , C. G. St. C, A m e d r o , F., 1993. La lithostratigraphie et les biofacies: des P o sa m e n tie r , H. W ., R o ss, C. A. & V a n W ag o n ier , J. C., outils de corrélation dans les craies cénomaniennes du détroit (eds.), Sea-level changes: an integrated approach. Society of du Pas-de-Calais. Annales de la Société géologique du Nord, Economic Paleontologists and Mineralogists, Special Publica­ (2), 2: 73-80. tion, 42: 71-108.

E r n s t , G. & R e h f e l d , U., 1997. The transgressive develop­ H a r d e n b o l , J., T h ier r y , J., F a r l e y , М . B., Ja c q u in , T h ., de ment in the Lower and Middle Cenomanian of the Salzgitter G r a c ia n sk y , P.-C. & V a il , P. R. 1998. Mesozoic and Cenozoic area (N-Germany) recorded by sea-level controlled eco- and Sequence Chronostratigraphic Framework of European Basins. litho-events. Freiberger Forschungshefte, С 468: 79-107. In: de G r a c ia n sk y , P.-С., H a r d e n b o l , J., Ja c q u in , T h ., & V a il , P. R. (eds.). Mesozoic and Cenozoic Sequence Stratigra­ E r n st , G., S c h m id , F. & S eiber tz , E., 1983. Event-Stratigra- phy of European Basins. SEPM, Special Publication, 60:3-13, phie im Cenoman und Turon von NW-Deutschland. Zitteliana, 763-782. 10: 531-554. H u g g e t t , J.M., 1995. Carbonate concretions from the London Gale, A. S., 1989a. A Milankovitch scale for Cenomanian Clay Formation (early Eocene) of southern England. Tertiaiy time, Teira Nova, 1: 420-425. Research, 15: 175-190. G a l e , A. S., 1989b. Field meeting at Folkestone Warren, 29th Ja r v is , I., C a r s o n , G.A., C oo per, М.К.Е., H ar t , M.B., L e a r y , November, 1987. Proceedings o f the Geologists' Association, P.N., T o ch er , B.A., H o r n e , D. & R o sen feld , A., 1988. Micro­ 100: 73-80. fossil assemblages and the Cenomanian-Turonian (late Cretac­ G a l e , A. S., 1995. Cyclostratigraphy and correlation of the eous) Oceanic Anoxic Event. Cretaceous Research, 9: 3-103. Cenomanian stage in Western Europe. In: H o u se , М. R. & Jeffer ies, R.P.S., 1962. The palaeoecology of the Actinocamax G a l e , A. S. (Editors), Orbital forcing timescales and cyclos­ plenus subzone (lowest Turonian) in the Anglo-Paris Basin. tratigraphy. Special Publications o f the Geological Society, 85: Palaeontology, 4: 609-647. 177-197. Jefferies, R.P.S., 1963. The stratigraphy of the Actinocamax G a l e , A. S., 1996. Turonian correlation and sequence strati­ plenus subzone (Turonian) in the Anglo-Paris Basin. Proceed­ graphy of the Chalk in southern England. In: H e sse l b o , S.P. & ings o f the Geologists' Association, 74: 1-34.

P a r k in so n , D.N. (Editors), Sequence stratigraphy in British Je n k y n s , H.C., 1980. Cretaceous anoxic events: from conti­ geology. Geological Society Special Publication, 103: 177-195. nents to oceans. Journal o f the Geological Society o f London,

G a l e , A . S ., Je n k y n s , H . C ., K e n n e d y , W. J. & C o r fie ld , R . 137: 171-188. М., 1993. Chemostratigraphy versus biostratigraphy: data from Je n k y n s , Н.С., G a l e , A.S. & C orfield, R.M., 1994. Carbon- around the Cenomanian-Turonian boundary. Journal o f the and oxygen-isotope stratigraphy of the English Chalk and Geological Society, London, 150: 29-32. Italian Scaglia and its palaeoclimatic significance. Geological Magazine, 131: 1-34. G a l e , A. S., Ke n n e d y , W. J., B u r n e t t , J. A., C a r o n , М. & Kid d , В . E., 1996. The Late Albian to Early Cenomanian Ju ig n e t , P., 1974. La transgression crétacée sur la bordure succession at Mont Risou near Rosans (Drôme, SE France): orientale du Massif armoricain. Aptien, Albien, Cénomanien an integrated study (ammonites, inoceramids, planktonic for- de Normandie et du Maine. Le stratotype du Cénomanien. aminifera, nannofossils, oxygen and carbon isotopes). Cretac­ Thesis, University of Caen. 810 p. eous Research, 17: 515-606. Ju k e s-B r o w n e , A .J. & H ill, W ., 1903. The Cretaceous rocks

G a l e , A . S ., Y o u n g , J., S h a c k l et o n , N. J., C r o w h u r st , S ., of Britain. II. The Lower and Middle Chalk of England. Mem­ W r a y , D. S. & T az zi, М., (in press). Orbital tuning of Cen­ oirs o f the Geological Survey o f the United Kingdom, 568pp. omanian marly chalk successions; towards a Milankovitch K a p l a n , U., (in press). Zur Stratigraphie dertiefen Oberkreide Biostratigraphical and sequence correlation 83

im Teutoburgerwald (NW-Deutschland). Part IV. Neue strati- e n b o l , J., G o n z a l e s D o n o s o , J.M., L in a r e s , D . & G a r t n e r , graphische Ergebnisse zum Cenoman des Raumes Halle (West­ S., 1993. Le Cénomanien de la région de Kalaat Senan (Tunisie falen). Bericht des natui-wissenschaftliches Verein Bielefeld Centrale): litho-biostratigraphie et interprétation séquentielle. und Umgegend. Revue de Paléobiologie, 12: 351-505.

Kennedy, W .J., 1969. The correlation of the Lower Chalk of R o b a s z y n s k i, F., J u ig n e t , P., G a l e , A . S., A m e d r o , F. & H a r - south-east England. Proceedings of the Geologists’ Associa­ De n b o l , J., 1992. Sequence stratigraphy in the Upper Cretace­ tion, 80: 459-560. ous of the Anglo-Paris Basin, exemplified by the Cenomanian Kennedy, W.J., 1970. A correlation of the uppermost Albian Stage. Sequence stratigraphy of European Basins. CNRS - IFP, and the Cenomanian of south-west England. Proceedings o f the Dijon, May 18-20, 1992. Abstracts volume, pp. 79-81. Geologists’ Association, 81: 613-77. R o b a s z y n s k i, F., J u ig n e t , P., G a l e , A.S., A m e d r o , F. & H a r - Kennedy, W.J., 1971. Cenomanian ammonites from southern England. Special Papers in Palaeontology, 8, 133 pp. De n b o l , J., 1998. Sequence stratigraphy in the Upper Cretaceous Series of the Anglo-Paris Basin, Exemplified by the Cenomanian Marcinowski, R., 1980. Cenomanian ammonites from the Ger­ Stage. In: de G r a c ia n s k y , P-С, H a r d e n b o l , J., J a c q u in , T H . & man Democratic Republic, Poland and the Soviet Union. Acta V a il , P .R ., (eds), Mesozoic and Cenozoic Sequence Stratigra­ Geologica Polonica, 30: 215-325. phy of European Basins. SEPM, Special Publication, 60: 3 63- Ma rcinow ski, R. & N a id in , D.P., 1976. An Upper Albian 386. ammonite fauna from the Crimea. Acta Geologica Polonica, 26: 83-119. S c h ô n f e l d , J., S c h ie b e l ,R . & T im m , S . 1991. The Rotplàner (Upper Cenomanian to Lower Turonian) of Baddeckenstedt Marcino w sk i, R ., W a l a s z c z y k , I. & O l s z e w s k a -N e jb e r t , D., 1995. Stratigraphy and regional development of the mid-Cre­ (north-western Germany) - lithology, geochemistry, foramini- taceous (Upper Albian through Coniacian) of the Mangyshlak fers and stratigraphie correlation. Meyniana, 43: 73-95. Kiel. Mountains, Western Kazakhstan. Acta Geologica Polonica, 46: T r ô g e r , K.-A. 1989. Problems of Upper Cretaceous inocera­ 1-60. mid biostratigraphy and paleobiogeography in Europe and Meyer, T., 1990. Biostratigraphische und sedimentologische Western Asia. In: W ie d m a n n , J. (Editor): Cretaceous of the Untersuchungen in der Plânerfazies des Cenoman von Nord- Western Tethys. Proceedings of the 3rd International Cretac­ westdeutschland. Mitteilungen ans dem Geologischen Institut eous Symposium, Tübingen 1987. Schweizerbart’sche, Stutt­ der Universitat Hannover, 30: 1-114. gart. 911-930. Naidin, D. P., 1993. Late Cretaceous events in the east of the W r ig h t , СЛѴ. & K e n n e d y , W.J. 1981. The Ammonoidea of European palaeobiogeographic province. 2. Cenomanian/Tur- the Plenus Marls and the Middle Chalk. Palaeontographical onian and Maastrichtian/Danian events. Bulletin o f the Moscow Society (Monograph) London. 148 pp. Society o f Naturalists. Geological Series, 68: 33-53. [In Rus­ sian]. W right, C.W. & K e n n e d y , W.J. 1996. The Ammonoidea of Naidin, D. P. & A l e k s e e v , A.S., 1981. Importance of ocean the Lower Chalk. Part 5. Palaeontographical Society (Mono­ drilling data for interpretation of sedimentation and life of fauna graph) London, pp. 320-403. in the Cenomanian of the Crimean highlands. In: K r a s s il o v , V. (Editor), Evolution of organisms and biostratigraphy of the W r ig h t , C .W ., K e n n e d y , W.J. & H a n c o c k , J.M. 1984. The Mid-Cretaceous. Vladivostok. Pp. 7-21. [In Russian], Ammonoidea of the Lower Chalk. Introduction. Palaeontogra­ phical Society (Monogi'aph). Part 1, 1-37. N aidin, D. P., Benjamowskij, V. N. & Kopaevich, L. F., 1984. Methods of transgression and regression study (exemplified by Late Cretaceous basins of Western Kazakhstan). Izdatelstvo A . S. G a l e Moskovskogo Universiteta, 162 pp. Moscow. [In Russian]. School of Earth and Environmental Sciences University of Greenwich, Chatham Maritime Campus, Naidin, D. P. & K iy a s h k o , S. I., 1994a. Cenomanian/Turonian Chatham Kent ME4 4AW, UK boundary deposits in the Crimean highlands. 1. Lithology, and organic deposits and some element contents. Bulletin o f the Department of Palaeontology, Moscow Society o f Naturalists. Geological Series, 69: 28-42. The Natural History Museum [In Russian]. Cromwell Road London SW7 5BD, UK Naidin, D.P. & K iy a s h k o , S.I. 1994b. Geochemistry of Cen- [[email protected]] omanian/Turonian boundary deposits in the Crimean highlands. 2. Isotopic composition of carbon and oxygen; environment of J. M. H a n c o c k organic carbon accumulation. Bulletin o f the Moscow Society of Т.Н. H u x le y School Naturalists. Geological Series, 69: 59-74. [In Russian]. Imperial College Prince Consort Road Ow en, D . 1996. Interbasinal correlation of the Cenomanian London SW7 2BP, UK Stage; testing the lateral continuity of sequence boundaries.

In: H o w e l l , J.A . & A it k e n , J.F . (Editors), High resolution W. J. K e n n e d y sequence stratigraphy: innovations and applications. Geologi­ Geological Collections cal Society of London Special Publications, 104: 269-295. University Museum of Natural History Paul, C.R.C, M it c h e l l , S .F ., L e a r y , P.N., G a l e , A .S ., D u a n e , Parks Road A.M. & D it c h f ie l d , P.W., 1994. Palaeoceanographic events in Oxford OX1 3PW, UK. the Middle Cenomanian of northwest Europe. Cretaceous Re­ search, 15: 707-738. Typescript submitted 15.12.1998 R o ba szy n sk i, F., C a r o n , М., A m e d r o , F., D u p u is , C ., H a r d - Revised typescript submitted 5.3.1999. 84 Andrew S. GALE, et al.

P la te 1

Figs. 1-2, 12-15, 17-20 — Schloenbachia varians (J. Sowerby). 1,2, OUM KY2080; 12,13 OUM 2081; Mantelliceras dixoni Zone, Lower Cenomanian, 18-23m above base of measured section (Fig. 4), Koksyirtau. 14, 15, OUM KY2082; 17, 18 OUM KY2083; 19, 20, OUM KY2084, Mantelliceras dixoni Zone, Lower Cenomanian, 25-29.5m above base of measured section on Text-fig. 4, Sulukapy. Figs. 3-8 — Calycoceras (Gentoniceras) gentoni (Brongniart). 3,4, OUM KY2094; 5,6, OUM KY2095; 7,8, OUM KY2096, Middle Cenomanian, lowest phosphate bed, 25.3m above base of measured section in Text-fig. 4, Koksyirtau. Figs. 9-11 — Mantelliceras dixoni Spath. OUM KY2085, Mantelliceras dixoni Zone, Lower Cenomanian, 18-23m above base of measured section on Text-fig. 4, Koksyirtau. Fig. 16 — Worthoceras sp. OUM KY2086, Mantelliceras dixoni Zone, Lower Cenomanian, 25-29.5m above base of measured section on Text-fig. 4, Sulukapy. Figs. 21-22, 28-29, 30-31 — Scaphites (Scaphites) sp. juv. 21, 22, OUM KY2091; 28, 29, KY2092; 30, 31, OUM KY2093, Mantelliceras dixoni Zone, Lower Cenomanian, 25-29.5m above base of measure section on Text-fig. 4, Sulukapy. Figs. 23-25 — Turrilites scheuchzerianus Bosc. 23, OUM KY2087; 24, OUM KY2088; 25, OUM KY2089, Mantelliceras dixoni Zone, Lower Cenomanian, 25-29.5m above base of measured section on Text-fig. 4, Sulukapy. Figs. 26-27 — Hamites duplicatus Pictet & Campiche. OUM KY2090, Mantelliceras dixoni Zone, Lower Cenomanian, 25-29.5m above base of measured section in Text-fig. 4, Sulukapy.

Figures 1-8 are XI; Figures 9-13 are X2.

P la te 2

Figs. 1-2, 18-20 — Hyphoplites costosus Wright & Wright. 1,2, OUM KY2097; 18,19, OUM KY2098; 20, OUM KY2099. Figs. 3-4, 16-17 —■ Hyphoplites curvatus (Mantell) pseudofalcatus (Semenov). 3,4, OUM KY 2100; 16,17, OUM KY 2101. Figs. 5-6, 11-12 —■ Schloenbachia varians (J. Sowerby). 5,6, OUM KY 2102; 11,12, OUM KY 2103. Figs. 7-8 —- Hyphoplites falcatus falcatus (Mantell). OUM KY2104. Figs. 9-10 — Placenticeras (Karamaites) sp. OUM KY2105. Figs. 13-14 — Submantelliceras aumalense (Coquand). OUM KY2106. Fig. 15 — Sciponoceras roto Cieslinski. OUM KY2107. Figs. 21-22 — Hyphoplites curvatus (Mantell) arausoniensis (Hébert & Munier-Chalmas). OUM KY2108. Figs. 23-24 — Hyphoplites curvatus curvatus (Mantell). OUM KY2109.

All specimens from Mantelliceras mantelli Zone, Neostlingoceras carcitanense Subzone, Lower Cenomanian, 9-13 m above base of section in Text-fig. 4, Sulukapy. Ail figures X2. Biostratigraphical and sequence correlation 85

P l a t e 1 86 Andrew S. GALE, et al.

P l a t e 2 BULLETIN DE L’INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE SCIENCES DE LA TERRE, 69-SUPP. A: 87-101, 1999 BULLETIN VAN НЕТ KONINKLUK BELGISCH INSTITUUT VOOR NATWRWETENSCHAPPEN AARDWETENSCHAPPEN, 69-SUPP.. A: 87-101, 1999

Periodites below and above the К/T boundary by Ruslan R. GABDULLIN, Алсігеу Ju. GUZHIKOV, Alexey B. BOGACHKIN, Nikolay A. BONDARENKO, Tatyana V. LUBIMOVA & Alexander B. WIDRIK

A bstract типов ритмичности. Привлечены циклы разбавления, растворения и биопродуктивносш, как факторы Rhythmically bedded sedimentary rocks from the Maastrichtian and возникновения ритмов. Обсуждены 11 палеогеографических Palaeocene deposits of the Russian craton and southern adjacent areas моделей и пять предлагаются для изученных разрезов. such as SW Crimea and NW Caucasus have been analysed to deter­ Установлена батиметрическая зональность для типов mine their origin. перйодатов и моделей их происхождения. Было предпринято The carbonate content, TOC, foraminiferal, petromagnetic analyses ритмостратаграфическое сопоставление изученных разрезов с and trace fossil distribution from five sections were studied in order разрезами Евразии. Природа ритмичности может быть to define the nature of 9 types of rhythmicity. Cycles of dilution, solution and bioproductivity are involved in producing the rhythms. связана с циклами Миланковича. Eleven palaeogeographic models are discussed and five are proposed for the studied sections. A bathymetric zonation for the types of Ключевые слова: Русский кратон, Крым, Кавказ, Мел- periodites and models of their origin was established. Cyclostrati- Палеогеновая граница, Маастрихт, Палеоцен, ритмичность, graphic correlation of the investigated sections with sections of Eurasia палеогеографические модели may be possible. The origin of rhythms can be related to Milankovich Cycles.

Key-words: Russian craton, Crimea, Caucasus, К/T boundary, Maas­ trichtian, Palaeocene, rhythmicity, palaeogeographic models Introduction

This study focuses on the origin of periodites outcrop­ ping on the Russian craton, S W Crimea and N W Cauca­ Résumé sus. The КУТ boundary in the investigated area was G e r a s im o v Des roches sédimentaires à stratification rythmique appartenant aux studied by et al. (1962) and more recently dépôts maastrichtien et paléocène du craton russe et des régions by M u s a t o v & E r m o k h in a (1997), but the presence, méridionales voisines telles le sud-ouest de la Crimée et le nord-ouest types and the nature of rhythms in these deposits were du Caucase, ont été analysées afin d’en déterminer l’origine. Le not given detailed attention. The biostratigraphic subdivi­ contenu carbonaté, TOC, les foraminifères, le pétromagnétisme et la distribution des traces fossiles ont été étudiés afin de caractériser 9 sion of the Maastrichtian deposits of the Besh-Kosh types de rythmicité. Des cycles de dilution, de dissolution et de bio­ section was investigated by A l e k s e e v & K o p a e v ic h production interviennent dans la production des rythmes. Onze modè­ (1997). les paléogéographiques sont discutés et cinq sont proposés pour les sections étudiées. Une zonation bathymétrique pour les types de pério- The presence and types of rhythmicity below and dites et des modèles expliquant leur origine sont établis. Une corréla­ above the К/T boundary on the Russian craton were tion par cycles sédimentaires des sections étudiées avec des sections already mentioned by G e r a s im o v in G e r a s im o v et al. d’Eurasie est possible. L’origine des rythmes peut être en relation avec les Cycles de Milankovitch. (1962). Carbonate turbidites on the Caucasus were stu­ died by A f a n a s ie v (1993), but intervals with periodites Mots-clefs: Craton russe, Crimée, Caucase, limite К/T, Maastrichtien, were not observed in the succession. Paléocène, rythmicité, modèles paléogéographiques. During the last two years a classification of the palaeo­ geographic models of the origin of carbonate periodites was undertaken (G a b d u l l in , 1997) and a new model was Резюме proposed (G a b d u l l in & B a r a b o s h k in , 1997). Space­ time laws of the forming of the carbonate rhythmic Проанализированы ритмично построенные осадочные породы successions (G a b d u l l in , 1998b), the origin of rhythms из Маастрихтских и Палеоценовых отложений Русского in the Cretaceous of the Ulyanovsk-Saratov foredeep кратона и прилегающих южных районов таких, как ЮЗ Крым и СЗ Кавказ, с целью определения их происхождения. (G a b d u l l in et a l, 1998 a, b) and in the Palaeocene of Изучено содержание карбоната кальция, органического the Crimea and of the Ulyanovsk-Saratov foredeep углерода, петромагнитные анализы и распределение (G a b d u l l in & W id r ik , 1998) have been presented else­ ихнофоссилий в пяти разрезах для определения природы 9 where. 88 Ruslan R. GABDULLIN et al.

LEGEND: Ulyanovsk \ of iron sulfides into magnetite. Thus the presence of ■ - TOWNS Sengeley pyrite and pyrrothine in rocks is indicated by the mag­ • - SECTIONS netic susceptibility increase. Petromagnetic methods can help scientists to: / — - STATE BOUNDARIES Belogrodnya«olsk — determine low concentrations of sulfide and non-sul­ ЧРАІ p Saratov fide Fe-magnetics of size of a dust invisible even in 0 100 ' 500 KM the thin section; — distinguish the composition and volume of the terres­ trial input; RUSSIA — understand the nature of magnetic minerals. UKRAINE" Cyclic distribution of magnetic minerals detected by these methods can be interpreted as cycles of dilution Besh-Kosh, (allotegenious Fe-magnetic minerals) or solution (authi- Novorossyisk genic sulfide Fe-magnetic minerals). Betta CHECHNYA Bakhchisaray Lithostratigraphy BLACK SEA The investigation of the Maastrichtian and Palaeocene of Text-fig. 1 — Locality map. Sections: 1-Sengeley, 2-Volsk, the Russian craton and southern adjacent areas in the SW 3-Belogrodnya, 4-Besh-Kosh, 5-Betta. Crimea and NW Caucasus (Figure 2) resulted in the establishment of nine types of periodites in carbonate (marl-marl (1); marl-limestone (2); marl-chalk (3) and chalk-chalk (4) cycles), in terrestrial-carbonate (sand­ Geological setting stone, sand-calcareous sandstone, sand (5); sandstone, sand-marl (6); clay-marl, limestone (7) cycles) and silic-. Examples of rhythmically bedded carbonate successions eous-carbonate successions (opoka-marl (8) cycles) and containing a К/T boundary are found (Figure 1) on the siliceous successions (sandy/marly opoka-opoka (9) cy­ Russian platform (Sengeley, Volsk, Belogrodnya sec­ cles). Opoka is a light porous siliceous abiomorphic rock, tions) and in southern adjacent areas such as the Crimea consisting from more then 50% of opal or opal-cristabo- (Besh-Kosh section) and the Caucasus (Betta section). lite. The Sengeley section (Ulyanovsk region, Russia), the Carbonate turbidites (Caucasus), periodites (mostly Volsk and Belogrodnya sections (Saratov region, Russia) Russian craton and the Crimea and Caucasus) and transi­ are situated inside the Ulyanovsk-Saratov foredeep. tional turbidite-periodite successions (Caucasus) were The Besh-Kosh section (Bakhchisaray region, Ukraine) observed. Most of the Maastrichtian and Palaeocene in was described from the slope of Besh-Kosh mountain the Caucasus contains limestone (marl)-marl-sandstone (second chain of Crimean mountains). The Betta section carbonate turbidites (Figure 3) or sandstone-clay, sand- is situated in the Novorossyisk foredeep on the Black Sea stone-clay-sandy clay turbidites (Figure 4). Ichnofossils shore. are represented by Thallassinoid.es sp. , Teichichnus sp., Chondrites sp. and Nereites sp. Turbidites always consist of two or more rhythm elements with graded bedding. Materials and methods These criteria were used to separate them from the per­ iodites. The thickness of the Maastrichtian in the Cauca­ In the field, sections were divided into rhythms based on sus is thought to be up to 1230 m, of the Palaeocene — up the weathering of the profiles, their colour differences, to 490 m. That is why the studied parts of the succession trace fossil distribution and thickness variation. are shown out of scale on the Figure 2. Intervals with Foraminiferal analysis (23 samples), total organic car­ arrhythmic, chaotic bedding were found in all investi­ bon content and calcium carbonate content analysis (159 gated regions. samples) were used in the analysis. Petromagnetic inves­ Studied sections of the Ulyanovsk-Saratov foredeep tigations (169 samples) include measurements of mag­ are characterized by the presence of Lower Maastrichtian, netic susceptibility (k), natural remnant magnetization Danian (only in the Belogrodnya section) and Selandian. (Jr), remnant saturation magnetization (Jrs), destructive The Crimean section contains Lower and Upper Maas- field of remnant saturation magnetization (Hcs) and mag­ netic susceptibility increase (dk) to determine mineral species with magnetic properties. Differential thermal Text-fig. 2 — Correlation sketch of Maastrichtian, Danian magnetic analysis (DTMA) was used, JR-4 and IMB-2 and Selandian deposits of Russian craton (Sen­ machines were used for remnant magnetization and mag­ geley, Volsk and Belogrodnya sections), SW netic susceptibility analyses. Increasing magnetic sus­ Crimea (Besh-Kosh section) and NW Caucasus ceptibility is connected with the thermal transformation (Betta section). MAASTRICHTIAN DANIAN SELANDIAN_STAGE LOWER I UPPER LOWER SUBSTAGE EORDY SCIN SECTION SECTION BELOGRODNYA OS BTA EHKS SECTION BESH-KOSH BETTA VOLSK YELLOWISH - PAT.К LAMINATION LAMINATION PAT.К - YELLOWISH GREY OPOKA OPOKA GREY WITH CLAY — DIAGENETIC DIAGENETIC — CLAY WITH GREY OPOKA GREY eidtsblwna h / onay 89 boundary К/T the near below Periodites ______UNCONFORMITIES REDDISH-BLUE LIMESTONES MARLY 90 Ruslan R. GABDULLIN et al.

VOLUME OF QUANTITY OF BIOTURBATED ROCK, % ICHNOGENERA

Text-fig. 3 — Maastrichtian transitional turbidite-periodite succession of Betta section, Caucasus. Explanation of signatures use in Text-fig. 2. Periodites below near the К/T boundary 91

trichtian, Danian and Selandian deposits. The stratigra- È Lu phical position of the Betta section is not sufficiently u . e О И investigated, but it is known that it consists of Maas­ о 5 2 trichtian (Figures 3 and 4) and Palaeocene (Figure 4) P b w m v5 f Щ и a p O deposits. In the Betta section the К/T boundary does 2 w oo D ? y ; z O not outcrop. The Sengeley section (Figure 5) contains Z Lower Maastrichtian chalks (10.5 m) and Selandian opo- ^ ^ о О О о s d: « à С/Э X > m çsL о*У kas (more than 30 m). The Volsk section (Figure 6) consists of Lower Maastrichtian chalks (about 65 m), !-3 0 6 15 5 2 0 2 3 the Belogrodnya section (Figure 7) is composed of Lower Maastrichtian chalks (5 m), Danian sandstones (10 m) and Selandian, siliceous marls, sandy opokas (37 m) with only a few fossils. The Besh-Kosh section (Figures 8 and 9) includes Maastrichtian marls, sandy marls (total thick­ ness — 140 m for both substages), Danian (Figure 2) bioclastic limestones and carbonate clays (26 m) and Selandian (Figure 2) reddish limestones and marly lime­ stones (more than 6 m). The Maastrichtian stage is characterized by the pre­ sence of periodites types 3,4 and 8 (Russian craton); 1,2, 5 and 6 (Crimea) and 2 (Caucasus); carbonate turbidites and transitional turbidite-periodite successions (Cauca­ sus). The Belogrodnya section is presented by an arrhyth­ mic interval (5 m) of chalk. It should be noted that the top of the Lower Maastrichtian in the Volsk section is rich in fossils and also arrhythmic, but other parts contain pri­ mary rhythms. In the Sengeley section, the succession is a visually arrhythmic and fossil-rich chalk, but the mea­ sured parameters demonstrate rhythmic oscillations. The thickness of the Maastrichtian rhythms usually varies from decimeters to meters. Second order cycles can be distinguished in Maas­ о*У trichtian rocks of the Russian craton and the Crimea. They contain cyclic variations of rhythmic and arrhyth­ mic levels in the succession (type 4; Lower Maastrich­ X tian, Volsk section) or the possibility of uniting groups X of rhythms into new cycles according to their litholo­ 2 X gie characteristics and thickness of couplets (all types, < Г Crimea; and type 3; Lower Maastrichtian, Volsk section). X This circumstance can demonstrate the connection be­ cr tween the investigated rhythms and Milankovich cycles. X Lower Palaeocene deposits on the Russian craton и and SW Crimea are represented by periodites of types 8 and 9. Palaeocene opokas were observed in all sections on the Russian craton. The Belogrodnya section contains H Danian deposits presented by arrhythmic, green-blue, сn glauconitic sandstones. Elements of rhythms in the Besh-Kosh section usually have erosional boundaries. Thickness of Palaeocene rhythms is from a 0.10 m to a few meters.

V< Discussion

Text-fig. 4 Two types of turbidites below and above K/T Questions to be answered: boundary (3 rhythm elements in Maastrichtian (1) Which models explain the origin of the periodites in and 2 rhythm elements in Palaeocene) in Betta pelagic/hemipelagic sedimentary rocks? section, Caucasus. Explanation of signatures (2) What mechanisms (cycles) are responsible for the used, in Text-fig. 2. occurrence of specific types of periodites? 92 Ruslan R. GABDULLIN et al.

/■N Ë h U /-N H J Z W О c < < H О О ^ CORRELATION hüZ S OF Jrs & H es . CARBONATE 0 £ 0 (WINDOW 5 , CONTENT, % hOU I STEP 1)

0.1 0.35 2 0 0 1 0 0 Ô1' 0 ° 1 0 "Г ГІ T I I

Text-fig. 5 — Lower Maastrichtian of Sengeley section, Ulyanovsk-Saratov foredeep. Explanation of signatures used in Text- fig. 2.

(3) Which palaeogeographical models apply to the stu­ transported by rivers. Wet warm seasons are the time of died sections? marl sedimentation. Limestones occur during dry cold (4) What is the connection between specific types of conditions. periodites and proposed models? Dilution cycles. Model 3 ( M o r o z o v , 1952). Sea (5) Is it possible to establish the bathymetrical zonality level rise is a time of transgression (ingression) which for the types of periodites and models of their origin? washes out accumulated terrestrial material from the (6) Is it possible to correlate by cyclostratigraphy be­ shore districts into the basin. So, during transgressions tween the investigated sections and other sections in relatively high terrestrial input takes place. Sea level Eurasia? fall is a time of regression and relatively low terrestrial input. Eleven different models have been suggested for explain­ Dilution cycles. Model 4 (G a v r il o v & K o p a e v ic h , ing the origin of the periodites. They are briefly described 1996). During sea level fall coastal regions.become below: swamps and deposition of organic rich sediments takes Dilution cycles. Model 1 (Einsele, 1985). Cyclic place. Sea level rise causes transportation of sediments changes of moisture, terrestrial input due to climatic into the basin, with deposition and partial dissolution, variations form rhythmicity in the carbonate sediments. increase of bioproductivity, appearance of anaerobic con­ During times of dry climate mainly limestones are de­ ditions and occurrence of “black shales” . posited. Times of wet climate produce marls, when the Solution cycles. Model 5 (Gabdullin & Barabosh- dilution of constant carbonate sedimentation by terrestrial k in , 1997). Cyclic repetition of condensation and deposi­ material (clay), transported by rivers, takes place. tion result in the appearance of rhythmic limestone-car- Dilution cycles. Model 2 ( R u f f e l l et a l, 1996). This bonate clay (marl) sections. Limestones always have an model is close to the first. The difference is that in the erosional boundary with clays (marls). Limestones repre­ first case cyclic climatic changes are assumed to result in sent the sedimentation regime, condensation causes the the cyclic changes in the volume of run off, but here concentration of carbonate clay, marl (result of limestone climatic fluctuations cause variations in the nature of dissolution). Erosional surfaces occur due to non-deposi- weathering and in the composition of terrestrial material tional regimes and include soft- and hard-grounds. Con- 'Z '2Ц'1ХЭ1 u! pasn sajnjEuSTSjo uopEimjdxg ‘dsapsjoj лсцбіе^-^блсше^і^} ‘uoijoss ^ sjc ^ jo irei}qoii}SBEj/\j jsM oq — 9 'S g -jx aj^

О O I X '5 [ i % _ î

о JLU OIX'SJJT

W ^

о Z Z о О m PQ E-1 Ц Z о §8 NO ил О оu H О

Ѵ У З Ы З О - O N H D I 3 0 "Л£ѴѵГПГ*^- ÀilLNVnô

% ‘Ю О Н азхѵаншоіе зо нмтол а ШЕШЩЩSWRLÀHH 8 'SWHJAHH » '£ 3 d À l > 3dÀ ± I I- шЗ- Я

еб /trepunoq j / я эц; .геэи Avopq sajtpotraj 94 Ruslan R. GABDULLIN eî al.

ALEKSEEV & KOPAEVICH, 1997

Text-fig. 7 — Lower Maastrichtian, Danian and Selandian of Belogrodnya Volsk section, Ulyanovsk-Sara- tov foredeep. Explanation of signatures used Text-fig. 8 — Lower Maastrichtian of Besh-Kosh, Сгітег in Text-fm. 2. Explanation of signatures used in Text-fig. 2. Periodites below near the К/T boundary 95

ALEKSEEV & KOPAEVICH, 1997 densation and sedimentation are assumed to be cyclic processes. INSOLUBLE Solution cycles. Model 6 (E in s e l e , 1985). SLC (sea RESIDUE P/В RATIO level change) causes variation of the critical carbonate .TYPE5, 25 40% 0 10 20 30% solution depth. Periodically, the volume of the constantly I I I I I I deposited carbonate that is dissolved changes. Solution cycles. Model 7 (Ricken, 1994). SLC causes cyclic variation in depth of the basin. This results in periodic occurrence of stratified waters with anoxic or nearly anoxic conditions and solution of the constantly deposited carbonates. Sea level up — marl, sea level down — limestone. Solution cycles. Model 8 (S a v d r r a & B o t h e r , 1994). Climatic variations result in fluctuations of winds and water current direction, which cause changes in the dissolved oxygen content of the bottom waters. Because of new current directions and some specific bottom relief, stagnant, stratified water masses can occur. Cyclic changes of aerobic — dysaerobic — anaerobic conditions result in periodic solution of constantly deposited carbo­ nates. Dilution and solution cycles. Model 9 (Hay, 1996). Periodical volcanic input into the basin with mostly car­ bonate sedimentation causes cyclic appearance of bentonite couplets inside chalk or marl layers. Erup­ tions produce both ash clouds and acid rain. Acid rain enriches water of the basin in acids, dissolving the car­ bonate. Cycles of bioproductivity, dilution, solution. Model 10 (F is c h e r & A r t h u r , 1977). The history of the organic world can be divided into polytaxic and oligotaxic inter­ vals (F is c h e r -A r t h u r cycles), which occur due to cli­ matic variations, SLC. Solution cycles. Model 11 (Einsele, 1985). Global cycles of carbon are responsible for changing the car­ bon/oxygen relation in the atmo- and hydrospheres. This relation depends on the volume of vegetation. The greater the quantity of plants, the lower the content of carbon dioxide. To determine the mechanisms responsible for produ­ cing the periodites and the palaeogeography implied by them established types of periodites were investigated by different analyses. The Palaeocene periodites were less thoroughly investigated. Here is the interpretation of the origin of the studied types of periodites. A first type of periodites was observed in the Maas­ trichtian of the Besh-Kosh section (Figure 8 and 9). Periodites, consisting both of three elements (Table 1) and two elements (Tables 2 and 3) were observed. Rhythms included marls and chalky marls (Table 1), marls and sandy marls (Table 2), sandy marls and hard sandy siliceous or siliceous marls (Table 3). Rhythmicity in the Maastrichtian of the Besh-Kosh section reflects the distribution of: •— calcium carbonate, carbon dioxide and organic car­ bon concentration; Text-fig. 9 — Lower and Upper Maastrichtian of Besh-Kosh, — volume of bioturbated rocks; Crimea. Explanation of signatires used in Text- — P/В relation; fig. 2. ■— the weathering profile; 96 Ruslan R. GABDULLIN et al.

Table 1 - The compossition of 9 marl-marl-chalky marl rhythms in the Besh-Kosh section (type 1, Lower Maastrichtian).

Lithology Marl Marl Chalky marl Thickness, m 0,05 - 0,2 0,1-0,35 0,15-0,4 Colour greyish-yellow greyish-green white Bioturbation weak or absent strong weak Planktonic forams, %J 4,3 0,8 4 Secretional benthic 7,3 3,2 11 forams, %1 Agglutinated benthic 88,4 96 85 forams, Уо1 Quantity of samples 9 9 9 1 Zayeka O.V., pers. commun.

Table 2 - The composition of 15 calcareous sandstone-sandy marl rhythms in the Besh-Kosh section (type 1, Upper Maastrich­ tian).

Lithology Sandy marl Marl Thickness, m 0,05 - 1 0,2-1 Colour grey yellowish-grey CaC03, % 63,56 68,1 - 72,64 TOC, % 0,25 0,1-0,17 Insoluble residue, % 2 29 35 Planktonic/B enthic forams, % 2 5 10-13 Volume of bioturbated rocks, % 5 10 Quantity of samples 2 4 2ALEKSEEV & KOPAEVICH, 1997

— thickness distribution. Another example of periodites of this type is the Cen­ Origin of 9 marl-marl-chalky marl rhythms in the omanian of the Gamba Zong Shan section, Tibet (L a m o l - Lower Maastrichtian deposits of the Besh-Kosh section d a & W a n , 1996). is connected with solution cycles and sea level change A second type of periodites was found in the Betta (model 7). Fluctuation of the sea level is indicated by section (NW Caucasus). Rhythmicity is represented by a oscillations in the relation of planktonic and benthic limestone-marl succession with a cyclic distribution of forams. Dark rock colour correlates with weak bioturba- magnetic susceptibility, volume of bioturbated rocks tion and sea level rise (relatively high content of the (Figure 3) and distinct colour differentiation (Table 4). planktonic forams). Dilution cycles are indicated by oscillations in the terres­ The same criteria plus a relatively high content of TOC trial input of Fe-magnetic minerals (variations in mag­ in the dark couplets are typical for the same model netic susceptibility). Solution cycles are indicated by proposed for the origin of 15 calcareous sandstone-sandy cyclic distribution of the volume of bioturbated rocks marl rhythms in the Upper Maastrichtian of the Besh- and the trace fossil Chondrites sp., which is extremely Kosh section. At the same time the «sandy» lithology of sensitive to variations of the concentration of oxygen, the rocks is a result of dilution cycles in the basin with dissolved in the bottom waters. The presence of Teichich- fluctuation of sea level (model 3). In summary, models 3 nus sp. in both rhythm elements indicates the absence of and 7 are suggested to explain periodites of the first type. eustatic fluctuations. The origin of the second type of These two models and the same interpretation of the data periodites in the Betta section is considered to be con­ are proposed for the appearance of the 15 sandy marl- nected with models 1 and 8. hard sandy siliceous marl rhythms of the Lower Maas­ In the Lower Maastrichtian of the Besh-Kosh section a trichtian and four soft sandy marl-hard siliceous marl second type of periodites is represented by thick rhythms rhythms of the Upper Maastrichtian of the Besh-Kosh (Figure 8). Thickness of the marl layers varies from 1 to section. 9,5 m. Inside one of these marl units rhythmicity of the Periodites below near the К/T boundary

Table 3 - The composition of marl-marl rhythms in the Besh-Kosh section (type 1, Maastrichtian).

K2mb K2m2, К2 ГП1 , K2m2, Lithology Sandy marl Soft sandy Hard sandy Hard siliceous marl siliceous marl marl Thickness, m 0,1-0,32 0,1 - 0,17 0,45 - 1,05 1 -3,7 Colour light grey grey, yellowish dark grey grey grey C02, % 25-27 29-33 CaC03, % 56,75 - 61,25 65,83 - 74,91 TOC, % <0,08 <0,08 Volume of 5 10 bioturbated rocks, % Planktonic 4 7 forams, %* Secretional 11 2 benthic forams, Vo1 Agglutinated 85 91 benthic forams, %' Quantity of 1 5 1 4 samples Quantity of 15 4 15 4 rhythms

first type was found. Limestones are usually 1-1,5 meters 1998), which are diagenetically cemented limesto thick. Rhythmicity reflects the distribution of: and marls (Table 5) and the top of the underlying ( — volume of bioturbated rocks; nian) deposits of the Besh-Kosh section represented — insoluble residue concentration; two limestone-marl rhythms (Figure 2), can be referre — P/В relation; the second type of periodites, but there are not suffic: — the weathering profile; data available to propose a comprehensive model of — thickness distribution. origin of this type of periodites. Fluctuation of the sea level is indicated by oscillations A third type of periodites was found in the Vc in the relation of planktonic and benthic forams, thickness section. It is represented by extremely thin greenish-w' distribution of the marl couplets and weak oscillations in couplets inside of thick white chalk layers. In the f the volume of bioturbated rock. The constant upward these layers are termed “ marls” , but according to lab< increase of the thickness of marls correlates with sea tory analyses they are chalks (Figure 6). Rhythms level fall (relatively high content of the benthic forams characterized by oscillations of the natural remnant rr and relatively low volume of bioturbated rock) and cor­ netization and destructive field of remnant saturai responds to dilution cycles. The decrease of the carbonate magnetization, of the volume of bioturbated rocks, content in the succession correlates with the shallowing cium carbonate and organic carbon content, and dif of the basin. The nature of the second type of periodites in ences of colour and thickness (G a b d u l l in et al., 199 the Besh-Kosh section is considered to be explained by No periodic fluctuations in the magnetic susceptibi! model 1. remnant saturation magnetization, and magnetic sus& It should be noted that this rhythmic succession is ibility increase were found in examined samples. Mod similar to many rhythmic Upper Cretaceous sections in is proposed as their cause. Eurasia and North America (R ic k e n , 1994). Other examples of periodites of this type are the С The Selandian marble-marbled maxi rhythms (Figure omanian and Turonian of the Anglo-Paris basin (Gi 2) of the Besh-Kosh section (G a b d u l l in & W id r ik , 1995), Campanian of the Gulf of Mexico (K auffm 98 Ruslan R. GABDULLIN et al.

Table 4 - The composition of 5 rhythms in the Betta section (type 2, Maastrichtian).

Lithology Marl Limestone Thickness, m 0,01-1,04 0,02-0,2 Colour dark grey white Ichnogenera Teichichrms sp. Teichichrms sp., Chondrites sp.

Table 5 - The composition of 3 marble-marbled marl rhythms in the Besh-Kosk section (type 2, Selandian)

Lithology Marbled marl Marble (transformed (transformed marl) limestone) Thickness, m 0,1 1-6 Colour pinky-green pink

Table 6 - The composition of 6 sandstone-calcareous sandstone rhythms in the Besh-Kosh section (type 5, Upper Maastrichtian).

Lithology Sandstone Calcareous sandstone Thickness, m 0,13 - 0,32 2,13 -0,5 Colour dirty grey grey Volume of bioturbated rocks, % 5 5-15

Table 7 - The composition of calcareous sandstone-sandy marls rhythms in the Besh-Kosh section (type 6, Upper Maastrichtian).

Lithology Calcareous sandstone Sandy marl Thickness, m 1,1-1,6 3,6 Colour dirty grey dirty yellow Volume of 15-40 10-50 bioturbated rocks, % О О ''V

SJ 26 20-28 CaC03, % 59,02 45,4 - 63,56 TOC, % 0Д 0,2 - 0,23 Quantity of samples 1 2

1985), and Campanian and Maastrichtian of the Exmouth correlation, and the taxonomic diversity of macrofossils. Plateau, NW (B o y d et al., 1994). Rhythms in the Maastrichtian of the Volsk section are Rhythmicity of the fourth type is presented by chalk- defined by the same distribution of characteristics as in chalk rhythms in the Volsk section and hidden rhythmi­ the Sengeley section plus cyclic oscillations in organic city in the Sengeley section. The Volsk section is char­ carbon content, colour differentiation and weathering acterized by weak petromagnetic rhythmicity and low profile. value of petromagnetic parameters (Figure 6). In the Rhythmicity in the Maastrichtian of Sengeley section Sengeley section visual rhythmicity was not observed, (G a b d u l l in et al., 1998b) was formed by solution cycles but the distribution of the measured parameters shows proved by the cyclic distribution of the calcium carbonate periodic variations (Figure 5). Another difference be­ and organic carbon content, the volume of bioturbated tween these two sections is the high value of the petro­ rocks, the quantity of ichnocoenoses. Dilution cycles magnetic parameters in the Sengeley section. Rhythmi­ are indicated by cyclic fluctuations in the input of terres­ city in the Maastrichtian of the Sengeley section is trial Fe-magnetic minerals which produce oscillations established by distribution of: the volume of biotur- in the distribution of the remnant saturated magnetiza­ bated rocks, the quantity of trace fossils, the remnant tion (Jrs), destructive field of remnant saturated magne­ saturated magnetization (Jrs), destructive field of tization (H‘cs) and Jrs-Hcs correlation. Negative correla­ remnant saturated magnetization (H‘cs), the Jrs-Hcs tion we interpreted as the absence of the terrestrial input, Periodites below near the К/T boundary 99

Table 8 - The composition of 5 clay-limestone rhythms in the Besh-Kosh section (type 7, Danian). Lithology Clay Limestone Thickness, m 0,01-0,05 1-3 Colour greyish-green greyish-white

Table 9 - The composition of rhythms in the Belogrodnya section (type 8, Selandian).

Lithology Marl Opoka Thickness, m 0,3 0,2 Colour yellowish pale brownish grey grey Magnetic susceptibility (xlO"5 standard units) 4-6 6-10 Quantity of samples 60 56

Table 10 - The composition of rhythms in the Sengeley section (type 9, Selandian).

Lithology Soft sandy Hard opoka opoka Thickness, m 0,1-1 0,2-1,5 Colour grey yellowish pale grey Remnant saturation magnetization, xlO"3 nT 670 650 Destructive field of remnant saturation 770 700 magnetization, A/m Quantity of samples 1 1

positive — as a presence of the terrestrial input. The dy marls) indicates that there are dilution cycles. It is dilution and solution cycles are described by models 1 interesting that the character of distribution of calcium and 8. Rhythms in the Maastrichtian of the Volsk section carbonate and organic carbon content and volume of the (Ga b d u l l in et al, 1998a) are defined by the same dis­ bioturbated rocks is more complicated, than in most of tribution of characteristics as in the Sengeley section plus the periodites studied: the TOC content in the sandy marl differences in colour and in the weathering profile. The is higher, and the calcium carbonate content can be higher same models are proposed to explain the periodicity of or lower than in the sandstone. At the same time the the Volsk section. volume of the bioturbated rocks is nearly equal in both A fifth type of periodite was studied in the Besh-Kosh rhythm elements, but a darker colour is typical for the section, near the К/T boundary (Figure 2). Preliminary sandstones. Thus, the influence of the solution agent results of the investigation are shown on Table 6. Period­ could be constant or periodic, but the duration (ampli­ ite of this succession have distinct weathering profile, tude) of this periodicity was different (probably longer) colour differentiation, volumes of bioturbated rock and from the duration of dilution cycles. Models 1 and 8 may thickness variation. The origin of this periodite is con­ account for these periodites. nected with dilution cycles (sandstone-calcareous sand­ Other examples of this type of periodites are the Lower stone succession). Model 1 is proposed for this type of Shale member of the Niobrara formation, Santonian of rhythm. the Western Interior Basin, USA (Ricken, 1994). A sixth type of periodite was observed in the Upper A seventh type was found in the Danian deposits of the Maastrichtian of the Besh-Kosh section near the K/T Besh-Kosh section (Figure 2). The preliminary results of boundary. Here (Table 7) the rhythmic distribution of research are shown on Table 8. These periodites (G a b ­ the colour of the rocks, volume of bioturbated rocks, d u l l in & W id r ik , 1998) are distinctly identified by then- carbon dioxide, calcium carbonate and organic carbon weathering profiles and thickness distributions. The Da­ content are nearly equal not direct, or sometimes inverse nian clay couplets are thought to be the result of dissolu­ of those in the other parts of the section (Table 6). The tion and condensation of limestone beds (solution cycles). lithology of the rhythms (calcareous sandstones and san­ The origin of the cyclic repetition of limestone beds, 100 Ruslan R. GABDULLIN et al. erosional surfaces and clay couplets with glauconite can models is more complicated than the distribution of types be described by model 5. of periodites. It seems possible to establish a littoral- An eighth type of periodite is typical for the Selandian sublittoral group of models (1-5) and hemipelagic-pelagic of the Belogrodnya section (Table 9), where rhythms can group (6-8, 10). Models 9 and 11 reflect more global be detected by the weathering profile and fluctuations of influences upon the sedimentary system, than the other the magnetic susceptibility (Figure 7). Dilution cycles are models. indicated by the variation of the petromagnetic para­ The Volsk, Belogrodnya and Sengeley sections are meters and lithology (marl-opoka) (G a b d u l l in & W i­ neither typically Boreal nor Tethyan; their position is d r ik , 1998). Model 1 is suggested as the cause. transitional. The Besh-Kosh is an example of a typical A ninth type of periodite was observed in the Selan­ Tethyan section. It is very similar to the Agost and dian of the Sengeley section (Figure 5). This type differs Zumaya sections (NE Spain) (t e n K a t e & S p r e n g e r , slightly from the previous one in the criteria of the 1992). All of these sections have the same type of establishment of the rhythms (Table 10). Model 1 is rhythms (lithology, thickness). A few groups of couplets proposed for its origin. (below and above К/T boundary) have the same thickness From this analysis it is evident that different models and the same stratigraphie position in these sections, could be proposed for the same types of periodites. In indicating the climatic-orbital control of deposition of some cases a model can produce different types of these rocks and probably reflect Milankovich Cycles. rhythms. The origin of periodites is a result of cycles of dilution, It is possible to establish a bathymetric zonation for the solution and bioproductivity described by the 10 palaeo­ different types of periodites and models of their origin. geographic models. The climatic variations caused by The shallowest periodites (littoral-sublittoral) are the ter- Milankovich Cycles probably resulted in the appearance restrial-carbonate [sandstone, sand-calcareous sandstone, of different kinds of rhythmicity in Maastrichtian and sand (5); sandstone, sand-marl (6); clay-marl, limestone Lower Palaeocene rocks of the Russian craton, SW (7) cycles) and siliceous deposits (sandy opoka-opoka (9) Crimea and NW Caucasus. cycles]. The middle position in the bathymetric zonation are sublittoral-hemipelagic carbonates [marl-marl (1); marl-limestone (2); marl-chalk (3) rhythms] and silic- eous-carbonate successions [opoka-marl (8) cycles]. Acknowledgements The deepest periodites (hemipelagic-pelagic) are the car­ bonate chalk-chalk (4) and siliceous-carbonate marly This study was undertaken with the support of RBS (RFFI, no. 98-05- 64196) and INTAS 94-1414. We are grateful to Philip Kochkin for help opoka-opoka (9) successions. in the technical manipulations. William W. Hay and Andrew S. Gale The bathymetric distribution of palaeogeographic kindly reviewed an earlier draft of the paper.

References

A f a n a s ie v , S. L., 1993. The flysch formation: the laws of the Russian Academy of Sciences, 28 February, 1997. pp. ЮЗ- composition and the forming conditions, pp. 55-250. Rosvuz- 104. Moscow [in Russian]. nayka, Moscow [in Russian]. G a b d u l l in , R. R., 1998a. Rhythmically bedded carbonates: A l e k s e e v , A . S. & K o p a e v ic h , L. F., 1997. Foraminiferal below and above К/T boundary. Abstracts of the final Meeting boistratigraphy of the uppermost Campanian-Maastrichtian in of INTAS project 1994-1414. 23 — 25 March 1998, p. 13. SW Crimea (Bakhchisaray and Chakhmakhly sections). Bulle­ G a b d u l l in , R. R., 1998b. Space-time laws of the forming of the tin Institut royal des Sciences naturelles de Belgique, Sciences carbonate rhythmic successions. Materials of the Undergradu­ de la Terre, 67: 103-118. ate and Postgraduate Student International Conference on Fun­ B o y d , R., H u a n g Z. & O’C o n n e l , S., 1994. Milancovitch damental Sciences “ Lomonosov” , 2: 218 [in Russian]. cyclicity in Late Cretaceous sediments from Exmouth Plateau G a b d u l l in , R. R. & B a r a b o s h k in , E. Ju., 1997. Rhythmicity in of NW Australia. In: Orbital forcing and the Milankovich highly condensed sediments: sedimentary model of the Barre- Theory. Special Publications o f the International Association mian “ Cephalopod Limestones” of SW Crimea. Abstracts of o f Sedimentology. pp. 145 — 166. 18-th IAS Regional European Meeting of Sedimentology, Hei­ E in s e l e , G., 1985. General data about nature, occurrence con­ delberg, 2-4 September 1997, Gaea heidelbergensis, 3: 136. ditions and determination of cyclic deposits (periodites). In: G a b d u l l in , R. R. & W id r ik , A. B, 1998. The comparative E in s e l e , G. & S e il a c h e r , A. (Eds.): Cyclic and event stratifi­ characteristic of the rhythmical successions of the Palaeocene cation. Springer-Verlag, Berlin-Heidelberg-New York. of the Ulyanovsk Povolgie (Sengeley) and Mountain Crimea F is c h e r , A . G. & A r t h u r , M. A ., 1977. Secular variations in (Besh-Kosh). Abstracts of the scientific conference “ Geologi­ the pelagic realm. In: C o o k , H. & E n o s , P., (Eds.): Deep-water cal sciences-98” , 16-17 April 1998, p. 47. [in Russian]. carbonate environments, Special Publication of the Society of G a b d u l l in , R. R., G u z h ik o v , A. Ju., W id r ik , A. B. & D u n d in , economic Paleontology and Mineralogy, 25: 19-50. I. A., 1998a. Forming conditions of rhythmicity in the Upper G a b d u l l in , R. R., 1997. Models of forming of the rhythmicity Cretaceous carbonate rocks of the Bolshevik quarry (Volsk, in the carbonate successions. Abstracts of the Jubilee session of Saratov region). Abstracts of the international scientific con­ Periodites below near the К/T boundary 101 ference, to the memory of V. V. Tyagshaev, 20-22 January order sea level variations. Upper Cretaceous, Western Interior 1998, p. 41. [in Russian]. Basin. In: Orbital forcing and the Milankovich Theory, Special Gabdullin, R. R., W id r ik , A. B., G u z h ik o v , A. & D u n d in , I., Publications o f the International Association ofSedimentology, 1998b. The nature of rhythmicity in the Upper Campanian- 167- 193. Lower Maastrichtian carbonate rocks of the Sengeley quarry (Ulyanovsk region). Materials of the Undergraduate and Post­ R u f f e l l , A., S p a e t h , C. & M u t t e r l o s e , J., 1996. Sedimentary graduate Student International Conference on Fundamental and biogenetic cycles in the Early Cretaceous of NW Europe. Sciences “ Lomonosov” (in press). In: Cretaceous stratigraphy, palaeobiology and palaeogeogra­ phy. Abstracts of the Jost Wiedmann symposium, Germany 7 - Gale, A. S., 1995. Cyclostratigraphy and correlation of the 10 March 1996, pp. 163-165. Tübingen. Cenomanian Stage in Western Europe in: H o u s e , M. R. &

Gale, A. S. (Eds.), Orbital forcing Timescales and Cyclostrati­ S a v d r r a , C. & B o t t je r , D., 1994. Ichnofossils and ichnofab- graphy, Geological Society Special Publication, 85: 177 — rics in rhythmically bedded pelagic / hemi-pelagic carbonates: 197. recognition and evaluation of benthic redox and score cycles. Gavrilov, Ju. 0., & K o p a e v ic h , L. F., 1996. About geochem­ In: Orbital forcing and the Milankovich Theory, Special Pub­ ical, biochemical and biotic evidences of eustatic fluctuations. lications of the International Association ofSedimentology: 195 Stratigraphy and Geological Correlation, 4, 4: 3-14 [in Rus­ — 210 . sian]. t e n K a t e , W. & S p r e n g e r , A., 1992. Orbital cyclicities above Gerasim ov, P. A., M ig a c h e v a , E. E., N a id in , D. P. & S t e r l in , B.P., 1962. Jurassic and Cretaceous deposits of the Russian and below the Cretaceous/ Paleogene boundary at Zumaya (N Platform, pp. 116-155. Moscow University, Moscow [in Rus­ Spain), Agost and Relleu (S E Spain) in: Rhythmicity in deep sian]. water sediments, documentation and interpretation by pattern and spectral analysis, pp 87-117. Amsterdam. Hay, W. W., 1996. Tectonics and climate. Geologische Rundschau, 85: 409-437.

Lamolda, M. & W a n , X., 1996. The response of Foraminifera Ruslan R. G a b d u l l in & Alexander В. W id r ik to oceanic environmental changes during the Cenomanian — Department of historical and regional Geology Turonian transition of Gamba Zong Shan section, Southern Geological Faculty, Moscow State University Tibet. Cretaceous stratigraphy, paleobiology and paleogeogra- Vorobjovy Gory, 119899 Moscow GSP, Russia. phy. Abstracts of the Jost Wiedmann symposium, Germany, 7 - [[email protected]] 10 March 1996. pp. 94 — 100, Tübingen

Ka u ffm a n , E. G., 1985. Ecology and origin of the chalk-marl Andrey Ju. G u z h ik o v & Alexey B . B o g a c h k in and limestone-clay rhythms in the Cretaceous deposits of Department of Geophysics Northern America. In: E in s e l e , G. & S e il a c h e r , A. (Eds.): Geological Institute of Saratov State University Cyclic and event stratigraphy. Springer-Verlag, Berlin-Heidel- Moskovskaya, 161, 410750 Saratov, Russia. berg-New York .

Mo rozo v , N. S., 1952. About rhythmicity of sedimentation in Nikolay A. B o n d a r e n k o & Tatyana V. L u b im o v a the Cretaceous in the region of Dono-Medveditskikh disloca­ Department of Geophysics tions. Doklady Sovetskoy Akademii Nauk, 87, 2: 265 — 268 [in Faculty of Applied Mathematics, Kuban State University Russian], Stavropolskaya, 149, 350040 Krasnodar, Russia.

M u sa to v , V. A. & E r m o k h in a , L. I., 1997. The stratotype of Belogrodnya Formation. Nedra Povolzhia i Prikaspiya, 15, February: 35-42 [in Russian], Typescript submitted: 25. 11. 1998; Ric k e n , W., 1994. Rhythmic sedimentation related to third Revised typescript received: 26.3.1999. BULLETIN DE L’INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE SCIENCES DE LA TERRE, 69-SUPP. A: 103-118, 1999 BULLETIN VAN НЕТ KONINKLUK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN AARDWETENSCHAPPEN, 69-SUPP. A: 103-118, 1999

An overview of Late Cretaceous and Early Palaeogene echinoderm faunas from Liège-Limburg (Belgium, The Netherlands) by John W. M. JAGT

A bstract Музейным коллекциям, и в особенности созданным до 1975 года, не хватает, в частности, подробной информации о With the exception of echinoids, echinoderm faunas from the type area стратиграфическом происхождении. Новая коллекция не of the Maastrichtian Stage still are more or less terra incognita. только значительно углубляет наши знания о фаунах Material collected recently in the area by a group of professional and иглокожих Позднего Мела (Калшанско-Мастрихтский ярусы) amateur palaeontologists comprises numerous new records, which и Раннего Палеогена (Датский ярус) в данной области, но и have the added advantage of being well documented stratigraphically. позволяет подвести итога по структуре разнообразия и Museum collections, and those pre-dating 1975 in particular, generally suffer from a lack of detail where stratigraphie provenance is con­ вымирания, предшествовавшей границе К/T и вкрест границе cerned. Not only do these new collections considerably increase our К/Т. Краткое обозрение фаун иглокожих представлено в knowledge of Late Cretaceous (Campanian-Maastrichtian) and Early данном очерке, особое внимание уделено морским ежам и Palaeogene (Danian) echinoderm faunas in the area, they also allow астероидам. conclusions on diversification and extinction patterns prior to and across the КУТ boundary to be drawn. In the present paper a brief Ключевые слова: Поздний Мел, Ранний Палеоген, overview is given of these echinoderm faunas, with emphasis on echinoids and asteroids. иглокожие, таксономия, стратиграфия, тафономия.

Key words: Late Cretaceous, Early Palaeogene, echinoderms, taxon­ omy, stratigraphy, taphonomy. Introduction

Résumé The calcareous, multi-element echinoderm skeleton is almost predestined to become fossilised (D o n o v a n , A l’exception des échinides, les faunes d’échinodermes de la région- 1991). The often gregarious occurrence of echinoderms type de l’Etage Maastrichtien sont encore plus ou moins terra inco­ in many types of marine strata, and the fact that, even in gnita. Du matériel récemment récolté dans cette région par un groupe de paléontologues professionnels et amateurs comprend de nombreuses the case of dissociated ossicles, material is readily as­ et nouvelles pièces qui ont l’avantage supplémentaire d’être bien signed to family, genus or species, makes them an ideal documentées stratigraphiquement. Les collections des musées, et en subject forpalaeobiological and palaeoecological studies. particulier celles antérieures à 1975, souffrent généralement du manque de précision en ce qui concerne la position stratigraphique. All species of echinoid, asteroid, ophiuroid and crinoid Ces nouvelles collections non seulement élargissent notre connaissance from Campanian, Maastrichtian and Danian deposits in des faunes d’échinodermes du Crétacé supérieur (Campanien-Maas- southern Limburg (The Netherlands) and contiguous trichtien) et Paléogène inférieur (Danien) dans la région, mais per­ mettent également de tirer des conclusions sur les modèles de diversi­ areas in Belgium and Germany axe currently being stu­ fication et d’extinction de part et d’autre de la limite К/T. Dans cette died (Fig. 1). This is done within the framework of a K/T note, ces faunes d’échinodermes sont brièvement passées en revue en boundary diversification/ extinction project (J a g t , 1998, mettant l’accent sur les échinides et les astéries. 1999a-d; K u t s c h e r & J a g t , 1999). This has resulted in Mots-clefs: Crétacé supérieur, Paléogène inférieur, échinodermes, ta­ numerous new records. These include not only taxa pre­ xinomie, stratigraphie, taphonomie. viously described from elsewhere in northwest Europe, but also quite a lot of new genera and species, especially amongst crinoids, asteroids and ophiuroids. Резюме The material consists mostly of dissociated ossicles or portions of skeletons at best (echinoids excepted), but За исключением морских ежей, фауны иглокожих типичного rare finds of well-preserved goniasterid and astropectinid района Мастрихгского яруса остаются в большей или asteroids, ophiurid and ophiolepidid ophiuroids, and меньшей степени terra incognita. Недавно представленные группой палеонтологов, профессионалов и любителей, bourgueticrinid crinoids are also known. To date, well образцы этого района стали объектом многочисленных новых over 200 species are recorded from the area. The present наблюдений, дополнительным преимуществом которых paper provides a brief outline of studies under way as well является их стратиграфическая документированность. as a selection of new records from the area. Crinoids are note is the absence of isocrinids in the Geulhem Member (Early Palaeocene). Comatulids are represented by atelecrinids, pteroco- mids, conometrids, notocrinids and antedonids, and occur throughout the entire Late Cretaceous section. However, in the Campanian and Early Maastrichtian they are com­ paratively rare. Their acme is in the Nekum and Meerssen members, where Jaekelometra gr. belgica (J a e k e l , 1902), J. gr. concava (S c h l u t e r , 1878), Semiometra lenticularis (S c h l ü t e r , 1878) and S. saskiae J a g t , 1999b are very common locally (CBR-Romontbos, ENCI-Maastricht BV and Blom quarries). In addition to centrodorsals representing various ontogenetic stages, such occurrences have also yielded (proximal) brachials, cirrals and pinnules. Brachials with syzygial articulations are fairly common, suggesting these crinoids to have been able to shed arms easily, which in turn would indicate Fig. 1 —- Southern Limburg (The Netherlands) and conti­ stressful conditions (?increased predation pressure; com­ guous areas, showing location of outcrops and quar­ pare M e s s in g , 1997) in shallow-water, subtropical set­ ries referred to in the text: tings. At times, species distinction is difficult, particularly 1 - temporary Albertkanaal sections; of Jaekelometra, Amphorometra and Hertha. In this re­ 2 - CBR-Romontbos quarry; spect, they resemble extant forms (M e s s in g , 1997). 3 - CBR-Lixhe quarry; In comparison with the underlying Meerssen Member, 4 - CPL SA quarry; comatulid diversity decreases noticeably in the Geulhem 5 - Ankerpoort-Curfs quarry; 6 - Blom quarry; Member, with only two forms represented, Hertha gr. 7 - Ankerpoort-’t Rooth quarry; mystica VON H a g e n o w , 1840 (?) and Atiiatucametra an- 8 - ENCI-Maastricht BV quarry; nae J a g t , 1999b. 9 - Kunrade; Bourgueticrinids range through the entire section, 10 - Benzenrade; being commonest in the Late Campanian, early Late 11 - Vijlen. Maastrichtian and Early Palaeocene. Of special note is The inset map of The Netherlands and Belgium the crinoid/ophiuroid lagerstâtte at the base of the Grons- shows the area of the main map (shaded). veld Member (ENCI-Maastricht BV quarry; see J a g t et al., 1998). Newly collected slabs which preserve up to ten crinoids, as well as ophiuroids and rare asteroids, demon­ strate the impact of storm activity on these crinoid “ mea­ not illustrated here, and only few figures of ophiuroids are dows” . Not only do these allow the density and spatial included, since the chapters describing these echinoderms distribution of “populations” (see B a u m il l e r & R o m e , have either just come out or are about to be published 1998) to be determined, but also the nature of the sub­ (J a g t , 1999b and K u t s c h e r & J a g t , 1999, respectively). strate to be analysed in detail. Quite a few crowns have Holothurians are not considered any further; with the penetrated the substrate to depths of almost 10 cm, with exception of dissociated elements of the peristomial ring, arms outspread. ossicles of these echinoderms are extremely rare in the Bourgueticrinids disappear from the section above the area (compare Z e l e z n ik , 1985). base of the Emael Member, only to reappear in the Geulhem Member (Albertkanaal sections and Anker- poort-Curfs quarry), with species that are well known Crinoids from Danian strata in Denmark and southern Sweden, namely Bourgueticrinus danicus B r ü n n ic h N ie l s e n , Known to date from the area are 36 species, in 20 genera, 1913 and Democrimisl maximus B r ü n n ic h N ie l s e n , with all articulate (sub)orders represented. Of these, 3 1915. H â k a n s s o n et al. (1996) have recently suggested genera and 6 species are new (J a g t , 1999b). that an important evolutionary phase in the Bourgueticri- Isocrinids (genera Austinocrinus, Isocrinusl, Isselicri- nina took place during the earliest Palaeocene, and that nus, Praeisselicrinusl and Nielsenicrimts) are particu­ numerous new dorsal cup morphologies arose through larly well represented in the Late Campanian (CPL SA neoteny/paedomorphosis. and CBR-Lixhe quarries) and Early Maastrichtian (Vij- Of the infraorder Holopodinidia only a single repre­ len/Aachen area), but do extend into the latest Maastrich­ sentative is known, Cyathidium vlieksi J a g t , 1986, which tian. At least one species (possibly two) occur in the is now known from the base of the Vijlen Member, the shallow-water settings represented by the Nekum and Meerssen Member and the Kunrade limestone facies Meerssen members (Maastricht Formation; Fig. 2), where (Kunrade area). There are no Danian records of this genus they are associated with much commoner comatulids. Of in the study area. Echinoderm faunas near the К/T boundary 105

Finally, roveacrinids have been shown to range to right Fig. 8) allows the ambulacral structure to be described below the К/T boundary, with Birgelenocrinus degrciafi in detail, and a direct comparison with the genus Jagt, 1999b and Applinocrinus cretaceus (Bather, 1924) Plistophyma (see Smith, 1995; Smith & Jeffery, in occurring in the middle/higher Meerssen Member. Of press) to be carried out. the other species, Veugelersia diana Jagt, 1999b, two — the Meerssen Member has yielded diminutive holas- stratigraphically highly disjunct occurrences are known; teroids (Pl. 1, Figs. 5-7). These appear to be juveniles one in the early Late Campanian (Benzenrade area) and of the common holasteroid Hemipneustes striatora- one in the Late Maastrichtian (Ankerpoort-’t Rooth quar­ diatus (Leske, 1778), of which literally thousands of ry)- adult specimens have been collected in the area. The apparent absence in the area of juveniles of this species has always been a mystery; it may be that Echinoids the fragile tests stood virtually no chance of being preserved in the shallow-water settings represented To date, over 100 species are on record, but diversity is by the Nekum and Meerssen members. still increasing. Notable recent additions and discoveries include the following: Jagt (1998) noted that echinoid faunal composition — the Zeven Wegen Member (CPL SA quarry) has across the К/T boundary varied considerably. Suffer­ yielded the highly specialised, bizarre holasteroid ing heavy losses are infaunal selective deposit feeders Hagenowia (PL 1, Figs. 11, 12), which may prove (hemiasterids), shallow infaunal/semi-infaunal selective conspecific with material from Norfolk and northwest deposit feeders (holasteroids), infaunal bulk sediment Germany, and represent a still undescribed member of swallowers (cassidulids), infaunal selective deposit fee­ the blacbnorei/elongata lineage. ders (faujasiids) and the epifaunal browser Orthopsis. —■ the Benzenrade Member near Benzenrade has yielded Epifaunal diversity (cidaroids) is comparable across the the zeuglopleurid Zeuglopleurus rowei Gregory, boundary, with psychocidarids occurring especially in 1900 (Pl. 1, Fig. 4), which extends the range of this the Danian. Epifaunal generalists (saleniids) increase in rare species, recorded mostly from white chalk set­ diversity across the boundary, and within the Geulhem tings (see Smith & Wright, 1996), to the early Late Member nearshore hardground grazers (arcopeltids, Campanian. arbaciids) are confined to the upper part. That part has — from the Meerssen Member (ENCI-Maastricht BV also yielded the highest diversity in shallow-water, more quarry) additional spines of the psychocidarid Tylo- protected firm bottom species (phymosomatids, cidar­ cidaris inexspectata Jagt & V an der Ham, 1995 have oids). been collected, showing it to range to the top of that unit. This species may be a sister taxon of the Early Palaeocene T. oedumi B rünnich N ielsen, 1938, Ophiuroids which in turn may prove to be a junior synonym of T. hardouini (Desor, 1855). Previous studies of ophiuroids from the study area (e.g., — A small phymosomatid from the Nekum Member B erry, 1938) were based almost exclusively on disso­ (ENCI-Maastricht BV quarry) preserves spines and ciated ossicles, which generally were poorly preserved. In the lantern, and shows the type of spine referred to as recent years, especially storm-dominated deposits Phymosoma rutoti Lambert, 1898 in the literature, to (Meerssen Member) have yielded many specimens with belong to a genus close to Trochalosoma Lambert, discs and (portions of) arms preserved, allowing, species 1897. to be better defined. Thus, the pitfalls of combining — of the locally very common Danian saleniid Hyposa- various unrelated types of dissociated ossicles into spe­ lenia heliophora (Agassiz & Desor, 1846), a number cies (see discussion in Rasmussen, 1950, 1952) can be of specimens with well-preserved lanterns have been evaded. In addition, preliminary observations on preda­ collected, one of which is illustrated here in Pl. 1, tion pressure, based on the number of regenerating arms Figs. 1-3. (see A ronson, 1987) are possible. — the Meerssen Member (ENCI-Maastricht BV quarry) In view of the fact that most ophiuroid species, parti­ has yielded the second, well-preserved specimen of cularly those of the Late Campanian and early Late an apparently new species of the plagiochasmid Maastrichtian, are also known from the Early Maastrich­ genus Plagiochasma. Meijer (1965) noted that it tian of Rügen (NE Germany), K utscher & Jagt (1999) appeared to differ consistently from the Palaeocene decided to base their descriptions mainly on material P. crucifemm (Morton, 1830) [= P. analis (Desor, from that locality. Numerous new species, amongst the 1857)]. (sub)families Ophiobyrsinae, Asteronychidae, Euryali- — from the Zeven Wegen Member (CPL SA quarry), dae, Ophi'omyxidae, Ophiacanthidae, Ophiuridae, Am- juveniles of the diadematid Centrostephanusl phiuridae, Ophiothricidae, Ophiocomidae, Ophioderma- sp. (Pl. 1, Figs. 9, 10) are now known. tidae and Ophiolepididae. Material from the Benzenrade, — new well-preserved material of the stomopneustid Nekum, Meerssen and Geulhem members in the study Winkleria maastrichtensis Engel, 1964 (Pl. 1, area is complementary. ID Vf 'WM uq°r 901 Echinoderm faunas near the К/T boundaiy 107

In general, the more robust forms such as Ophiomu- — Late Cretaceous species of Crateraster are common sium granulosum (Pl. 1, Figs. 16,17), are overrepresented (PL 2, Fig. 22), C.favosus (Spencer, 1913) occurring in ophiuroid samples. Comparatively more articulated in the Zeven Wegen Member and C. reticulatus remains, such as discs and portions of arms, are known (Schulz & W eitschat, 1981) in the Vijlen Mem­ of these forms. The Geulhem Member has yielded only ber. Typically Early Palaeocene representatives few species; the most interesting amongst these is a new such as C. anchylus (Brünnich N ielsen, 1943) and ophiolepidid (PL 1, Fig. 13). C. retiformis (Spencer, 1913) are known from the Geulhem Member, but neither is particularly com­ mon. Asteroids — “ cryptozonid” (? echinasterid) forms such as the one illustrated by Müller (1953, pi. 10, fig. RA1-2) have Starfishes are the most neglected group amongst the been found associated with ambulacrals and terminal echinoderms of the study area, which may be explained plates in the Zeven Wegen Member (PL 2, Figs. 1, 2, by the fact that these disintegrated rather rapidly 4)- upon death and only a jumble of dissociated ossicles — of Metopaster decipiens Spencer, 1913 (PL 2, remained (Blake, 1989, 1996). However, although more Fig. 3) quite a few associated remains of indivi­ or less complete specimens are extremely rare (see e.g., duals have been collected from the Zeven Wegen Faujas Saint Fond, 1799; U mbgrove, 1925), asteroids Member. undoubtedly deserve better. At least 50 species have now — Metopaster undulatus SPENCER, 1913 (PL 2, Fig. 7), been recognised in strata of Campanian, Maastrichtian which B reton (1992) placed in his new genus Para- and Danian age. More than half of these have been metopaster, is known exclusively from the Early described previously from elsewhere in Europe, in parti­ Maastrichtian portion of the Vijlen Member; a com­ cular from white chalk facies types. These include the parable (new?) form, with a pronounced ornament of following: pits of varying size (PL 2, Fig. 10), occurs in the — representatives of the studlandensis-alseni-peakei Zeven Wegen Member. lineage of Nymphaster, which have been shown to — the enigmatic goniasterid Chomataster acides Spen­ constitute good index fossils (Gale, 1987b, 1989; cer, 1913, ranging from the early Late Campanian to Breton, 1992) in the early and late Late Campanian the Middle Danian (Late Danian in Denmark; Ras­ (PI. 2, Figs. 8, 19, 20). mussen, 1945), of which a fairly well-preserved in­ — Nymphaster spenceri (RASMUSSEN, 1950) and N. dividual is known from the Geulhem Member of the wrighti (R a s m u s s e n , 1950), well known from the temporary Albertkanaal sections (Vroenhoven- Maastrichtian of northern Germany and Denmark. Riemst). — Lophidiaster pygmaeus Spencer, 1913 (PL 2, Fig. 9), — Ophryaster oligoplax (Sladen, 1891) (Pl. 2, Figs. 5, which first occurs in the Zeven Wegen Member, and 6), of which several well-preserved arm fragments is a minor constituent of asteroid faunas in the re­ and numerous dissociated marginals, some preserving mainder of the Gulpen Formation and the lower part granules, have been collected from the Zeven Wegen of the Maastricht Formation. A find of associated Member; in the Vijlen Member, O. magnus Spencer, ossicles of a single individual suggests that MÜLLER’s 1913 occurs in places. (1956) description of this taxon is in need of a revi­ sion. Typically Early Palaeocene species such as Metopaster — the sphaerasterid Valettaster (PL 2, Fig. 15), of which spencerii B rünnich N ielsen, 1943 (PL 2, Fig. 17), M. at least two species occur, one of them possibly new kagsti'upensis B rünnich N ielsen, 1943 and Astropecten (Zeven Wegen Member), the other assignable to V. punctatus (Brünnich N ielsen, 1943) (Pl. 2, Fig. 16) are ocellatus (Forbes, 1848), a long-ranging taxon (see known from the Geulhem Member, and it is in part on Breton, 1985). these forms that Rasmussen (1965) based his correlation — Metopaster tumidus Spencer, 1913, of which typical of that unit with the lower part of the Danish Bryozoakalk examples are known only from the Early Maastrich­ (Stevns Hint). tian portion of the Vijlen Member (PL 2, Fig. 21); forms assignable to Schulz & Weitschat’s (1975) In addition to the above-mentioned taxa, which allow M. praetumidus occur in the Zeven Wegen Mem­ interregional correlations with localities elsewhere in ber. northwest Europe, the asteroid faunas in the study area also contain what appear to be endemic elements, although use of the term “endemic” should in fact be avoided. It may well be that the “typical Maas­ tricht tuffaceous chalk” facies was distributed much more extensively over northwest Europe, but that these Fig. 2 — Lithostratigraphy and biozonation of Campanian- strata were eroded completely by subsequent transgres­ Maastrichtian strata in the type area of the Maas­ sive phases. This, in fact, goes for all echinoderm groups, trichtian Stage (from J a g t, 1999a). not only for starfish. New finds include: 108 John W. M. JAGT

Table 1 — Stratigraphie distribution (by lithostratigraphic member; see Fig. 2) of echinoderm taxa from the extended type area of the Maastrichtian Stage, known to date. Abbreviations are as follows: VF - Vaals Formation, ZW - Zeven Wegen Member, В - Beutenaken Member, Vij - Vijlen Member, Li - Lixhe 1-3 members, L - Lanaye Member, Va - Valkenburg Member, Gr - Gronsveld Member, S - Schiepersberg Member, E - Emael Member, N - Nekum Member, M - Meerssen Member, Ge - Geulhem Member.

VF ZW в Vij Li L Va Gr S E NM Ge Echinoids Tylocidaris bruennichi X Ту. hardouini X Ту. inexspectata X Temnocidaris nigelliensis XX T. danica X T. serrata X T. ubaghsi X Ctenocidarisl distincta X Cidarisl forchhammeri X CP. rosenkrantzi X Goniocidarisl sp. X Phyllacanthus sp. X echinothuriid XXX Centi'ostephanus? sp. XXX X X Orthopsis miliaris XX pedinoid X Salenia anthophora X S. belgica X S. bonissenti XXX S. g r . nutrix X S. sigillata X X S. sp. nov. X S. heberti X S. maestrichtensis XX X Salenocidaris minima X Sal. obnupta X Hyposalenia heliophora X Codiopsis disculus X X Goniopygus minor X G. heberti X G. sp. nov. X Phymosoma granulosum XXX Circopeltis maastrichtensis X C. sp. X Phymotaxis toumoueri X Thylechinus sp. nov. X Gauthieria grossouvrei X G. mosae X G. pseudoradiata XXX X XXX XX G. maeandrina Gauthiosoma princeps XX Echinoderm faunas near the К/T boundary 109

VFZW в Vij Li L Va Gr s ENM Ge Ga. h'imica X Trochalosomal rutoti X XX XXXX Micropsidia salis XX Micropsisl sp. nov. X Winkleria maastrichtensis X X Zenglopleunis rowei X Coenholectypus macrostomiis XX Galerites stadensis X X GP. hemisphaericus X GP. sulcatoradiatus X Adelopneustes montainvillensis X A. boehmi X Echinogalerus belgicus

E. muelleri - E. pusillus X E. transversus XX E.l vetschauensis Nucleopygus coravium XXXXX N. scrobiculatus XX XXXX Gitolampas oblongus X Procassidulus lapiscancri XX X P. elongatus X Rhynchopygus marmini XX Rhyncholampas macari XX Faujasia apicalis X X X Catopygus fenestratus XXXXXX Oolopygus pyriformis XXXXXX Plagiochasma cruciferum X P. sp. nov. X Hagenowia sp. X Cardiaster granulosus XXXXXXX C. rutoti XXX Cardiotaxis heberti X Echinocorys gr. conica X E. gr. conoidea X E. gr. gibba X E. gr. humilis X E. gr. limburgica X E. gr. ovata X E. gr. subglobosa X E. gr. pyramidata X X Galeola papillosa basiplana X Hemipneustes oculatus XX X H. striatoradiatus XXXXXX Micraster gr. schroederi/glyphus XX M. stolleyi X Cyclaster platomatus X 110 John W. M. JAGT

VFZW в Vij Li L Va Gr s EN M Ge Diplodetiis spp. XX D. cf. americanus X D. parvistella X XX D. duponti XX D. bucardium XX Hemiaster gr. aquisgranensis X X XXXXX H. prunella X X XX H. koninckanus XX XX Leymeriaster eluvialis XXX L. maestricktensis XX L. sp. nov. X Linthial breviuscula X ЫЛ sp. X Paraster sindensis X Ophiuroids Ophiosmilaxl sp. nov. X X Asteronyxl sp. nov. X Trichasterl ornatus XX XXX X XX T.l sp. XX XX Ophiomyxal sp. nov. XX Ophiomyxal jekerica XXX Ophioscolex1 sp. nov. 1 X Ophioscolexl sp. nov. 2 X X Ophiacanthal danica X XXXX Ophiacanthal sp. nov. 1 X Ophiacanthal sp. nov. 2 XX Stegophiural hagenowi X XX S.l sp. nov. X Ophioctenl sp. nov. X Felderophiura vanderhami XXX Ophioplinthacal fuerstenbergii X . X Amphiural sp. nov. XX amphiurid gen. et sp. nov. 1 X amphiurid gen. et sp. nov. 2 X Ophiothrixl sp. nov. 1 X X XX Ophiothrixl sp. nov. 2 XX Ophiactisl sp. nov. X Ophiocomal senonensis XXXX O phiodem al sp. nov. X X Ophiodermal substriatum X XX Ophiarachnal sp. nov. X Ophiotitanos sen'ata X XX X XX XX Ophiolepisl sp. nov. 1 X Ophiolepisl sp. nov. 2 X X Ophiolepisl sp. nov. 3 Ophiomusium sp. nov. 1 X Ophiomusium granulosum XXXXXXXX Echinoderm faunas near the К/T boundary 111

VF ZW в Vij Li L Va Gr S E N M Ge Ophiomusium sp. nov. 2 X Ophiomusium sp. nov. 3 X ophiolepidid gen. et sp. nov. X Crinoids Austinocrinus bicoronatus X Isocrinusl sp. X IP lanceolatus X Isselicrinus buchii X Praeisselicrinusl limburgicus X Nielsenicrinus carinatus X N. agassizii X N. ewaldi X X Jaekelometra gr. belgica XX J. gr. concava X X JP defectiva X X Placometra gr. laticirra XXXX Atuatucametra annae X Amphorometra gr. conoidea XX X Semiometra impressa X S. lenticularis XX S. saskiae X X Loriolometra retzii X Hertha gr. plana X X H. gr. pygmea X H. gr. mystica X Dunnicrinus aequalis XX XX Bourgueticrinids aff. baculatus X B. sp. XX B. bruennichinielseni X B. aff. brydonei XX B. constrictus XX B. danicus X B. hureae X BP. suedicus X Democrinusl maximus X “Monachocrinus gallicus” X Cyathidium vlieksi XX Applinocrinus cretaceus XXXXXXX Birgelenocrinus degraaji X Veugelersia diana XX Asteroids astropectinid sp. X Asti-opectenl punctatus X A.? sp. nov. X Aldebarania sp. nov. X Lophidiaster pygmaeus XXXX X XX Coulonia sp. nov. XX 112 John W. M. JAGT

VF ZW B Vij Li L Va Gr S E N M Ge benthopectinid x XX

Stauranderaster miliaris X Aspidaster sp. X Pycinaster crassus XX P. danicus X Valettaster gj'anulatus X V. ocellatus XX V. sp. (nov.?) X Metopaster sp. nov. 1 X

M. spencerii X

M. kagstrupensis X M. sp. nov. 2 X M. sp. nov. 3 X M. sp. nov. 4 X M. decipiens X M. sp. nov. 5 X M. sp. nov. 6 X M. praetumidus X M. tumidus X M. undulatus X Ceramasterl sp. X Recurvaster blachnoreiï x R. radiatus X R. sp. nov. 1 XX R. sp. nov. 2 X Chomastaster acules XXXXX x XXX goniasterid sp. 1 XXXX goniasterid sp. 2 XXX Ophryaster oligoplax X 0. magnus X 0.1 maastrichtensis X Comptoniaster sp. nov. X Crateraster favosus X C. reticidatus X C. sp. nov. X C. anchylus X C. rétif om is X Nymphaster studlandensis X N. alseni X N. spenceri X N. wrighti X N .l sp. X asteriid(s) XX “ ciyptozonids” XX Echinoderm faunas near the К/T boundary 113

— apparently juvenile goniasterids, closely related to 1997), V illier (1996) and V illier et al. (1997). One Crateraster (Pl. 1, Fig. 14), from the Meerssen Mem­ of the new species, Metopaster sp. nov. (Pl. 2, Fig. 18) ber (Blom quarry). is reminiscent of M. calcar Spencer, 1913,.from the — many paxillosidans, such as possible radiasterids Santonian-Early Campanian of southern Sweden (see (Pl. 2, Fig. 13) and astropectinids, e.g. the form illu­ Gale, 1987a, pl. 8, figs. 12-21) and of M. bromleyi strated in Pl. 2, Fig. 12, which Rasmussen (1965, pl. 8, Gale, 1987a (pl. 2, figs. 14-16; pl. 3, figs. 1-5) from fig. 13) referred to as Asteropecten n. sp. aff. cottes- the late Early Campanian of the same area. woldia [jz 'c ]. Cainozoic astropectinids (see e.g., Ras­ — remains of at least two individuals of what appears to mussen, 1972; Kaczmarska, 1987) are in need o f a be a new species of Recurvaster, seemingly closely modem revision; only rarely have species been based related to and a possible precursor of the Early Pa­ on such well-preserved remains as those recently laeocene R. mammillatus (Gabb, 1876), are known described by N osowska (1997). Forms closely re­ from the uppermost Meerssen Member (Pl. 2, Figs. 23, lated to or assignable to the genera Tethyaster (see 24) of Blom quarry. e.g., Hall & Moore, 1990; B reton, 1995), Dipsa- — dissociated ossicles of asteriids (Pl. 1, Figs. 15, 19), caster (see B reton et al., 1995), Coulonia (= Cunea- closely comparable to material from the Cenomanian- ster; see Hess & B lake, 1995) and the otherwise Coniacian of France as illustrated by B reton & exclusively North American Aldebarania (see B lake Ferré (1995). Asteriids have rarely been recorded & Sturgeon, 1995) are known from the Zeven W e­ as fossils, and for that reason it comes as no surprise gen Member and the higher Maastricht Formation that new finds almost invariably represent new genera (Emael, Nekum and Meerssen members; Pl. 2, and/or species (see e.g., B lake, 1990a; B lake & Fig. 11), in particular. From flint nodules in the upper Peterson, 1993; B lake et al., 1996; B lake & Ar­ Nekum Member. (CBR-Romontbos quarry), three onson, 1998). well-preserved individuals are known of an astropec- tinid referable to Aldebarania (D.B. Blake, pers. Reference is made to Jagt (1999d) for more details and comm.). for a discussion of functional morphology and palaeoe- — stauranderasterids, especially from the Geulhem cology of these asteroid faunas, based on literature data Member, appear close to Stauranderaster miliaris (Blake, 1989, 1990b). Brünnich N ielsen, 1943 (Pl. 2, Fig. 14); the Meers­ sen Member has yielded another form (Pl. 2, Fig. 25). Acknowledgements — rare benthopectinids (Pl. 1, Fig. 18), comparable to lake material illustrated by B (1973, 1984). I wish to thank the following colleagues for assistance in various — various new species of the goniasterid Metopaster, ways: M.J. V an B irgelen, D .B. B lake, G.J. B oekschoten, M.J.M. this genus in particular appears to have been very D eckers, S.K. D onovan, R.W. D ortangs, A.S. Gale, R.W.J.M. successful in establishing local species, as offshoots V an der Ha m , H. H ess, J. Indeherberge, Saskia M. K a rs, P. V an Knippenberg, M. K utscher, M.M.M. K uypers, J.P.H . Reynders of the parkinsoni lineage. Gale (1987a) erected a and J. Snellings. The managements of C PL SA-Haccourt, CBR- number of such short-lived offshoots, which are par­ Lixhe, ENCI-Maastricht ВѴ, Blom and Ankeipoort-Curfs allowed ticularly typical of marginal settings, e.g., coarse­ access to their quarries, which is much appreciated. This research was supported (in part) by the Geosciences Foundation (GOA) with grained biocalcarenites in southern Sweden. Compar­ financial aid from the Netherlands Organisation for Scientific Research able forms have been discussed by Breton (1992, (NWO).

R e fe re n c e s

A g a ssiz, L. & D e s o r , E., 1846-1847. Catalogue raisonné des Califomia/USA/5-9 August 1996. Rotterdam/Brookfield, A.A. familles, des genres, et des espèces de la classe des Échino- Balkema, pp. 133-137. dermes. Annales des Sciences naturelles, (3. Zoologie), 6: 305- 374. B e r r y , C.T., 1938. Ophiurans from the Upper Senonian of South Limburg, Holland. Journal of Paleontology, 12: 61-71. A r o n s o n , R.B., 1987. Predation on fossil and Recent ophiur­ oids. Paleobiology, 13: 187-192. B l a k e , D .B ., 1973. Ossicle morphology of some Recent aster­ oids and description of some West American fossil asteroids. B a t h e r , F.A., 1924. Saccocoma cretacea n. sp., a Senonian University o f California Publications in Geological Sciences, crinoid. Proceedings of the Geologists' Association, 35: 111- 104: 1-59. 121. B l a k e , D .B ., 1984. The Benthopectinidae (Asteroidea: Echi- B a u m il l e r , Т.К. & R o m e , E.F., 1998. The Interference Avoid­ nodermata) of the Jurassic of Switzerland. Eclogae geologicae ance Hypothesis and the spatial distribution of Endoxocrinus Helvetiae, 77: 631-647. parrae (Crinoidea, Echinodermata). In: M o o i, R . & T e l f o r d , M. (Eds), Echinoderms: San Francisco. Proceedings of the B l a k e , D.B., 1989. Asteroidea: Functional morphology, clas­ Ninth International Echinoderm Conference, San Francisco/ sification and phylogeny. In: J a n g o u x , M. & L a w r e n c e , J.M. 114 John W. M. JAGT

(Eds), Echinoderm Studies, 3. Rotterdam/Brookfield, A.A. Paris/Wiesbaden, Ch. Reinwald/Kriedel & Niedner, lxviii + Balkema, pp. 179-223. 490 pp.

B l a k e , D .B ., 1990a. Hettangian Asteriidae (Echinodermata: D o n o v a n , S.K., 1991. The taphonomy of echinoderms: calcar­ Asteroidea) from southern Germany: taxonomy, phylogeny eous multi-element skeletons in the marine environment. In: and life habits. Palaontologische Zeitschrift, 64: 103-123. D o n o v a n , S.K. (Ed.), The processes of fossilization. London, B l a k e , D .B ., 1990b. Adaptive zones of the class Asteroidea Belhaven Press, pp. 241-269.

(Echinodermata). Bulletin of marine Science, 46: 701-718. E n g e l , H., 1964. On Winkleria maastrichtensis nov. gen. B l a k e , D.B., 1996. Fossils explained 18: Starfishes. Geology et nov. spec. (Echinoidea, Regularia, Stirodonta, Phymosomi- Today, 12: 230-235. na, ?Phymosomatidae) from the Upper Cretaceous (Md)

Blake, D.B. & A r o n s o n , R.B., 1998. Eocene stelleroids (Echi­ of Maastricht (Limburg, Netherlands). Beaufortia, 10: 207- nodermata) at Seymour Island, Antarctic Peninsula. Journal o f 210. Paleontology, 72: 339-353. F a u ja s S a in t F o n d , B., 1799. Histoire naturelle de la Montagne B l a k e , D.B., B r e t o n , G . & G o f a s , S., 1996. A new genus and de Saint-Pierre de Maëstricht. H.J. Jansen, Paris, 263 pp. species of Asteriidae (Asteroidea; Echinodermata) from the F o r b e s , E ., 1848. On the Asteridae found fossil in British strata. Upper Cretaceous (Coniacian) of Angola, Africa. Palaontolo­ Memoirs o f the Geological Survey o f Great Britain, 2(2): 457- gische Zeitschrift, 70: 181-187. 482. B l a k e , D.B. & P e t e r s o n , D.O., 1993. An unusual new asteriid G a b b , W.M., 1876. Note on the discovery of representatives of (Echinodermata: Asteroidea) from the Cretaceous of Califor­ three orders of fossils new to the Cretaceous formation of North nia. Journal of Paleontology, 67: 586-589. America. Proceedings of the Academy of Natural Sciences of B lake, D.B. & Sturgeon, K., 1995. Aldebarania arenitea, a Philadelphia, 28: 178, 179. new genus and species of Astropectinidae (Asteroidea; Echi­ G a l e , A.S., 1987a. Goniasteridae (Asteroidea, Echinodermata) nodermata) from the Maastrichtian (Upper Cretaceous) Peedee from the Late Cretaceous of north-west Europe. 1. Introduction. Formation of North Carolina. Journal o f Paleontology, 6 9 :376- The Genera Metopaster and Recurvaster. Mesozoic Research, 1 380. (1986): 1-69. B reton, G., 1985. Valettaster ?Sphaerasteridae mésozoïque. G a l e , A.S., 1987b. Goniasteridae (Asteroidea, Echinodermata) Bulletin trimestriel de la Société géologique de Normandie et from the Late Cretaceous of north-west Europe. 2. The Genera des Amis du Muséum du Havre, 72: 91-99. Callidenna, Crateraster, Nymphaster and Chomataster. Meso­ B r e t o n , G., 1992. Les Goniasteridae (Asteroidea, Echinoder­ zoic Research, 1: 151-186. mata) jurassiques et crétacés de France. Taphonomie, systéma­ tique, biostratigraphie, paléobiogéographie, évolution. Bulletin G a l e , A.S., 1989. Migration and evolution in Late Cretaceous trimestriel de la Société géologique de Normandie et des Amis Goniasteridae (Asteroidea, Echinodermata) from north-west du Muséum du Havre, h.s. SuppL, 78: 1-590. Europe. Proceedings o f the Geologists' Association, 100: 281-291. B reton, G., 1995. Tethyaster guerangeri sp. nov. (Astropec­ tinidae, Asteroidea, Echinodermata): deux spécimens d’asté- G r e g o r y , J.W ., 1900. Appendix A. Zeuglopleunts rowei, n. rides d’une conservation exceptionelle du Cénomanien du sp. In: R o w e , A.W. The zones of the White Chalk of the English Mans (Sarthe, France). Bulletin trimestriel de la Société géolo­ Coast. I. Kent and Sussex. Proceedings o f the Geologists’ gique de Normandie et des Amis du Muséum du Havre, 82: Association, 16: 353, 354. 17-29. H â k a n s s o n , E., K j a e r , C.R. & T h o m s e n , E., 1996. Benthic B r e t o n , G., 1997. Patterns and processes of heterochrony in recovery subsequent to the Cretaceous-Tertiary boundary - the Mesozoic goniasterid sea-stars. Lethaia, 30: 135-144. European example. Abstracts, Sixth North American Paleonto­ logical Convention, Washington DC, 1996: 1 pp. B r e t o n , G., B il o t t e , M. & S ig r o , G., 1995. Dipsacasterjadeti sp. nov., Astropectinidae (Asteroidea, Echinodermata) du H a l l , R.L. & M o o r e , S., 1990. ITethyaster albertensis, a Maastrichtien des Petites Pyrénées (France). Bulletin trimestriel Late Cretaceous (Turonian) sea star from the Cardium For­ de la Société géologique de Normandie et des Amis du Muséum mation, Alberta, Canada. Journal o f Paleontology, 64: 1045- du Havre, 82: 35-42. 1049.

B r e t o n , G. & F e r r é , В., 1995. Première observation d’élé­ H e s s , H . & B l a k e , D .B ., 1995. Coulonia platyspina n. sp ., a ments squelettiques d’Asteriidae (Asteroidea, Echinodermata) new astropectinid sea star from the Lower Cretaceous of Mor­ dans les craies du Cénomanien au Coniacien du Bassin de Paris occo. Eclogae geologicae Helvetiae, 88: 777-788. (F ra n c e ). Revue de Micropaléontologie, 38: 299-309. J a e k e l , O ., 1902. Über verschiedene Wege phylogenetischer B r ü n n ic h N ie l s e n , К., 1913. Crinoideme i Danmarks Kridtaf- Entwicklung. Verhandlungen des fünften internationalen zool- lejringer. Danmarks geologiske Undersôgelse, (2)26: 1-120. ogischen Congress, Berlin, 1901: 1058-1117. B r ü n n ic h N ie l s e n , К., 1915. Rhizocrinus maximus n . sp. og J a g t , J.W.M., 1986. Cyathidium vlieksi, a new holopodid cri- nogle Bemærkninger om Bourgueticrinus danicus Br. N . Med- noid from the Upper Maastrichtian (Late Cretaceous) of south­ delelserf-a dansk geologiske Fôrening, 4: 391-394. ern Limburg, The Netherlands. Geologie en Mijnbouw, 65:215- B r ü n n ic h N ie l s e n , К., 1938. Faunaen i Ældre Danium ved 221. Korporalskroen. Meddelelser fra dansk geologiske Fôrening, 9 Jagt, J.W.M., 1998. Late Cretaceous-Early Palaeogene echi­ (1937): 118-126. noderm faunas and the К/T boundary in the Maastrichtian type B r Ün n ic i-i N ie l s e n , К., 1943. The asteroids of the Senonian and area. In: K o p a e v ic h , L.F. & D h o n d t , A.V. (org.). INTAS Danian deposits of Denmark. Det kongelige Danske Videnska- Project 1994-1414, Bio-events at the КУТ boundary on the bemes Selskab, Biologiske Shifter, (2)5: 1-68. southern margin of the white chalk sea - palaeobiology, palaeo- D esor, E., 1855-1858. Synopsis des Echinides fossiles. biogeography, sequence stratigraphy, geochemistry and geo­ Echinoderm faunas near the К/T boundary 115

chronology. Final Meeting, Moscow March 23-25, 1998: 17, M ü l l e r , A.H., 1956. Zurgenaueren Kenntnis von Lophidiaster 18. pygmaeus (Asterozoa) aus der Schreibkreide (Maastricht) von Jagt, J.W.M., 1999a. Late Cretaceous-Early Palaeogene echi- Rügen. Geologie, 5: 642-651. noderms and the К/T boundary in the southeast Netherlands and N o s o w s k a , E., 1997. Asteroids from the Nawodzice Sands northeast Belgium - Part 1: Introduction and stratigraphy. (Middle Miocene; Holy Cross Mountains, Central Poland). Scripta Geologica, 116A: 1-57. Acta geologica polonica, 47: 225-241.

J a g t, J.W.M., 1999b. Late Cretaceous-Early Palaeogene echi- R a s m u s s e n , H.W., 1945. Observations on the asteroid fauna of noderms and the К/T boundary in the southeast Netherlands and the Danian. Meddelelser fra danske geologiske Fôrening, 10 northeast Belgium - Part 2: Crinoids. Scripta Geologica, 116B: (1944): 417-426. 59-256, 46 pis. R a s m u s s e n , H.W., 1950. Cretaceous Asteroidea and Ophiur- Jagt, J.W.M., 1999c. Late Cretaceous-Early Palaeogene echi- oidea with special reference to the species found in Denmark. noderms and the К/T boundary in the southeast Netherlands and Danmarks geologiske Undersgelse, (2) 77: 1-134. northeast Belgium - Part 4: Echinoids. Scripta Geologica, 122 R a s m u s s e n , H.W., 1952. Cretaceous Ophiuroidea from Ger­ (in press). many, Sweden, Spain and New Jersey. Meddelelser fra dansk Jagt, J.W.M., 1999d. Late Cretaceous-Early Palaeogene echi- geologiske Fôrening, 12 (1951): 47-57. noderms and the К/T boundary in the southeast Netherlands and R a s m u s s e n , H.W., 1965. The Danian affinities of the Tuffeau northeast Belgium - Part 5: Asteroids. Scripta Geologica, 123 de Ciply in Belgium and the “ Post-Maastrichtian” in the (in press). Netherlands. Mededelingen van de Geologische Stichting, Jagt, J.W.M., D o n o v a n , S.K., D e c k e r s , M.J.M.D o r t a n g s , n.s., 17: 33-40.

R.W., K u y p e r s , M.M.M. & V e l t k a m p , C.J., 1998. The Late R a s m u s s e n , H.W., 1972. Lower Tertiary Crinoidea, Asteroidea Maastrichtian bourgueticrinid crinoid Dunnicrinus aequalis and Ophiuroidea from northern Europe and Greenland. Bio- (d’Orbigny, 1841) from The Netherlands and Belgium. Bulletin logiske Skrifter fra det danske Videnskabeliges Selskab, 19: del'Institut royal des Sciences naturelles de Belgique, Sciences 1-83. de la Terre, 68: 129-154. SCHLÜTER, C., 1878. Ueber einige astylide Crinoiden. Zeit­ Jagt, J.W.M. & V a n d e r H a m , R.W.J.M., 1995. First record of schrift der deutschen geologischen Gesellschaft, 30: 28-66. the echinoid genus Tylocidaris Pomel 1883 from the type S c h u l z , M.-G. & W e it s c h a t , W ., 1975. Phylogenie und Maastrichtian of the Netherlands. Palâontologische Zeitschrift, Stratigraphie der Asteroideen der nordwestdeutschen Schreib- 69: 233-239. kreide. Teil I: Metopaster/Recurvaster- und Callider- Ka c z m a r s k a , G., 1987. Asteroids from the Korytnica Basin ma/Chomataster-Gmppe.. Mitteilungen aus dem geolo- (Middle Miocene; Holy Cross Mountains, Central Poland). gisch-palaontologischen Institut der Universitat Hamburg, Acta geologica polonica, 37: 131-144. 44: 249-284.

K u tsc h e r , M. & J a g t , J.W.M., 1999. Early Maastrichtian S c h u l z , M.-G. & W e it s c h a t , W ., 1981. Phylogenie und Stra­ ophiuroids from Rügen (northeast Germany) and Мяп (Den­ tigraphie der Asteroideen der nordwestdeutschen Schreibk­ mark). In: J a g t , J.W.M. Late Cretaceous-Early Palaeogene reide. Teil II: Crateraster/Te/c/ios7e;--Gruppe und Gattung echinoderms and the К/T boundary in the southeast Nether­ Ophryaster. Mitteilungen aus dem geologisch-palaontolo- lands and northeast Belgium - Part 3: Ophiuroids. Scripta gischen Institut der Universitat Hamburg, 51: 27-42. Geologica, 121 (in press). S l a d e n , W.P., 1891-1893. A monograph of British fossil Echi- La m b e rt, J., 1897. Note sur quelques Echinides éocènes de nodermata from the Cretaceous formations, 2. The Asteroidea l’Aude, I. Endocycles. Bulletin de la Société géologique de and Ophiuroidea, 1-2. Monographs of the Palaeontographical France, (3) 25: 483-517. Society of London, 1891-1893: ii + 1-66.

L a m b e r t, J., 1898. Note sur les Échinides de la craie de Ciply. S m it h , A.B., 1995. Late Campanian-Maastrichtian echinoids Bulletin de la Société belge de Géologie, de Paléontologie et from the United Arab Emirates-Oman border region. Bulletin d'Hydrologie, 11 (1897): 141-190. of the Natural History Museum London (Geology), 51: 121-

Lesk e, N.G., 1778. Jacobi Theodori Klein Naturalis disposi- 240. tio Echinodermatum, édita et descriptionibus novisque in- S m it h , A.B. & J e f f e r y , C.H. in press. Maastrichtian and Pa- ventis et synonymis auctorum aucta. Lipsiae, G.E. Beer, xxii laeocene echinoids: An illustrated key. Special Papers in Pa­ + 278 pp. laeontology.

M eu e r , М., 1965. Sur la présence du genre Plagiochasma S m it h , A.B. & W r ig h t , C.W., 1996. British Cretaceous echi­ (Enchinoidea) [szc] dans les tuffeaux maastrichtien et dano- noids. Part 4, Stirodonta 3 (Phymosomatidae, Pseudodiadema- montien aux environs de Maastricht (Pays-Bas). Natuurhisto- tidae) and Camarodonta. Monograph o f the Palaeontographical risch Maandblad, 54: 96-102. Society London, 150 (602): 268-341.

M e s sin g , C.G., 1997. Living comatulids. In: W a t e r s , J.A. & S p e n c e r , W.K., 1913. The evolution of the Cretaceous Aster­ M a p l e s , C.G. (Eds), Geobiology of echinoderms. Paleontolo­ oidea. Philosophical Transactions o f the Royal Society o f Lon­ gical Society Papers, 3: 3-30. don, B204: 99-177.

M o r t o n , S.G., 1830. Synopsis of the organic remains of the U m b g r o v e , J.H.F., 1925. Asteroidea uit het Maastrichtsche ferruginous sand formation of the United States, with geologi­ Tufkrijt. Verhandelingen van het Geologisch-Mijnbouwkundig cal remarks. American Journal of Science, 17: 274-295. Genootschap voor Nederland en Koloniën, geol. serie, 7: 207- 212. M ü l l e r , A.H., 1953. Die isolierten Skelettelemente der Aster- oidea (Asterozoa) aus der obersenonen Schreibkreide von Rü­ V il l ie r , L., 1996. Les Goniasteridae (Asteroidea, Echinoder- gen. Geologie (Beiheft), 8: 3-66. mata) du Campanien d’Aquitaine; ontogenèse, évolution et 116 John W. M. JAGT paléoécologie. Université de Bourgogne, Centre des Sciences Université de Liège, Faculté des Sciences, Laboratoires de de la Terre, 50 pp. (unpublished thesis). Paléontologie, 104 pp. (unpublished thesis). V illier, L., B reton, G. & N éraudeau, D., 1997. Contexte paléoécologique, biodiversité et signification biostratigraphi- John W. M. Jagt que des asteridés dans le Campanien stratotypique. Annales Natuurhistorisch Museum Maastricht de la Société Géologique du Nord, (2) 5: 181-188. P.O. Box 882 von H agenow, F., 1840. Monographie der Rügen’schen Krei- NL-6200 AW Maastricht deversteinerungen. Abtheilung II. Radiarien und Aimulaten, The Netherlands nebst Nachtràgen zur I. Abtheilung. Neues Jahrbuch Jiir Minér­ [[email protected]] alogie, Geognosie, Geologie undPetrefactenkunde, 1840: 631- 672. Z eleznik, A., 1985. Analyse descriptive et quantitative des meso-et microfossiles du contact Campanien-Maastrichtien Typescript submitted: December 1, 1998. dans le Nord-Est de la Belgique et le Limbourg néerlandais. Revised typescript received: February 2, 1999.

P late 1

Note — Data on provenance of material in Plates 1 and 2, as well as repository and registration numbers of specimens illustrated, are supplied by Jagt (1999b-d) and K utscher & Jagt (1999), to which reference is made.

Figs. 1-3 — Hyposalenia heliophora, apical and lateral views of test (x 6), and associated lantern (x 23). Fig. 4 — Zeuglopleurus rowei, apical view, x 9. Figs. 5-7 — Hemipneustes striatoradiatus juv., apical, oral and lateral views, x 9. Fig. 8 — Winkleria maastrichtensis, oblique lateral view, x 17.5. Figs. 9, 10 — Centrostephanusl sp. juv., lateral and oblique apical views, x 15. Figs. 11, 12 — Hagenowia sp. (?nov.), rostra, x 15 and x 12, respectively. Fig. 13 — Ophiolepididae n. sp. , lateral arm plate, x 30. Fig. 14 — Goniasteridae indet. juv., x 6.5. Figs. 15, 19 — asteriid indet., x 20 and x 26, respectively. Figs. 16, 17 — Ophiomusium granulosum, proximal arm portions, x 16 and x 5, respectively. Fig. 18 — benthopectinid indet., x 21.

P late 2

Figs. 1, 2, 4 — indeterminate “ cryptozonid” (? echinasterid), marginals, ambulacrals and terminal plate; x 13 (1), x 19 (2) and x 25 (4). Fig. 3 — Metopaster decipiens, ultimate superomarginal, x 9. -Figs. 5, 6 — Ophry>aster oligoplax, marginals preserving granules, x 10. Fig. 7 — Metopaster undulatus, ultimate superomarginal, x 7.5. Fig. 8 — Nymphaster studlandensis, distal marginal, x 17. Fig. 9 — Lophidiaster pygmaeus, superomarginal, lateral view, x 20. Fig. 10 — “ Parametopaster” (sp. nov.?), oblique view of ultimate superomarginal, x 8. Fig. 11 — astropectinid indet., superomarginal, x 18. Fig. 12 — astropectinid (sp. nov.?), inferomarginal, x 18. Fig. 13 — radiasterid(?) indet., superomarginal, x 20. Fig. 14 — stauranderasterid, x 11. Fig. 15 — Valettaster sp. (nov.?), x 7. Fig. 16 — Asb-opecten punctatus, interradial superomarginal, x 18. Fig. 17 — Metopaster spencerii, median superomarginal, x 4.5. Fig. 18 — Metopaster sp. nov., ultimate superomarginal, x 4. Figs. 19, 20 — Nymphaster alseni, interradial superomarginal, x 3. Fig. 21 — Metopaster tumidus, ultimate superomarginal, x 3. Fig. 22 — Crateraster reticulatus, median supero- and inferomarginal, x 3. Figs. 23, 24 — Recurvaster sp. nov., median superomarginal, x 3. Fig. 25 — stauranderasterid, x 3.5. lichinoderm faunas near the К/T boundary 117

Pi л и: 1 118 John W. M. JAGT

P l a it . 2 BULLETIN DE L’INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE SCIENCES DE LA TERRE, 69-SUPP. A: 119-127, 1999 BULLETIN VAN НЕТ KONINKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN AARDWETENSCHAPPEN, 69-SUPP. A: 119-127, 1999

Pachydiscus (Pachydiscus) hornbyense J o n e s , 1963, and P. (P.) catarinae (Anderson & Hanna, 1935) (Cretaceous, Campanian: Ammonoidea), Pacific Realm marker fossils in the Western Interior Seaway of North America by W. James KENNEDY & William A. COBBAN

Abstract зоне В. compressus или В. cuneatus округа Пеннингтон, Южная Дакота, и, по аналогии, в зоне В. compressus округа

Pachydiscus (P.) hombyense J ones, 1963, previously known only from Розбуд, Монтана. P. (P.) catarinae (ANDERSON & HANNA, Homby Island, British Columbia, occurs in the Upper Campanian 1935) изначально описанный как происходящий из Нижней Baculites jenseni or lowest Maastrichtian Baciilites eliasi zone of Калифорнии, Мексика, а также известный как происходящий Garfield County, Montana, the B. compressus or B. cuneatus zone of из округов Фресно и Диаболо, Калифорния, залегает в зоне Pennington County, South Dakota, and by inference, the B. compressus Exiteloceras jenneyi Верхнего Кампана, округа Пуэбло, zone o f Rosebud County, Montana. P. (P.) catarinae (A nderson & Колорадо. Присутствие этих аммонитов тихоокеанской Hanna, 1935), originally described from Lower California, Mexico, and also known from Fresno and Diabolo Counties, California, occurs области в «Western Interior» США указывает на in the Upper Campanian Exiteloceras jenneyi zone of Pueblo County, существование миграционного восточного потока внутрь Colorado. The presence of these Pacific Realm ammonites in the материка с морского побережья. Эта данные дополняют United States Western Interior indicates an easterly migration route опубликованные доказательства миграции аммонитов с into the Interior from the Pacific Realm, complementing published побережья Мексиканского залива и из «Western Interior» на evidence for westward migration of Gulf Coast and Western Interior запад, в тихоокеанскую область. species into the Pacific Realm.

Key-words: Biogeography, Cretaceous, Campanian, Ammonoidea, Ключевые слова: биогеография, Мел, Кампанский ярус, Pachydiscus, USA. Ammonoidea, Pachydiscus, США.

Introduction Résumé The Campanian ammonite faunas of the United States Pachydiscus (P.) hombyense J ones, 1963 qui n’était connu jusqu’à présent que dans l’île d’Homby en Colombie Britannique (Canada), est Western Interior seaway are typically made up of two présent dans la zone à Baculites jensensi du Campanien supérieur ou elements: predominantly endemic taxa, and a minority of dans la zone à B. eliasi de la base du Maastrichtien, dans le comté de immigrant taxa. The former have recently been recog­ Garfield au Montana, dans la zone à B. compressus ou à B. cuneatus dans le comté de Pennington au Dakota du Sud, et, par induction, dans nized from scattered occurrences in the Gulf Coast and la zone à B. compressus dans le comté de Rosebud au Montana. P. (P.) Atlantic Seaboard (e.g. K e n n e d y & C o b b a n , 1994,1997; catarinae (Anderson & Hanna, 1935) décrit à l’origine sur base de C o b b a n & K e n n e d y , 1994; K e n n e d y , J o h n s o n & C o b ­ matériel provenant de la “ Baja California” au Mexique et également signalé dans les comtés de Fresno et Diabolo en Californie se rencontre b a n , 1995), and western Europe (K e n n e d y , 1993; H a n ­ dans la zone à Exiteloceras jenneyi dans le comté de Pueblo au c o c k & K e n n e d y , 1993; K e n n e d y & J a g t , 1995; K e n ­ Colorado. La présence de ces ammonites du Domaine pacifique dans n e d y & B il o t t e , 1995). We had previously assumed that le “ Western Interior” des Etats Unis indique une voie de migration vers l’est en direction du “Western Interior” à partir du Domaine immigrants into the interior seaway came via a south­ pacifique. Cela s’ajoute aux preuves, déjà publiées, d’une migration easterly route through the Gulf Coast, but recent records vers l’ouest dans le Domaine pacifique, d’espèces de la “ Gulf Coast” suggest that east-west migration was also possible. These et du “ Western Interior” . include the presence of Didymoceras hornbyense (W h it e - Mots-clefs: Biogéographie, Crétacé, Campanien, Ammonoidea, Pa­ a v e s , 1895), a species originally described from Homby chydiscus, USA. Island, British Columbia, in the Upper Campanian Coon Creek Tongue of the Ripley Formation in Tennessee (C o b b a n & K e n n e d y , 1994). Реноме We have recently seen specimens of Nostoceras (Nos- toceras) hyatti S t e p h e n s o n , 1941, N. (N.) helicinum Pachydiscus (P.) hombyense JONES, 1963, ранее известный (S h u m a r d , 1861), and Didymoceras draconis (S t e p h e n ­ лишь на острове Хорнби, Британская Колумбия, залегает в s o n , 1941), from the S a n Diego area, California. These Baculites jenseni Верхнего Кампана или в Baculites eliasi are all Upper Campanian species best known from the самого нижнего Мастрихга в округе Гарлфилд, Монтана, в Atlantic Seaboard and Gulf Coast regions (C o b b a n , 120 W. James KENNEDY & William A. COBBAN

Fig. 1 — Palaeogeographic map of North America during Campanian time (modified after G ill & C o bban , 1966). Pacific Realm marker fossils 121

1974; K e n n e d y & C o b b a n , 1993), with the first two also Systematic palaeontology known from Western Europe (e.g. H a n c o c k & K e n n e d y , Family Pachydiscidae Spath, 1922 1993). N. (N.) hyatti occurs as a rarity in the Baculites Genus and Subgenus Pachydiscus Z it t e l , 1884 jenseni zone of the Pierre Shale of Huerfano County, Colorado (K e n n e d y , C o b b a n & S c o t t , 1992), and D. Type species: Ammonites neubergicus H a u e r , 1858, draconis in the Baculites cuneatus zone of Middle Park, p. 12, pl. 1, figs. 1-3; pi. 2, figs. 1, 2, by subsequent Grand County, Colorado. Exileloceras jenneyi (W h it ­ designation by d e G r o s s o u v r e , 1894, p. 177. field, 1877), best known from the northern part of the Western Interior, but also known from the New Jersey/ Pachydiscus (Pachydiscus) hombyense J o n e s , 1963 Delaware boundary (K e n n e d y & C o b b a n , 1997) was (PL 1, Figs. 1-3; PI. 2) also able to migrate southwards, and is known from Colombia in South America (K e n n e d y in F ô l l m i, G a r ­ 1903 Pachydiscus otacodensis (S t o l ic z k a ); W h it e a v e s , rison, R a m ir e z , Z a m b r a n o -O r t iz , R a m ir e z , K e n n e d y p. 340, pi. 46, fig. 1 ; text-fig. 20. & L e h n e r , 1992). 1952 Pachydiscus otacodensis (S t o l ic z k a ); U s h e r , We document here the first evidence of migration of p. 85, pi. 17, figs. 1-5; pi. 18;?pls. 19, 20. Pacific Realm ammonites into the northern part of the 1963 Pachydiscus (Pachydiscus) hombyense J o n e s , Western Interior Seaway (Fig. 1). This takes the form of, p. 38, pi. 32, figs. 2-6; pi. 33; text-fig. 19. firstly, the occurrence of specimens of Pachydiscus (Pa- 1997 Pachydiscus cf. hom byense; L a r s o n , J o r g e n s e n , chydiscus) hombyense J o n e s , 1963 (p. 38, pi. 32, figs. 2- F a r r a r & L a r s o n ; unnumbered fig. on p. 61. 6; pi. 33; text-fig. 10) in the Upper Campanian Baculites jenseni or B. eliasi zone (Fig. 2) of the Bearpaw Shale Type south of Fort Peck in Garfield County, in northeastern Holotype is in the U.S. National Museum of Natural Montana (Pl. 1, figs. 1-3), in the B. compressus or B. History (USNM n° 131209), the original of J o n e s , cuneatus zone Pierre Shale of Pennington County, South 1963, pi. 32, fig. 6, from the Lambert Formation of the Dakota, and in the inferred B. compressus zone Pierre Nanaimo Group, beach platform on the northwest side of Shale in Rosebud County, Montana (PI. 2). P. (P.) hom ­ Homby Island, British Columbia. byense was previously known only from the Lambert Formation of the Nanaimo Group in British Columbia D e s c r ip t io n (Fig- !)• Black Hills Institute of Geological Research Inc. (BHI) The second Pacific Realm migrant is P. (P.) catarinae 4140 (Pl. 1, Figs. 1-3) is a crushed phragmocone 76 mm (An d e r s o n & H a n n a , 1935), a specimen of which is in diameter. Involute, whorl section slightly depressed, known from the Exiteloceras jenneyi zone of the Pierre umbilical shoulder broadly rounded. Inner flanks convex, Shale of Pueblo County, Colorado (PL 1, Figs. 3, 4). This outer flanks convergent, ventrolateral shoulders and ven­ species was originally described from near Santa, Cater- ter broadly rounded. First half of outer whorl bears twelve ina Landing, Baja, Lower California, Mexico and subse­ narrow, distant ribs, separated by very wide interspaces. quently recorded from near Coalinga, Fresno County, and Ribs more or less regularly alternately long and short; Puerto Creek in Diabolo County, California (Fig. 1). long ribs with or without feeble bullae; shorter ribs arise Conventional palaeogeographic maps (e.g. W il l ia m s low on flank. Ribs straight and prorsiradiate on flanks, & S t e l c k , 1975; C h r is t e n s e n , 1993; S m it h , S m it h & projected forwards and slightly concave on ventrolateral F u n n e l l , 1994 and references therein) also show a sea­ shoulders, thickening and feebly convex over venter. way extending north-northwest to northern Alaska. But Interspaces between ribs with delicate riblets and growth as J o n e s (1963) noted, there is a lack of faunal similarity, lines. Ribbing crowds at adapical end of specimen. apart from the present records. It must also be noted BHI 4139 (PI. 2) is an undeformed specimen, septate that the present latitude of the British Columbia records to 230 mm diameter. A short section of the adapical end of P. (P.) hombyense may be well to the north of their of the body chamber is preserved. Coiling involute, with original site of deposition as a result of post-Cretaceous U = 18% of the diameter, deep, with a feebly convex plate tectonic activity. W a r d , H u r t a d o , K ir s c h v in k & umbilical wall; umbilical shoulder broadly rounded. V e r o s u b (1997) have shown the Campanian-(?)Maas- Whorl section compressed; whorl breadth to height ratio trichtian sediments of Homby Island to retain a stable 0.88. Inner flanks broadly rounded, outer flanks conver­ remnant magnetism that indicates the Insular Superterrain gent; venter broadly rounded. Inner flanks of inner whorls of which they are a part originally lay at an Upper ornamented as in previous specimen. Inner flank of outer Cretaceous palaeolatitude of 25 ± 3 degrees north, phragmocone whorl smooth. Low, broad, concave ribs equivalent to that of present-day Baja, California. Given strengthen across the outer flank, and cross the venter in a the evidence for southerly migration out of the Gulf broad convexity on the first half of the outer whorl, but Coast and Western Interior into the Pacific Realm during decline progressively with increasing diameter, leaving the Upper Campanian, we take the view that this is the adapertural end of phragmocone and adapical end of more likely to have been the route taken by the present body chamber smooth. specimens of both P. (P.) hombyense and P. (P.) catar­ Suture highly complex, with deeply incised lobes and inae. saddles; typical for genus. 122 W. James KENNEDY & William A. COBBAN

Cretaceous Stages and Western Interior Western Interior ammonite zones informai substages

-H Jeletzkytes nebrascensis u Upper (part) Hoploscaphites nicolletii ъ Hoploscaphites birkelundi •.d Baculites clinolobatus ■Я♦^-1 BaculUes grandis aСЛ Lower ctf Baculites baculus S Baculites eliasi 1 Baculites jenseni 1 Baculites reesidei Baculites cuneatus 1 Baculites compressus 1 Upper Didymoceras cheyennense Exiteloceras jenneyi О Didymoceras stevensoni Didymoceras nebrascense Baculites scotti Baculites reduncus Çuanian 6 Baculites gregoryensis cti Baculites perplexus и Middle Baculites sp. (smooth) Baculites asperiformis Baculites maclearni Baculites obtusus Baculites sp. (weak flank ribs) Baculites sp. (smooth) Scaphites hippocrepis in Lower Scaphites hippocrepis П Scaphites hippocrepis I Scaphites leei ІП

• Pachydiscus (P.) catarinae (ANDERSON & HANNA,1935) ^ Pachydiscus (P.) hombyense JONES, 1963

Fig. 2 -— Western Interior Campanian ammonites zones. Pacific Realm marker fossils 123

A farther unfiguxed fragment, USNM 499023 may T y p e belong to P. (P.) hombyense\ it is inferred to be from Holotype is no. 4245 in the collections of the California the Baculites compressus zone of the Pierre Shale 15 km Academy of Sciences, from the Upper Campanian near (9 mi.) east, and 3.3 km (2 mi.) south of Ingomar, Rose­ Catarina Landing, Lower California, Mexico, refigured bud County, Montana, in the N1/2, T.9N., R.36E. It is a by A n d e r s o n , 1958, pi. 58, fig. 2. wholly septate fragment with a maximum preserved whorl height of 119 mm and a whorl breadth to height D e s c r ip t io n ratio of 0.96. The dorsum shows impressions of sharp USNM 486635 is a phragmocone 215 mm in diameter, distant ribs, as in BH I4140 at a comparable diameter; the with the following dimensions in millimeters: diameter: outer whorl is completely smooth. 213.0(100); whorl breadth (Wb): 92.6(43.5); whorl height (Wh): 101.0 (47.0); Wb:Wh: 0.91; umbilicus 51.9(24.4). D isc u ssio n Coiling involute, 68% of the previous whorl covered. The present specimens differ in no significant respects Umbilicus small: 24.4% of the diameter, deep, with con­ from the holotype and topotypes from Homby Island. Of vex wall and more narrowly rounded umbilical shoulder. other Pachydiscus (Pachydiscus) species known from the Whorl section compressed, with whorl breadth to height Campanian of the United States Western Interior, P. (P.) ratio 0.91, inner flanks convex, outer flanks convergent, arkansanus (Stephenson, 1941) (Cobban & Kennedy, ventrolateral shoulders and venter broadly rounded. Or­ 1991, p. F2, pl. 1, fig. 4; pis. 2-4; text-fig. 2) is much more nament consists of distant weak ribs, strong, straight, closely and coarsely ribbed, ribbing persisting to a dia­ prorsiradiate on inner to middle flanks of outer whorl, meter where P. (P.) hornbyense has lost its ribbing. P. flexing forward, concave and weakening across outer (P.) cf. oldhami ( S h a r p e , 1855) (Cobban & KENNEDY, flanks and ventrolateral shoulders, weak and broadly 1991, p. FI, pl. 1, figs. 1-3; text-fig. 1) is a compressed convex across venter. Occasional shorter intercalated ribs species, with crowded ribs. present on outer flank and venter. Imperfectly exposed suture with deeply incised lobes and saddles, typical for O c c u r r e n c e genus. Upper Campanian, Lambert Formation of the Nanaimo Group, Homby Island, British Columbia. In the U.S. D is c u s s io n Western Interior, there are specimens from the Bearpaw Compressed whorl section and widely separated ribs Shale, Baculites jenseni or B. eliasi zone, Garfield distinguish P. (P.) catarinae from all other Pachydiscus County, Montana; B. compressus or B. cuneatus zone (Pachydiscus) recorded from the Campanian of the U.S. of the Pierre Shale of Pennington County, South Dakota; Western Interior Seaway. B. compressus zone inferred, Rosebud County, Monta­ na. O c c u r r e n c e Upper Campanian, Catarina Landing, Baja, Lower Cali­ Pachydiscus (Pachydiscus) catarinae (Anderson & fornia, Mexico; near Coalinga, Fresno County, Califor­ H a n n a , 1935) nia; Puerto Creek, Diablo County, California. Exitelo- (Pl. 1, Figs. 4, 5) ceras jenneyi zone of the Pierre Shale, in the NE1/4, sec. 23, T.18S; R.64W., Pueblo County, Colorado. 1928 Pachydiscus catarinae A n d e r s o n ; p. 238, pi. 9 {nomen nudum). Acknowledgements 1935 Parap achy dis eus catarinae Anderson & Hanna; p. 19, pis. 1, 2; pi. 3, figs. 1-3. We thank W. G. Camack (Pueblo, Colorado) for bringing the specimen 1958 Parapachydiscus catarinae (Anderson & Hanna); o f Pachydiscus (P.) catarinae to our attention, and Neal Larson (Black Anderson, p. 224, pi. 58, fig. 2. Hills Institute of Geological Research Inc., Hill City, S. Dakota) for loan of specimens. Kennedy acknowledges the technical support of the 1997 Pachydiscus catarini Larson, Jorgensen, F arrar staff of the Geological Collections, University Museum of Natural & L a r s o n ; unnumbered figure on p. 61. History, Oxford, and the Department of Earth Sciences, Oxford.

References

A n derson, F.M., 1928. Late Cretacic fossils from Lower Ca­ the Coniacian of Montana and Wyoming and the occurrence of lifornia. Pan American Geologist, 50: 283-284. Late Cretaceous belemnites in North America and Greenland. Journal of Paleontology, 67: 434-446. An derso n , F.M., 1958. Upper Cretaceous o f the Pacific Coast. Geological Society of America Memoir, 71: xi + 378 p. C o b b a n , W.A., 1974. Ammonites from the Navesink Forma­ A nderson, F.M. & Ha n n a , G.D., 1935. Cretaceous geology of tion at Atlantic Highlands, New Jersey. U.S. Geological Survey Lower California. Proceedings of the California Academy of Professional Paper, 845: 21 p. Sciences, (4), 23: 1-34. C o b b a n , W.A. & K e n n e d y , W.J., 1991. Pachydiscus (Ammo- C hristensen, W.-K., 1993. Actinocamax cobbani n.sp. from noidea) from Campanian (Upper Cretaceous) rocks in the Wes­ 124 W. James KENNEDY & William A. COBBAN

tern Interior of the United States. U.S. Geological Survey Si-ia r pe , D., 1853-57. Description of the fossil remains of Bulletin, 1985: F1-F4. Mollusca found in the Chalk of England. I, Cephalopoda. C o b b a n , W.A. & K e n n e d y , W.J., 1994. Upper Cretaceous Palaeontographical Society Monographs, 68 pp. , 27 pis. 1- ammonites from the Coon Creek Tongue of the Ripley Forma­ 26, pis. 1-10 (1853); 27-36, pis. 11-16 (1855); 37-68, pis. 17-27 tion at it’s type locality in McNairy County, Tennessee. U.S. (1857). Geological Survey Bulletin, 2073-B: B1-B12. S h um a rd , B.F., 1861. Descriptions of new Cretaceous fossils Fôllmi, K.B., Garrison, R.E., Ramirez, P.C., Zambrano-Or- from Texas. Transactions of the Academy of Sciences of St. tiz, F., Kennedy, W.J. & Lehner, B.L., 1992. Cyclic phos­ Louis, 1: 590-610. phate-rich sequences in the upper Cretaceous of Colombia. S m ith , A.G., S m ith , D.G. & F u nn ell, B.M., 1994. Atlas of Palaeogeography, Palaeoclimatology, Palaeoecology, 93: Mesozoic and Cenozoic coastlines. Cambridge University 151-182. Press, Cambridge, New York and Melbourne, ix + 99 p.

G il l , J.R. & C o bban , W.A. 1966. The Red Bird section of the S p a th , L.F., 1922. On the Senonian ammonite fauna of Pondo- Upper Cretaceous Pierre Shale in Wyoming. U.S. Geological land. Transactions of the Royal Society of South Africa, 10: Survey Professional Paper, 393-A: 73 p. 113-147.

G ro sso u v re, A. de, 1894. Recherches sur la craie supérieure, 2, Stephenson, L.W., 1941. The larger invertebrates of the Na­ Paléontologie. Les ammonites de la craie supérieure. Mémoires varro Group of Texas (exclusive of corals and crustaceans and du Service de la Carte Géologique détaillée de la France. exclusive of the fauna of the Escondido Formation). University Imprimerie Nationale, Paris, 264 p. (misdated 1893). of Texas Bulletin, 4101: 641 p.

H a n co ck , J.M. & K en n e d y , W.J., 1993. The high Cretaceous U s h e r, J.L., 1952. Ammonite faunas of the Upper Cretaceous ammonite fauna from Tercis, Landes, France. Bulletin de l'in­ of Vancouver Island, British Columbia. Bulletin o f the Geolo­ stitut royal des Sciences naturelles de Belgique, Série Sciences gical Sui~vey o f Canada, 21: 1-182, pis. 1-30. de la Terre, 63: 149-209. W a rd , P.D., H u rta do , J.M., K irschv in k , J.L. & V erosub, H a u e r , F. von, 1858. Ueber die Cephalopoden aus den Go- K.L., 1997. Measurements of the Cretaceous paleolatitude of sauschichten. BeitrSge zur Palâontologie von Oesterreich, 1: 7- Vancouver Island: consistent with the Baja-British Columbia 14. hypothesis. Science, 77: 1642-1645

J o nes, D., 1963. Upper Cretaceous (Campanian and Maestrich- W h itea v es, J.F., 1895. Notes on some fossils from the CretacT tian) ammonites from southern Alaska. U.S. Geological Survey eous rocks of British Columbia, with descriptions of two spe­ Professional Paper, 432: 55 p. cies that appear to be new. Canadian Record of Science, 6: 313- 318. Kennedy, W. J., 1993. Campanian and Maastrichtian ammo­ nites from the Mons Basin (Belgium). Bulletin de l'institut W h itea v es, J.F., 1903. On some additional fossils from the royal des Sciences naturelles de Belgique, Série Sciences de Vancouver Cretaceous, with a revised list of the species there­ la Terre, 63: 99-131. from. Geological Survey of Canada Mesozoic Fossils, 1: 309- 409. K en n ed y , W.J. & B ilo tt e , М., 1995. A new ammonite fauna from the sub-pyrenean Campanian (Upper Cretaceous). Geo­ W hitfield, R.P., 1877. Preliminary report on the paleontology bios, 28: 359-370. of the Black Hills, containing descriptions of new species of fossils from the Potsdam, Jurassic, and Cretaceous formations K e n n e d y , W.J. & C o b b a n , W.A., 1993. Ammonites from the of the Black Hills of Dakota. United States Geographical and Saratoga Chalk (Upper Cretaceous), Arkansas. Journal of Pa­ Geological Survey of the Rocky Mountain Region. 49 p. leontology, 67: 404-434. W illia m s , G.D. & S te lc k , C.R., 1975. Speculations on the K en n ed y , W.J. & C o bban , W.A., 1994. Upper Campanian Cretaceous palaeogeography of North America. Geological ammonites from the Mount Laurel Sand at Biggs Farm, Dela­ Association of Canada Special Paper, 13: 1-29. ware. Journal of Paleontology, 68: 1285-1305. Z itt el, К .A. von, 1884. Handbuch der Palâontologie, 1, Abt. 2; K e n n ed y , W.J. & C o b b a n , W.A., 1997. Upper Campanian Lief. 3, Cephalopoda. R. Oldenbourg, München und Leipzig, (Upper Cretaceous) ammonites from the Marshalltown Forma- p. 329-522. tion-Mount Laurel Sand boundary beds in Delaware. Journal o f Paleontology, 71: 62-73. W. James K ennedy K e n n e d y , W.J., C o b b a n , W.A. & S c o t t, G.R., 1992. Ammo­ Geological Collections nite correlation of the uppermost Campanian o f Western Eur­ Oxford University Museum of Natural History ope, the U.S. Gulf Coast, Atlantic Seaboard and Western Inter­ Parks Road ior, and the numerical age of the base of the Maastrichtian. Oxford OX1 3PW Geological Magazine, 129: 497-500. United Kingdom Kennedy, W.J. & J a g t, J.W.M., 1995. Lower Campanian heteromorph ammonites from the Vaals Formation arotmd William A. C obban Aachen, Germany, and adjacent parts o f Belgium arid the 70 Estes Street Netherlands. Neues Jahrbuch fiir Geologie und Palâontologie, Denver Abhandlungen, 197: 275-294. Colorado 80226 Kennedy, W.J., Johnson, R.O. & Cobban, W.A., 1995. Upper U.S.A. Cretaceous ammonite faunas o f New Jersey. Geological Asso­ ciation of New Jersey, 12: 24-55.

L a r so n , N.L., J o rgensen , S.D., F a r r a r , R.A. & L a r so n , P.L, 1997. Ammonites and other cephalopods of the Pierre Seaway. Typescript submitted: 15.10.1998 Geoscience Press, Tucson, xi + 148 p. Revised typescript received: 15.1.1999 Explanation of Plates

P la te 1

Figs. 1-3 — Pachydiscus (Pachydiscus) hombyense J o n es, 1963. BH1 4140, Bearpaw Shale, Upper Campanian, Baculites jenseni or B. eliasi zone, south of Fort Peck, Garfield County, Montana. Figures are x 1. Figs. 4-5 — Pachydiscus (Pachydiscus) catarinae (A n derso n & H a n n a , 1935), USNM 486635, cast o f a specimen from the Pierre Shale, Upper Campanian, Exiteloceras jenneyi zone, NE1/4 Sec. 23, T.18S, R.64W., Pueblo County, Colorado. Figures are reduced x 0.66.

P la te 2

Figs. 1,2 — Pachydiscus (Pachydiscus) hombyense J o n e s, 1963. BH1 4139, Pierre Shale, Upper Campanian, Baculites cuneatus or B. compressus zone, Elk Creek, Pennington County, South Dakota. Figures are x 1. 126 W. James KENNEDY & William A. COBBAN

3

P l a t e 1 Pacific Realm marker fossils 127

P l a t e 2 BULLETIN DE L’INSTITUT ROY AL DES SCIENCES NATURELLES DE BELGIQUE SCIENCES DE LA TERRE, 69-SUPÏ. A: 129-145, 1999 BULLETIN VAN НЕТ KONINKLIJK BELGISCHINST1TUUT VOQR NATUURWETENSCHAPPEN AARDWETENSCHAPPEN, 69-SUPP. A: 129-145, 1999

Foraminiferal distribution across the Maastrichtian/Danian boundary of Mangyshlak peninsula (West Kazakhstan) by Lyudmila F. KOPAEVICH & Vladimir N. BENIAMOVSKII

A bstract Maastrichtian and Palaeocene are widespread and well exposed. When describing the extent of the exposures in The planktonic and benthic foraminiferal distribution, resulting from Mangyshlak, A n d r u s o v wrote: “ If in Central Russia we bed by bed sampling across the Maastrichtian/Danian boundary was studied in detail from the Koshak and Kyzylsai sections in the Man­ should number the outcrops, here we would number the gyshlak peninsula (West Kazakhstan). The distribution of planktonic unexposed sites” (A n d r u s o v , 1915, p. 111). (PF), benthic (BF) Foraminifera and nannoplankton is analysed. The During the Late Cretaceous the Mangyshlak peninsula stratigraphically most important species are illustrated and the bios- tratigraphic distribution from the Mangyshlak is compared with that was covered by a relatively shallow marine basin belong­ from other areas of northern Europe. ing to the central part of the Tethys margin. This basin had a wide connection with the northern Tethys and with Key-ïvords: К/T boundary - Mangyshlak - Kazakhstan - Foramini­ the Boreal seas of the Russian Platform. Because of the fera similarity in taxonomic composition of its marine fauna with fauna from northern Europe, it is generally included Résumé in the European palaeobiogeographical area — EPA (N a id in , 1969, Text-Fig. 1). Sur base d’un échantillonnage banc par banc de part et d’autre de la The Mangyshlak peninsula is a classic area for the study limite Maastrichtien/Danien, la distribution des foraminifères plancto- of the Upper Cretaceous and lower Palaeogene. The niques et benthiques a été étudiée en détail dans les sections de Koshak et Kyzylsai situées dans la péninsule du Mangyshlak (Kazakhstan Cretaceous and Palaeogene stratigraphy in Mangyshlak occidental). La distribution des foraminifères planctoniques (PF) et were studied as early as the end of the nineteenth century benthiques (BF) ainsi que du nannoplancton est analysée. Les espèces (S e m e n o v , 1899). Later on A n d r u s o v (1915), A l e k - les plus importantes au point de vue stratigraphique sont figurées; la s e it c h ik (1941), T r if o n o v (1959), T r if o n o v & B u r a g o répartition stratigraphique des espèces dans le Mangyshlak est compa­ rée avec celle observée dans d’autres régions d’Europe septentrionale.

Mots-clefs: Limite К/T, Mangyshlak, Kazakhstan, foraminifères

Резюме

Изучено распределение планктонных и бенгосных фораминифер в послойно собранных образцах из разрезов Кызылсай и Кошак (полуостров Мангышлак, Западный Казахстан). Проанализировано стратиграфическое значение фораминиферовых и нанопланкгонных комплексов и выделенные зональные подразделения сопоставлены с другими регионами. Приведены в таблицах изображения некоторых важных в стратиграфическом отношении видов.

Ключевые слова: Граница мел/палеоген - Мангышлак, Казахстан, фораминиферы

Introduction Text-figure 1 — Map of Mangyshlak peninsula, with location of Kyzylsai and Koshak sections. P-J: Per­ Herein the discussion on the К/T boundary is based on mian to Jurassic; Cr: Cretaceous; P: Palaeo­ our field observations in western Mangyshlak, where gene; N-Q: Neogene to Quaternary. 130 Lyudmila F. KOPAEV1CH & Vladimir N. BENIAMOVSKII

Naimofossils (NN) zones PF NN

P2 NP4

m f i P ic

at-3

NP3 2

Plb

g NP2 hëT Pla NP1

5 p. 2*

”M V) Дo сw Он О)

-3

Ѳ - 2 -4

Text-fïgure 2 — Distribution of the most important planktonic Foraminifera and the nannoflora in the Kyzylsai section around the К/T boundary. 1: limestones; 2: chalks and marls; 3: boundary clays; 4: hardground surfaces. Foraminiferal distribution of Mangyshlak peninsula 131

(I960) and B y k o v a (1960) studied this region. The most tributed in the Mangyshlak section and in sections from complete description of the sequences including their other areas (C a l l e n , 1984). macro- and mainly micropalaeontological characteristics In this boundary clay between Maastrichtian and Da­ were published by V a s s il e n k o (1961), T r if o n o v & V a s - nian strata an Ir enrichment of maximum 7 ppb and 3-4 sil e n k o (1963) and more recently by N a id in et al. ng/g, respectively has been reported (N a z a r o v et al., (1984a, b, 1996). V a s s il e n k o proposed the first benthic 1983; H e r m a n et al., 1988). The basal Danian is an foraminiferal zonation for all Upper Cretaceous of Man­ 1.5 m thick extremely hard yellowish-brown and white gyshlak. limestone with burrows in the Kyzylsai section. In the In this paper data are presented on the distribution of Koshak section the boundary clay is overlain by about the Foraminifera from two important К/Т boundary sec­ 2.5 m light-yellow, coarse chalk. The basal layers grade tions — Koshak and Kyzylsai (see Text-Fig. 1). These into a white fine-grained hard limestone with irregular sections, located on the slopes of the northern Aktau marly intercalations and several hardground surfaces Mountains on Mangyshlak peninsula, West Kazakhstan, (Text.-Fig. 2-5). are continuous across the Cretaceous/Palaeogene (К/Т) boundary, with only minor hardgrounds within the Upper Maastrichtian and Lower Danian. These sequences con­ Material and methods tain a rich macrofaunal assemblages composed of ammo­ nites, belemnites, brachiopods, echinoids and bivalves. Eighty two samples, taken at intervals of 30 cm to 2.5 m, The microfossil assemblages are dominated by benthic were collected from the Koshak and Kyzylsai sections. components, typical for a rather shallow chalk facies. The Samples weight varied from 150 to 200 g and they were first data on the К/T boundary from Mangyshlak were disintegrated in water, then washed through a 63 |лп published by N a id in et al., 1990a, b. These authors sieve and dried in an oven before biostratigraphic analy­ described the macro- and micropalaeontological assem­ sis. The preservation is good to fair in the chalks of the/ blages; the Foraminifera from this interval, however, Maastrichtian of the two sections examined. In contrast,. were not illustrated. A list of Foraminifera from the preservation is generally poor in the coarse chalks and Koshak section was published by K e l l e r in O b e r h a n s l i chalky limestones of the base of the Danian but it is better et al., (1998), without illustrations. In the present paper in the white fine-grained hard limestones of the upper part many taxa ■— planktonic and benthic — are illustrated of the Danian. Planktonic foraminiferal identifications and the correlation with other areas is discussed. are based on commonly used taxonomy and illustrations including R o b a s z y n s k i et al. (1984), M a c l e o d & K e l ­ l e r (1994). Identification of benthic Foraminifera are Geological setting mainly based on B r o t z e n (1948), V a s s il e n k o (1961) and G a w o r -B ie d o w a (1992). The detailed lithostratigraphic description of this region is published in N a id in (1986, 1987), H e r m a n et al. (1988), S ajrkajr. et al. (1992), O b e r h â n s l i et al. (1998). PALAEONTOLOGY In these sections 140-150 m of Maastrichtian chalks and marls are overlain by 40-60 m of Danian limestones. The Macrofossils Maastrichtian soft chalks are composed almost exclu­ The following Upper Maastrichtian index fossils are sively of biogenic carbonates. The chalks are intercalated present in the uppermost of Cretaceous of both sections: with yellowish-brown marls containing hardground hor­ ammonites: Hoploscaphites constrictus (J. Sowerby), izons. The К/T transition is marked by a 1-4 cm thick H. constrictus crassus (Lopuski). Abundant belemnites dark layer, with remarkably sharp boundaries with the — Neobelemnella kazimiroviensis (Skolozdrowna) ex­ carbonates above and below. This dark layer is the bound­ tend to the top of Maastrichtian. Echinoids are also ary clay and coincides with the КУТ boundary. In some common: Cyclaster integer Seunes, Echinocorys ciplyen- exposures the clay is replaced by equally thin greenish- sis Lambert, E. am audi Seunes, E. meudonensis Lambert, gray marls (75-85% CaC03), containing glauconite, pla- E. pyram idata Portlock, Gauthieria radiata broecki Lam­ gioclase and angular quartz grains, as well as limonite bert and Salenidia pygmea (von Hagenow). Corals, and pyrite concretions. Abundant, minute fish bones and bryozoans and brachiopods have also been observed. scales have also been observed; they are very similar to The Danian limestones contain numerous echinoderms those in the “Fish Clay” at Stevns ЮМ, in Denmark dominated by Brissopneustes atnricus Seunes, Cyclaster (R o s e n k r a n t z , 1924). The boundary clay contains illite, danicus Schlüter, Echinocorys obliqua (Ravn) and E. mixed-layer illite/smectite and chlorite (H e r m a n el al., pyrenaica Seunes. Corals, bryozoans and brachiopods 1988). Palygorskite is present throughout the Maastrich­ were also frequently encountered. tian and Danian, reaching peak abundance in samples just There is a marked macrofaunal change at the K/T above the К/T boundary (25-40 cm). Mineralogically the boundary (H e r m a n et al., 1988; N a id in et al., 1990a). boundary clay is similar to the clay fraction of rocks in the К/T sections from other localities (R a m p in o & R e y ­ Foraminiferal Zonation n o l d s , 1983). Furthermore, palygorskite is widely dis­ Planktonic Foraminifera (PF). Planktonic foraminiferal 132 Lyudmila F. KOPAEVICH & Vladimir N. BENIAMOVSKII

Koshak

-1 EËËÜ-2 M ~4 Text-figure 3 — Distribution o f the most important planktonic Foraminifera and the nannoflora in the Koshak section around the К/T boundary. 1: limestones; 2: chalks and marls; 3: boundary clay; 4: hardground surfaces.

assemblages in the Upper Maastrichtian of Mangyshlak canellapetaloidea (Gandolfi), G. havanensis (Voorwijk), peninsula show a low diversity. They are dominated by Globotruncanita stuarti (de Lapparent), Rugoglobigerina Globigerinelloid.es, heterohelicids and hedbergellids rugosa (Plummer), R. hexacamerata Brônnimann, Ar- which comprise up to 80-90% of the planktonic part of chaeoglobigerina cretacea (d’Orbigny), Globigerinel- the thanatocoenosis. Globotruncanids are very rare ex­ loides messinae Brônnimann, Gl. volutus White, Gl. cla- cept in the intervals characterized by a high planktonic/ vatus Brônnimann, Hedbergella monmouthensis (Ols- benthic ratio (P/В). Among the globotruncanid assem­ son), Heterohelix globulosa (Ehrenberg), H. striata (Eh- blages, shallow-water species of the genera Globotrunca- renberg). Pseudotextularia defonnis (Kikoine), Plano- na and Rugoglobigerina occur most frequently. The PF globulina brazoensis Martin, P. carseyae (Plummer), assemblage consists here of Globoti'uncana area (Cush­ Racemiguembelina fructicosa (Egger) (Text-Fig. 2,3). man), Contusotruncana fomicata (Plummer), Globotrun- Gansserina wiedenmayeri (Gandolfi), a typical Tethyan Foraminiferal distribution of Mangyshlak peninsula 133 species was found only in two samples (6,7) of the ina eugubina Zone (Luterbacher & Premoli Silva, Kyzylsai section. The higher Maastrichtian samples only 1964; Prem oli Silva & B olli, 1973) or P la Zone. The contain poor assemblages of ubiquitous PF species. The thickness of this Zone is about 1.5 m thick at Kyzylsai and first Danian forms — Eoglobigerina sp. - appears already about 2.5 m in the Koshak sections. in the uppermost samples of the Maastrichtian chalk in Higher up, in a 27 m thick interval at Kyzylsai and a both sections. 20 m thick interval at Koshak, PF become more abundant The tropical-subtropical zonation ( B o l l i, 1966; Ro- and their overall size increases. The following typical b a s z y n s k i et al., 1984; C a r o n , 1985) cannot be used in Danian taxa have been identified: Subbotina pseudo- Mangyshlak because of the rarity or the absence of its bulloides (Bolli), S. varianta (Subbotina), S. tnloculi- index forms: Globoti~uncana aegyptiaca (Nakkady), noides, (Plummer), Eoglobigerina trivialis (Subbotina) Gansserina gansseri (Bolli) and Abathomphalus mayar- and a single Globoconusa daubjergensis (Brônnimann). oensis (Bolli). This assemblage is attributable to the Subbotina pseudo- Another zonation was proposed by M a s l a k o v a bulloides Zone or P lb Zone (Cavelier & Pomerol, (1978); she subdivided the Maastrichtian in two Zones. 1983, 1986). This zone was first described by Leonov In her scale a Globotruncanita stuarti Zone (Lower & Alimarina (1961) as Globigerina pseudobulloides- Maastrichtian) and an Abathomphalus mayaroensis Globigerina daubjergensis Zone and the shortened Zone (Upper Maastrichtian) are used. A recent study of name was introduced by B olli, (1966). The next zone - Crimean sections showed, that the upper part of the the Planorotalites compressa Zone is characterized by Globotruncanita stuarti Zone coincides with the lower the FA of the index-species Planorotalites compressa part of the Upper Maastrichtian - the beginning of Neo- (Plummer) and Morozovella praecursoria (Morozova) belemnella kazimiroviensis macropalaeontological Zone and also by the presence of Subbotina pseudobulloides (A l e k s e e v & K o p a e v ic h , 1997, p. 110, Text-Fig. 6) that (Bolli), Globoconusa daubjergensis (Brônnimann) is the standard Upper Maastrichtian zone for the eastern (Text-Fig. 2,3). This interval is the equivalent of the part of EPA (N a id in et a l, 1984). The presence of the Morozovella trinidadensis Zone - Pic (Cavelier & Po­ zonal species allows to recognise the upper part of the merol, 1983, 1986; T oumarkine & Luterbacher, Globotruncanita stuarti Zone in the Kyzylsai and Koshak 1985). The uppermost part of the Kyzylsai section (sam­ sections. The next correlatable level is at the sharp in­ ples 49-55) is marked by the presence of Morozovella crease of representatives of the genera Pseudotextularia, uncinata (Bolli) — P2 Zone (Bolli, 1966; Cavelier & Planoglobulina and Racemiguembelina. This level coin­ Pomerol, 1983, 1986; T oumarkine & Luterbacher, cides with the base of the Pseudotextularia elegans or P. 1985). defonnis Zone (uppermost part of the Maastrichtian) in many sections of the EPA and of North America: Ger­ Benthic Foraminifera (BF). Maastrichtian and Danian many, Russian Platform, Mangyshlak (W ic h e r , 1953; deposits in both sections are very rich in BF. The upper­ K o c h , 1977) N a id in et al., 1990 b; B eniamovskii & most part of the Maastrichtian contains stratigraphically K o p a e v ic h , 1998; J o n e s et al., 1987; K e l l e r , 1989). In important taxa of the genera Bolivinoides, Neoflabellina, Central Poland the equivalent of this zone is easily re­ Bolivina and other taxa of Gavelinella, Brotzenella and cognized by the presence of abundant representatives of Cibicidoides. On the basis of the BF distribution in heterohelicids, considerable numbers of Rugoglobigerina Mangyshlak the following zonation is presented: for the and Globigerinelloides and the absence of Globotrunca- Maastrichtian the Brotzenella praeacuta Zone - BF12 for na (P e r y t , 1980). According to K e l l e r in C a n u d o et al. the lower part and the Hanzawaia ekblomi Zone BF13 for (1991, p. 327) “ the Abathomphalus mayaroensis Biozone the upper part of both sections (N aidin et al., 1984, a, b; is geographically and ecologically restricted and an alter­ Beniamovskii & K opaevich, 1998). This zonation was native biozone, Pseudotextularia deformis was proposed proposed for the eastern part of EPA by N aidin et al., for shallow water sequences” . (1984) and was recognised without any difficulties in In the boundary clay no PF were found. However, this following regions: Peri-Caspian depression, Crimea, PF “barren-interval” (Kaiho & Saito, 1986) is the northern part of Turgai Straight and southern Urals equivalent of the P0 (?) Zone o f Smit (1982) established (Alekseev & Kopaevich, 1997; A mon et al„ 1997; B e­ for the К/T boundary sequence near Caravaca (Spain) and niamovskii & Kopaevich, 1998). at El-Kef (Tunisia) and it coincides with the boundary The general taxonomic composition of BF assem­ clay (Keller et a l, 1988 a, b). blages from both studied sections is very similar to those The first, very rare Tertiary species, including Eoglo­ from northern Europe - Belgium (Robaszynski et al., bigerina fringa (S u b b o t in a ), Eoglobigerina sp. and rare 1985; Robaszynski & Christensen, 1989) and Northern “ survivor” Maastrichtian species —- small Heterohelix- Germany (Schônfeld, 1990; S c h ô n f e l d & B u r n e t t , Hedbergella-Globigerinelloides taxa — are present in the 1991; Beniamovskii & Kopaevich, 1998). base of the Danian (Text-Fig. 2, 3). Occasionally sections The boundary clay contains a very poor and particular of tiny (0.1-0.12 mm), compressed foraminiferal tests, BF assemblage. Only agglutinated BF show a good pre­ similar to Pai'vulorogoglobigerina eugubina (Luterba- servation and high diversity, whereas calcareous BF are cher & Premoli Silva) were observed in thin sections. few in number and show traces of dissolution. The lime­ This interval is correlated with the Parvulorugoglobiger- stones from the Kyzylsai and the coarse chalk from the 134 Lyudmila F. KOPAEVTCH & Vladimir N. BENIAMOVSKH

Kyzylsai Hanzawaia mantaensib Gavelinella peitusa peitusa Gavelinella beds ; ______Hanzawaia Hanzawaia ekblomi Brotzenella praeacuta praeacuta Brotzenella

JZ

Text-figure 4 Distribution of the most important benthic Foraminifera near the К/T boundary in the Kyzylsai section. 1: limestones; 2: chalks and marls; -3: boundary clay; 4: hardground surfaces. Foraminiferal distribution of Mangyshlak peninsula 135

Koshak Benthic Foraminifera lithology s ! ГП I I ~r

I Ч 7! rЧГІ-Т-Ч r ~r I I П ЙHI а ГТ j=3 'i "о I I ÏÏ 2ьо I " E & I ft e Ë Чз Оч i 1 1 О •S 'І +ё s 2 g g g S- I *? S is f = .2 а S fo < I 3 8 i СО <и о S СЮс5 I 12 о I I ~r -150 о о 0 •5 t® £ a & ^ s *р .s .а о 1 jj g a о -s e-145 t О w cd о о о «<140 о ІЙ c-130 I о о я г m m да Цт«-пбi 'C-ias. —Л ■*■«-115

ffli ■531G*

ЛИ—6?-a-!r4-} Ol

;в£чz r s r h r r - ^ -109 *-108 о t-1 0 7

<-105 -104 ш с » NО О« m о- gEËJ-2 Ц«-Н-4

Text-fïgure 5 — Distribution of the most important benthic Foraminifera near the К/T boundary in the Koshak section. 1: limestones; 2: chalks and marls; 3:boundary clay; 4: hardground surfaces.

Koshak sections just above the boundary clay, also con­ include Nephrolithus frequens (Gorka) the marker spe­ tain a poor BF assemblage, including a few Maastrichtian cies for the Late Maastrichtian in high latitudes, and species. Gradually a few, new Danian species appear Cribrosphaerella daniae Perch-Nielsen, also a high lati­ higher up such as Stensioeina whitei (Morozova), S. tude form restricted to the uppermost Maastrichtian in the beccariiformis (White), Osangularia lens (Brotzen), Ci- Kyzylsai section. Arkhangelskiella cymbiformis Vekshi­ bicidoides clipeatus (Vassilenko), Spiroplectammina den- na, Cribrosphaerella ehrenbergi (Axkhangelsky), Lithra- tata (Alth), Clavulinaparisiensis (d’Orbigny) andHanza- phidites quadratus Bramlette & Martini, Biscutum sp. , waia mantaensis (Galloway & Murrey) (Text-Fig. 4, 5). also are present. Micula mura (Martini), the marker for Several typical Maastrichtian species also still occur in the low latitude Late Maastrichtian is rarely present in a few lowermost Danian. In younger Danian horizons the taxo­ samples of the Kyzylsai section. Very rare Obliquipitho- nomic diversity was restored to the same level as existing nella operculata (Bramlette & Martini), Braarudo- in the Upper Maastrichtian (Text-Fig. 4, 5). sphaera bigelowii (Gran & Braarud) and B. discula Bramlette & Riedel were found about 2-5 cm below the Calcareous nannofossils К/T boundary. Very rare Obliquipithonella cf. opercidata The calcareous nannofossils were studied by K. Perch- Bramlette & Martini fragments were found in the bound­ Nielsen (see Herman et al., 1988) for the Kyzylsai sec­ ary clay itself Markalius inversus (Deflandre) and tion and by G. Kalinitchenko (see N aidin et al., 1990 b) Biantholithus sparsus Bramlette & Martini, the marker for both sections. In all Maastrichtian samples, the calcar­ of the basal Danian in Denmark, are present here and in eous nannofossils are moderately to well preserved. They good preservation. The remainder of the assemblage in 136 Lyudmila F. KOPAEVICH & Vladimir N. BENIAMOVSKII

multiserial heterohelicids such as Racemiguembelina and Planoglobulina, but also by a similar very sharp increase in the P/В ratio. This change of P/В ratio is probably related to a eustatic sea-level rise and an influx of warm Tethyan water-mass into the EPA, the so-called “ ele- gans-transgression” (W ic h e r , 1953; N a id in et a l, 1990 b; BENIAMOVSKII & K o p a e v ic h , 1998). The sea-level rise prior to the К/T boundary is supported by the reappear­ ance of Abathomphalus mayaroensis (Bolli) in the young­ est samples just below the boundary both in Zumaya (Spain) and Ain Settara (Tunisia) (M o l in a et al., 1998). It is interesting that the presence of a short-term warming at the end of the Maastrichtian is also present in Southern hemisphere, in the South Atlantic (Li & K e l l e r , 1998 a,b). Stable isotope analysis showed a major warm pulse Text-figure 6 — Planktonic Foraminifera from the P la Zone. between 66.45 and 65.11 M a , which increased tempera­ a. Eoglobigerina fringa (Subbotina): umbi­ tures by 2-3° С in intermediate waters, and decreased the lical side, Koshak section, sample 140 (X70) vertical thermal gradient to an average of 2.7°C. b. Globigerinelloides messinae Brônni- Planktonic Foraminifera provide a high resolution bio­ mann: Koshak section, sample 141 (X70). zonation for the К/T boundary and various zonal schemes c. ? Hedbergella monmouthensis (Olsson): have been proposed (Text-fig. 6). Among these, the zonal Koshak section, sample 141 (X70). scales of S m it (1982), K e l l e r (1988 a; 1993; also in d and e. Heterohelix striata (Ehrenberg): C a n u d o et al., 1991) and the scale of the present paper Koshak section, sample 141 (X70). are very similar, but differ from that proposed by B e r g - f. Planoglobulina brazoensis Martin: Kos­ g r e n & M il l e r , 1988. The presence of Zone P0 marks hak section, sample 140 (X80). the boundary clay and Zone Pla marks the base of the Danian. The Mangyshlak PF data show a close similarity with Danish sections (B a n g , 1979; H â k a n s s o n & H a n ­ the boundary clay is identical to the underlying Maas­ s e n , 1979). In both regions towards the end of the Pseu­ trichtian assemblages, however, calcareous nannofossils dotextularia deformis Zone, the genus Globotruncana are rare and poorly preserved. Just above the boundary disappeared and the Heterohelix - Hedbergella - Globi­ clay the sediments contain a poor assemblage of nanno­ gerinelloides assemblage became dominant and some of fossils: Markalius inversus (Deflandre) (80% of all taxa), them can be followed into the base of the Danian. The PF , Biantolithus sparsus Bramlette & Martini, Coccolithus assemblages of the terminal Maastrichtian, just below the cam s Hay & Mohler, Obliquipithonella operculata boundary clay are very poorly preserved in Denmark and Bramlette & Martini, Braarudosphaera bigelowii (Gran in Mangyshlak. & Martini), B. discula Bramlette & Riedel are common PF are practically absent within the boundary clay (P0 and several Maastrichtian species are still present here. Zone), except for a few small survivors species of Het­ This interval represents the Lower Danian the NP1 (M ar­ erohelix, Hedbergella and Globigerinelloides in Den­ kalius inversus) Zone (Text-Fig. 2, 3). mark and in Mangyshlak. In the younger samples, the presence of Cruciplaco- PF are very scarce in the base of the Danian, repre­ lithus tenuis Stradner, zonal species of NP 2 suggests that sented by a few Palaeocene species in Mangyshlak: Eo­ the base of this Zone lies at the level of sample 33 in the globigerina fringa (Subbotina), Eoglobigerina sp. and Kyzylsai section and of sample 146 in the Koshak sec­ possibly Parvulorugoglobigerina eugubina (Luterbacher tion. Chiasmolithus danicus (Brotzen), the marker of the & Premoli Silva). In the subzone P la Cretaceous survi­ Danian NP3 Zone was found in sample 35 of the Kyzylsai vors disappeared. In several sections of North Jutland section and in sample 165 of Koshak section. Only typical (Kjôlby Gaard and “ Dania” Quarry) just above the Palaeocene species characterize this zonal assemblage. boundary clay PF are absent (equivalent of the “ a-plank- The appearance of Ellipsolithus macellus (Bramlette & tonic zone” of H o f k e r , 1978), but sometimes (section Sullivan) and other species suggest the presence of the Nye КІ0ѵ) Eoglobigerina danica Zone was recognized. NP4 Zone in Kyzylsai section. In addition to the genus Eoglobigerina, this Zone is characterized by Chiloguembelina spp., Woodringia Correlations sp. and Guembelitria spp. The thickness of this interval The correlation of the К/T boundary interval for the two at Dania is about 2-5 m (B a n g , 1979; H â k a n s s o n & studied sections on PF data with other regions of EPA is H a n s e n , 1979), very similar with Pla Subzone of the straightforward. The Pseudotextularia deformis/elegans Mangyshlak sections. The upper boundary of the Eoglo­ Zone is a typical subdivision for shallow water sequences bigerina danica Zone is defined by the first occurrence of (see above). This zone is characterised by the presence of Globoconusa daubjergensis (Bronnimann). the index-species associated with that of other species of Higher Danian deposits in Mangyshlak contain typical Foraminiferal distribution of Mangyshlak peninsula 137

Palaeocene PF, among which Subbotina pseudobulloicles Maastrichtian elegans - transgression (W i c h e r , 1953). (Plummer) and Globoconusa daubjergensis ( B r o n n i - 3. The disappearance of P F inside the boundary clay mann) are very important. The PF zonation of Mangysh­ coincided with the peak of the biotic crisis, generally lak is closely correlatable with the standard nannofossil attributed to a “global catastrophic event.” This repre­ zonation (M a r t i n i , 1970; T h i e r s t e i n , 1976; S i s s i n g h , sented the time of lowest productivity for P F ( P e r c iv a l & 1978; P e r c h -N i e l s e n , 1979; O k a d a & B u k r y , 1980). F i s c h e r , 1977; G e r s t e l et a i, 1986; K e l l e r , 1996). Our The distribution of BF in the terminal Maastrichtian data show that the extinction of Cretaceous species oc­ and Lower Danian is practically identical all over the curred throughout an interval that extends from the upper­ EPA (see B eniamovskii & K o p a e v i c h , 1998). most Pseudotextularia defonnis/elegans Zone through the Danian P l a Zone. 4. The occurrence of typical Danian species and the Conclusions coeval disappearance of “ Cretaceous” species begins in the Subbotina pseudobulloides Zone. 1. According to for-aminiferal data, the zonation across the К/T boundary of Mangyshlak can be applied without any difficulty to coeval strata in western Europe and especially in the Danish sections. 2. A deepening of the basin and warmer environmental Acknowledgements conditions are indicated in the terminal chalk of the Pseudotextularia defonnis/elegans Zone of both Man­ We are very grateful to Isabella Premoli Silva, F. Robaszynski and W. Kuhnt for their kind comments and suggestions, on an earlier version of gyshlak sections (last 2-2.5 m), by the high P/В ratio. the paper. The theme of this paper relates to project “ INTAS-94- This terminal P/В increasing coincides with the short Late 1414” and the “ Integration” of Russian Federal Program.

R e fe re n c e s

A lekseev, A . S. & K o pa ev ich , L. F., 1997. Foraminiferal Congress. XXI session. Reports of soviet geologists. Problem 5. biostratigraphy of the uppermost Campanian-Maastrichtian in The Cretaceous-Tertiary boundary. 148-161 [in Russian]. SW Crimea (Bakhchisaray and Chakhmakhly sections). Bulle­ C a n u d o , J. I., K e l l e r , G. & M o lin a , E., 1991. Cretaceous/ tin Institut royal Sciences naturelles de Belgique, Sciences de la Tertiary boundary extinction pattern and faunal turnover at Teire, 67: 103-118. Agost and Caravaca, S. E. Spain. Marine Micropaleontology, A lekseitchik, S. N . Geologicheskoe stroenie i neftenosnost 17: 319-341. poluostrova Mangyshlaka. Trudy NIGRI, n.s., 16: 1-235 [in Ca r o n , М., 1985. Cretaceous planktonic Foraminifera. In: H. Russian]. M . B o lli, J. B . S aun d ers & К . P erch-N iel se n , P lan k to n Am on, E. 0 ., B lu efo rd , J. R., D e W e v er , P. & Z h elezk o , V. stratigraphy, pp. 17-86. Cambridge University Press. I., 1997. An essay on regional geology and stratigraphy of the Ca v e lier , C. & P o m er o l, C., 1983. Echelle de corrélation Upper Cretaceous deposits o f Southern Urals territories. Geo- stratigraphique du Paléogène. Stratotypes, étages standards, diversitas, 19 (2): 293-317. biozones, chimiozones et anomalies magnétiques. Géologie A ndrusov, N . I., 1915. Materials fo r the Transcaspian Geol­ de la France, 3: 261-262. ogy: Mangyshlak (Descriptive Part). Tmdy Aralo-Kaspiiskoi C a v e lier , C. & P o m e r o l, C., 1986. Stratigraphy of the Paleo­ Ekspeditsii, 8: 1-458 [in Russian]. gene. Bulletin Société géologique de France, (8) 2: 255-265. B ang, I., 1979. Foraminifera in the lowermost Danian of Den­ G aw o r-B ied o w a , E., 1992. Campanian and Maastrichtian For­ mark. In: B irk elu n d , T. & B ro m ley , R. (eds). Proceedings of aminifera from the Lublin Upland, Eastern Poland. Acta Pa- Symposium on Cretaceous — Tertiary Boundary Events: Co­ laeontologica Polonica, 52: 3-187. penhagen, Denmark. University of Copenhagen, 1: 108-114. G er ste l , J., T h u n n el, R., Z aci-ios, J. C. & A rth u r , M. A.. B eniamovskii, V. N. & K o pa ev ich , L . F., 1998. Foraminiferid 1986. The Cretaceous/Tertiary boundary events in the North Zonation in the Upper Santonian — Maastrichtian o f the Eur­ Pacific: Plankton foraminifera results from Deep Sea Drilling opean Palaeobiogeographical Area (EPA). Zentralblatt fiir Project Site 577, Shatsky Rise. Paleoceanography, 1, 2: 97- Geologie und Palâontologie, Teil I, 1996, 11/12: 1149-1169. 117. B erggren, W. A. & M iller, K. G., 1988. Paleogene tropical H â k a n sso n , E. & H a n sen , J. М., 1979. Guide to Maastrichtian foraminiferal biostratigraphy and magnetobiochronology. Mi- and Danian boundary strata in Jylland. In: B irk elu n d , T. & cropaleonto'logy, 34: 362-380. B r o m ley , R. (eds.). Proceedings of Symposium on Cretaceous B o lli, H. М., 1966. Zonation of Cretaceous to Pliocene marine - Tertiary Boundary Events: Copenhagen, Denmark. University sediments based on planktonic foraminifera. Boletino Informa­ of Copenhagen, 1: 171-188. tive Asociacion Venezolano de Geologia, Mineria y Petroleo. H erm a n , Y ., B hattacharaya , S. К ., P erch -N ielsen, K ., Ko- 9: 3-32. paevitch, L. F ., N a idin , D . P., F ro lo v , V. T., J effers, J. D. & B y ko v a , N. K., 1960. Danian and Paleogene deposits of North Sa r k a r , A. 1988. Cretaceous-Tertiary boundary marine extinc­ Mangyshlak and South Emba area. International Geological tions: The Russian Platform record. Revista Espanola de Pa- 138 Lyudmila F. KOPAEVICH & Vladimir N. BENIAMOVSKII

leontologia, Numéro Extraordinario. Paleontology and evolu­ M a l m g r e n , B. A., 1982. Biostratigraphy of planktic Forami­ tion: Extinction events, pp. 31-40. nifera from the Maastrichtian white chalk of Sweden. Geolo-

H o fk er , J., 1978. Analysis of a large succession of samples giska Fôreningens Stockholm Fôrhandlingar, 103: 357-375. through Upper Maastrichtian and the Lower Tertiary of drill­ M a r t in i, E., 1970. Standard Palaeogene calcareous nanno- hole 47-2 Shatsky Rise, Pacific, Deep Sea Drilling Project. plankton zonation. Nature, 226: (5245), 560-561.

Journal of Foraminiferal Research, 8 (1): 46-75. M a s l a k o v a , N. I., 1978. Globotruncanids from the southern J o n e s , D . S ., M u e l l e r , P . A ., B r y a n , J. R ., D o b s o n , J. P ., part of European USSR. Nauka, Moscow. 166 pp. [in Russian],

C h a n n e l l , J. E . T., Z a c h o s , J. C. & A r t h u r , M . A . 1987. M o l in a , E., A r e n il l a s , I. & A r z , J. A . 1998. Mass extinction Biotic, geochemical and paleomagnetic changes across the in planktic foraminifera at the Cretaceous/Tertiary boundary in Cretaceous/Tetiary boundary at Braggs, Alabama. Geology, subtropical and temperate latitudes. Bulletin Société géologique 15: 311-315. de France, 169 (3): 351-363.

K a ih o , K . & S a it o , T., 1986. Terminal Cretaceous Sedimen­ N a id in , D. P., 1969. Biostratigraphie und Palaogeographie der tary Sequence recognized in the Northernmost Japan based on Oberen Kreide der Russischen Tafel. Geologisches Jahrbuch, Planktonic Foraminiferal Evidence. Proceedings of the Japan A 87: 157- 186. Academy, (5) 62: 145-148. N a id in , D. P., 1986. Cretaceous/Tertiary boundary in Mangysh­ K e l l e r , G., 1988 a. Extinction, survivorship and evolution of lak and proposed events on the limit o f the Maastrichtian and planktic foraminifers across the Cretaceous/Tertiary boundary Danian. Izvestia vuzov. Geologia i razvedka, 9: 3-13 [in Rus­ at El-Kef, Tunisia. Marine Micropaleontology, 13: 239-263. sian].

K e l l e r , G., 1988 b. Biotic turnover in benthic foraminifera N a id in , D. P., 1987. The Cretaceous-Tertiary boundary in across the Cretaceous/Tertiary boundary at El-Kef, Tunisia. Mangyshlak. U.S.S.R. Geological Magazine, 124, 1: 11-19. Palaeogeography, Palaeoclimatology, Palaeoecology, 66: N a id in , D. P., B eniamovskii, V. N . & K o p a e v ic h , L . F., 1984. 153-171. A scale for a biostratigraphic subdivision of the Upper Cretac­ K e l l e r , G., 1989. Extended period of extinctions across the eous of the European palaeobiogeographical area. Vestnik Mos­ Cretaceous — Tertiary boundary in planktonic foraminifers o f kovskogo Universiteta. (4) Geologia, 5: 3-15. continental shelfs sections: applications for impact and volcan- N a id in , D. P., B e n ’y a m o v s k ii, V. N . & K o p a e v ic h , L . F., 1996. ism theories. Geological Society of America Bulletin, 101, 11: Paleocene reference sections of Mangyshlak. Stratigraphy and 140-1419. Geological Correlation, 4 (3): 254-268. K e l l e r , G., 1993. The Cretaceous-Tertiary boundary transition N a id in , D. P ., K o p a e v ic h , L . F., M o s k v in , М . М ., S h im a n s - in the Antarctic Ocean and its global implications. Marine k a y a , N . V., K alinitchenko , G. P. & A n d r e e v , Ju. N ., 1990a. Micropaleontology, 21: 1-45. Macropaleontological data on the Maastrichtian/Danian bound­ K e l l e r , G., 1996. The Cretaceous-Tertiary mass extinction on ary from continuous sections in Mangyshlak. Izvestia Akademii planktic Foraminifera: Biotic constraints for catastrophe the­ Nauk SSSR, Serija Geologia, 11: 3-15 [in Russian]. ories. In: M a c l e o d , N. & K e l l e r , G., Eds., Cretaceous-Ter­ N a id in , D. P., K o p a e v ic h , L . F ., M o s k v in , М . М ., S h im a n s - tiary mass extinctions. W.W.Norton & Co. New York; pp. 45- k a y a , N. V., K alinitchenko , G. P. & A n d r e e v , J u . N., 1990 b. 84. Micropaleontological data on the Maastrichtian/Danian bound­ K e l l e r , G., A d a t t e , Th., H o l l is , Ch., O r d o n e z , М., Z a m b r a ­ ary of continuous sections in Mangyshlak. Izvestia Akademii n o , М., J im e n e z , N., S t in n e s b e c k , W., A l e m a n , A . & H a l e - Nauk SSSR, Serija Geologia, 12: 68-82 [in Russian]. E r l ic h , W. 1997. The Cretaceous/Tertiaiy boundary event in N a z a r o v , M . A ., B a r s u k o v a , L . D., K o l e s o v , G. М ., N a id in , Ecuador: reduced biotic effects due to eastern boundary current D. P. & A l e k s e e v , A . S ., 1983. Origin o f the iridium anomaly at setting. Marine Micropaleontology, 31: 97-133. the boundary between the Maastrichtian and Danian stages. K e l l e r , G. & M a c l e o d , N., 1995. The Cretaceous/Tertiary Geokhimia,'8: 1160-1178 [in Russian]. boundary stratotype section at El Kef, Tunisia: how cata­ O b e r h â n s l i, H., K e l l e r , G., A d a t t e , T. & P a r d o , A ., 1998. strophic was the mass extinction? Palaeogeography, Palaeo­ Diagenetically and environmentally controlled changes across climatology, Palaeoecology, 119: 221-254. the К/T transition at Koshak, Mangyshlak (Kazakhstan). Bul­ Koch, W., 1977. Stratigraphie der Oberkreide in Nordwest- letin Société géologique de France 169, 4: 493-501. deutschland (Pompeckjische Scholle). T. 2. Biostratigraphie in O k a d a , H. & B u k r y , D., 1980. Supplementary modification der Oberkreide und Taxonomie von Foraminifera. Geolo- and introduction o f code numbers to the lowlatitude coccolith gisches Jahrbuch, A 38: 3-123. biostratigraphic zonation. Marine Micropaleontology, 5 (3): L e o n o v , G. P. & A l im a r in a , V . P., 1961. Stratigraphy and 321-325. planktonic foraminifers of the “ transitional” Cretaceous to P e r c h -N ie l s e n , K., 1979. Calcareous nannofossils in Cretac­ Paleogene beds o f the Central Precaucasus. Sbomik Trudov eous /Tertiary boundary sections on Denmark. In: B ir k e l u n d , Geologicheskogo Fakulteta Moskovskogo Universiteta: pp. 29- T. & B r o m l e y , R. (eds). Proceedings of Symposium on Cretac­ 53 [in Russian]. eous — Tertiary Boundary Events: Copenhagen, Denmark. L i, L. & K e l l e r , G., 1998. Abrupt deep-sea wanning at the end University of Copenhagen, 1: 115-135.

of the Cretaceous. Geology, 26: 995-998. P e r c iv a l , S. F . & F is c h e r , A. G., 1977. Changes in calcareous L utterbacher , H. P . & P r e m o l i-S il v a , I., 1964. Biostratigra- nannoplankton in the Cretaceous-Tertiary biotic crisis at Zu- phia del limite Cretaceo-Terziario nell’ Appennino centrale. maya, Spain. Evolutionary Theory, 2: 1-35.

Rivista Italiana Paleontologia i Sti-atigrajia, 70: 67-128. P e r y t , D., L a h o d y n s k y , R ., R o c c h ia , R . & B o c l e t , D., 1993. M a c l e o d , N. & K e l l e r , G., 1994. Comparative biogeographic The Cretaceous/Paleogene boundary and planktonic foramini- analysis of planktic foraminiferal survivorship across the Cre­ fera in the Flyschgosau (Eastern Alps, Austria). Palaeogeogra­ taceous/Tertiary boundary. Paleobiology, 20 (2): 143-177. phy, Palaeoclimatology, Palaeoecology, 104: 239-252. Foraminiferal distribution of Mangyshlak peninsula 139

Pr em o li S il v a , I., 1977. Upper Cretaceous-Paleocene magnetic S m it , J., 1982. Extinction and evolution o f planktonic Forami­ stratigraphy at Gubbio, Italy. Biostratigraphy. Geological So­ nifera after a maj or impact at the Cretaceous/Tertiary boundary. ciety o f America, Bulletin, 88, 2: 371-374. Geological Society American. Special Paper, 190: 329-352.

Premoli-Silva, I. & BOLLI, H. М., 1973. Late Cretaceous to S t e n e s t a d , E., 1979. Upper Cretaceous foraminifera from Eocene planktonic foraminifera and stratigraphy of Leg 15 sites Danish Basin. In: B ir k e l u n d , T. & B r o m l e y , R. (eds.). Pro­ in Caribbean Sea. In: N. T. Edgar et ai, Initial Report Deep ceedings of Symposium on Cretaceous — Tertiary Boundary Sea Drilling Project, 15: 449-547. Events: Copenhagen, Denmark. University o f Copenhagen, 1: R am pino, M. R. & Reynolds, R.G., 1983. Clay mineralogy of 101-107.

Cretaceous/Tertiary boundary clay. Science, 219 (4584): 495- T h ie r s t e in , H. R., 1976. Mesozoic calcareous nannoplankton 498. biostratigraphy o f marine sediments. Marine Micropaleontol­ R o b a s z y n sk i, F ., B l e s s , M . J., F e l d e r , P. J., F o u c h e r , J.-C., ogy, 1: 325-362. L e g o u x , 0 . , M a o tv it, H., M e e s s e n , J.P.M.Th. & V a n d e r T o u m a r k in e , M. & L u t e r b a c h e r , H., 1985. Paleocene and Tuuk, L . A., 1985. The Campanian-Maastrichtian boundary Eocene planktic foraminifera. In: H. M. B o l l i, J. B . S a u n d e r s in the chalky facies close to the type-Maastrichtian area. Bulle­ & K . P e r c h -N ie l s e n , Plankton stratigraphy, pp. 87-154. Cam­ tin Centre de Recherche, Exploration, Production Elf-Aqui- bridge University Press. taine, 9: 1-113. T r if o n o v , N. K ., 1959. Novye dannye po stratigrafii verkhnego R o b a s z y n sk i, F. & C h r is t e n s e n , W. K., 1989. The Upper mela poluostrova Mangyshlaka. Tnidy Vsesoyuznogo Nauchno- Campanian - Lower Maastrichtian chalks of the Mons basin: Issledovatelskogo Geologo-Razvedochnogo Neftianogo Institu- a preliminary study o f belemnites and foraminifera in the ta (VNIGRI), 131: 297-301 [in Russian], Harmignies and Ciply areas. Geologie en Mijnboicw, 68: 391- 408. T r if o n o v , N. K . & B u r a g o , A. М., 1960. Verkhnemelovye otlozhenia Mangyshlaka. Stratigrafia i fatsii. Trudy Vsesoyuz­ R o s e n k r a n t z , A., 1924. Nye lagtagelser over Ceritiumkalken i Stevns Klint med Bemaerkninger om Graeng sen mellom Kridt nogo Nauchno-Issledovatelskogo Geologo-Razvedochnogo og Tertiaer. Meddedelser Danske Geologiske Foreningeme, 6: Neftianogo Instituta (VNIGRI), 157: 195 pp. [in Russian]. 28-31. V a s s il e n k o , V . P., 1961. Upper Cretaceous Foraminifera of

Sa r k a r , A ., B hattacharya , S. K ., S h u k l a , P . N ., B h a n d a r i, Mangyshlak peninsula. Tnidy Vsesoyuznogo Nauchno-Issledo- N . & N a id in , D. P ., 1992. High resolution profile of stable vatelskogo Geologo-Razvedochnogo Neftianogo Instituta (VNI­ isotopes and iridium across a К/T/ boundary section from GRI), 61: 1-487. Leningrad [in Russian], Koshak Hill, Mangyshlak, Kazakhstan. Terra Nova, 4: 585- W ic h e r , C. A., 1953. Micropalaontologische Beobachtungen in 590. der hôheren borealen Oberkreide, besonders im Maastricht. SchÔNFELD, J., 1990. Zur Stratigraphie und Ôkologie Geologisches Jahrbuch, В 68: 1-26. benthischer Foraminiferen in Schreibkreide-Richtprofil von W id m a r k , J.G.V. & S p e d e r , R.P., 1997. Benthic foraminif- Lagerdorf/Holstein. Geologisches Jahrbuch, A 117: 3-151. eral ecomarker species o f the terminal Cretaceous (late Maas­ S c h ô n f e l d , J. & B u r n e t t , J. A., 1991. Biostratigraphical trichtian) deep-sea Tethys. Marine Micropaleontology, 31: correlation of the Campanian-Maastrichtian boundary: Lâger- 135-155. dorf-Hemmoor (northwestern Germany), DSDP Site 548A, 549 and 551 (eastern North Atlantic) with palaeobiogeographical Lyudmila F. K o p a e v ic h and palaeoceanographical implications. Geological Magazine, Dept. Historical and regional geology 128, 5: 479-503. Geological Faculty, Moscow State University Se m e n o v , V. P., 1899. Fauna of Cretaceous Deposits of Man­ Vorobiovy Gory, 119899, Moscow, Russia gyshlak and other Areas of the Transcaspian Region. Trudy S t- [[email protected]] Peterburgskogo Ob-va Estestvoispytatelei Prirody. Otdelenie Geologii i Mineralogii, 28 (5): 1-178 [in Russian], Vladimir N. B eniamovskii Geological Institute Sissingh, W., 1978. Microfossil biostratigraphy and stage stra­ totypes of the Cretaceous. Geologie en Mijnbouw, 57 (3): 440- of the Russian Academy of Sciences 443. Pyzhevsky per. 7, 109117 Moscow, Russia [[email protected]]) Smit, J., 1977. Discovery of a planktonic foraminiferal associa­ tion between the Abathomphalus mayaroensis Zone and the Globigerma eugubina Zone at the Cretaceous-Tertiary bound­ ary in the Barranco del Gredero (Caravaca, Spain). Proceedings of the Nederlandse Akademie der Wetenschappen, В 80: 280- Typescript submitted 15.12.1998 301. Revised typescript received 29.3.1999 140 Lyudmila F. KOPAEVICH & Vladimir N. BENIAMOVSKII

Explanation of Plates

All the figured specimens are preserved in the collection of the micropaleontological unit o f Palaeontology, Geological Faculty, Moscow State University

P la te 1

Figure 1 — Orbignyna ovata ( von Hagenow): Kyzylsai section, sample 4 (X50). Figure 2 — Orbignyna inflata (Reuss): Kyzylsai section, sample 6 (X50). Figure 3 — Arenobulimina acuta Woloschyna: Koshak section, sample 111 (X I00). Figure 4 •— Gaudryina aff. Jonesiana Wright: Koshak section, sample 107 (X80). Figure 5 — Gaudryina rugosa d’Orbigny: Koshak section, sample 103 (X80). Figure 6 — Arenobulimina vialovi Woloschyna: Koshak section, sample 108 (X80). Figure 7 — Plectina convergens (Keller): Koshak section, sample 101 (X70). Figure 8 — Ataxophragmium crassum (d’Orbigny): Kyzylsai section, sample 10 (X70). Figure 9 — Plectina ruthenica (Reuss): Kyzylsai section, sample 34 (X70). Figure 10 — Neoflabellina reticulata (Reuss): Koshak section, sample 104 (X60). Figure 11 — Angulogavelinella gi-acilis (Brotzen): spiral side; Kyzylsai section, sample 6 (X80). Figure 12 — Angidogavelinella gracilis (Brotzen): umbilical side; Kyzylsai section, sample 6 (X70). Figure 13 — Gavelinella danica (Brotzen): spiral side; Koshak section, sample 155 (X100). Figure 14 — Gavelinella danica (Brotzen): umbilical side; Koshak section, sample 145 (X100).

P la te 2

Figure 1 — Cibicidoides aktidagayensis (Vassilenko): spiral side; Koshak section; sample 101 (X60). Figure 2 — Stensoeina pommerana Brotzen: Kyzylsai section, sample 1 (X I00). Figure 3 — Angidogavelinella gracilis (Brotzen): umbilical side; Kyzylsai section, sample 6 (XI00). Figure 4 — Cibibcides kurganicus Neckaja: spiral side; Kyzylsai section, sample 4 (X100). Figure 5 — Cibibcides kurganicus Neckaja: umbilical side; Kyzylsai section, sample 4 (XI00). Figure 6 — Kaireria fallax Rzehak: spiral side; Kyzylsai section, sample 34 (X70). Figure 7 — Coleites crispus Vassilenko: Koshak section, spiral side, sample 113 (X70). Figure 8 — Brotzenella praeacuta (Vassilenko): spiral side; Kyzylsai section, sample 35 (X I00). Figure 9 -— Brotzenella praeacuta (Vassilenko): umbilical side; Kyzylsai section, sample 35 (X100). Figure 10 — Cibicidoides voltziamis (d’Orbigny): spiral side; Koshak section, sample 109 (X70). Figure 11 — Cibicidoides voltziamis (d’Orbigny): umbilical side; Koshak section, sample 109 (X70). Figure 12 — Gyroidinoides turgidus (d’Orbigny): spiral side; Koshak section, sample 108 (X70). Figure 13 — Gyroidinoides turgidus (d’Orbigny): umbilical side; Koshak section, sample 108 (X70). Figure 14 — Gyroidinoides turgidus (d’Orbigny): peripheral side; Koshak section, sample 108 (X70). Figure 15 — Anomalinoides pinguis (Jennings): spiral side; Koshak section, sample 113 (X70). Figure 16 — Anomalinoides pinguis (Jennings): umbilical side; Koshak section, sample 113 (X70). Figure 17 — Anomalinoides pinguis (Jennings): umbilical side; Kyzylsai section, sample 3 (X100).

P la te 3

Figure 1 -— Bolivina decuiTens (Ehrenberg): Kyzylsai section, sample 2 (X100). Figure 2 — Bolivina incrassata incrassata (Reuss): Kyzylsai section, sample 6 (X70). Figure 3 — Bolivina incrassata crassa (Vassilenko): Kyzylsai section, sample 13 (X70). Figure 4 — Bolivinoides decoratus (Jones): Koshak section, sample 101 (X50). Figure 5 — Bolivinoides decoratus (Jones): Koshak section, sample 101 (X50). Figure 6 -— Bolivinoides peterssoni Brotzen: Koshak section, sample 101 (X50). Figure 7 — Bolivinoides draco draco Marsson: Koshak section, sample 112 (X100). Figure 8 — Praebulimina laevis (Beissel): Koshak section, sample 112 (X50). Figure 9 .— Pyramidina cimbrica (Brotzen): Kyzylsai section; sample 6 (X140). Figure 10 — Pseudouvigerina cristata (Marsson): Kyzylsai section; sample 4 (X100). Figure 11 — Cibicidoides commatus (Morozova): spiral side; Koshak section, sample 155 (X I00). Figure 12 — Hanzawaia ekblomi (Brotzen): spiral side; Kyzylsai section, sample 37 (X100). Figure 13 — Hanzawaia ekblomi (Brotzen): umbilical side; Kyzylsai section, sample 37 (X100). Foraminiferal distribution of Mangyshlak peninsula 141

Figure 14 Cibicidoides hemicompressus (Morozova): spiral side; Koshak section, sample 145 (X60). Figure 15 Cibicidoides hemicompressus (Morozova): umbilical side; Koshak section, sample 145 (X80). Figure 16 Anomalinoides subcarinatiis (Cushman & Deaderick): spiral side; Kyzylsai section, sample 16 (X90). Figure 17 Gavelinella midwayensis (Plummer): spiral side; Kyzylsai section, sample 2 (X60). Figure 18 Gavelinella midwayensis (Plummer): umbilical side; Kyzylsai section, sample 2 (X I00). Figure 19 Gavelinellapertusa (Marsson): spiral side; Koshak section, sample 155 (X100). Figure 20 Gavelinella pertusa (Marsson): umbilical side; Koshak section, sample 155 (X100).

P la te 4

Figure 1 Hedbergella monmouthensis (Olsson): umbilical side, Kyzylsai section, sample 9 (XI00). Figure 2 Heterohelix striata (Ehrenberg): Koshak section, sample 112 (X100). Figure 3 Pseudotextularia deformis (Kikoine): Koshak section, sample 112 (X100). Figure 4 Globigerinellodes volutus White: umbilical side, Koshak section; sample 108 (X100). Figure 5 Globotinncana area (Cushman): spiral side; Koshak section, sample 112 (X70). Figure 6 Globotrucana bulloides Vogler: spiral side; Koshak section; sample 112 (X70). Figure 7 Globotiimcana ventricosa White: spiral side; Kyzylsai section; sample 8 (X70). Figure 8 Rugoglobigerina sp. : spiral side; Koshak section; sample 112 (X70). Figure 9 Eoglobigerina trivialis (Subbotina): spiral side; Koshak section, sample 165 (X I00). Figure 10 Eoglobigerina trivialis (Subbotina): umbilical side; Koshak section, sample 165 (X100). Figure 11 Subbotina varianta (Subbotina): spiral side; Koshak section, sample 155 (X130). Figure 12 Subbotina varianta (Subbotina): umbilical side; Koshak section, sample 155 (X130). Figure 13 Subbotina pseudobulloides (Plummer): spiral side; Kyzylsai section, sample 35 (X130). Figure 14 Subbotinapseudobidloides (Plummer): umbilical side; Kyzylsai section, sample 35 (X130). Figure 15 Subbotina triloculinoides (Plummer): spiral side; Koshak section, sample 155 (X130). Figure 16 Globoconusa daubjergensis (Brônnimann): spiral side; Koshak section, sample 150 (X130). Figure 17 Globoconusa daubjergensis (Brônnimann): umbilical side; Koshak section, sample 150 (X150). Figure 18 Planorotalites compressa (Plummer): spiral side; Kyzylsai section, sample 45 (X130). Figure 19 Planorotalites compressa (Plummer): umbilical side; Kyzylsai section, sample 45 (X I60). 142 Lyudmila F. KOPAEVICH & Vladimir N. BENIAMOVSKII Foraminiferal distribution of Mangyshlak peninsula 143

P l a t e 2 144 Lyudmila F. KOPAEVICH & Vladimir N. BENIAMOVSKII

12

P l a t e 3 Foraminiferal distribution of Mangyshlak peninsula 145

P l a t e 4 BULLETIN DE L’INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE SCIENCES DE LA TERRE, 69-SUPP. A: 147-159, 1999 BULLETIN VAN НЕТ KONINKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN AARDWETENSCHAPPEN, 69-SUPP. A: 147-159, 1999

Santonian to Palaeocene tectonics of the East-European craton and adjacent areas by Anatoly M. NIKISHIN, Peter A. ZIEGLER, Randell A. STEPHENSON & Maria A. USTINOVA

Abstract активизации инверсионных . структур в основном вдоль палеорифтов ; к синкомпрессионному быстрому погружению During the Senonian to Palaeocene times the East European Craton or некоторых рифтогенных бассейнов типа Днепровского ; к Platform was affected by polyphase regional compression stresses. It активизации соляного диапиризма в Прикаспийской впадине ; led to different kind intracratonic compressional tectonics including к вероятному импактогенному синкомпрессионному gentle lithosphere folding (buckling) with spacing close to 500-600 рифтогенезу на Украинском щите. Компрессионная тектоника km, origin (or reactivation) of inversion structures mainly along former внутри кратона была синхронна с коллизионными rifted basins, syn-compressional rapid subsidence of some former процессами вдоль пояса Тетис в Понтидах и других зонах. rifted basins like Dnieper Basin, acceleration of salt diapirism in the Peri-Caspian Basin, possible compression-related (impactogen) rifting Ларамийская орогения имела глобальный характер и она in the Ukrainian Shield. The compression related intracratonic tec­ могла привести к глобальным изменениям среды около мел- tonics coincided with collision events along Tethyan belt along Pon- палеогеновой границы. tides and other zones. The Laramide orogeny was widespread round the Earth, and it could have led to global environmental changes at the Ключевые слова: Восточно-Европейский кратон, Cretaceous/Palaeogene boundary. мел/палеогеновая граница, инверсионная тектоника, ларамийская орогения, деформации, палеотекгонические Key-words. East-European Craton, Cretaceous/Palaeocene boundary, inversion tectonics, Laramide orogeny, deformations, palaeotectonic реконструкции. reconstructions.

Résumé Introduction

Du Sénonien au Paléocène, le Craton ou Plate-forme est-européen a The Late Cretaceous to Palaeocene tectonic history of subi des contraintes de compression régionale polyphasée. Il en est Western Europe has been described in detail by Z ie g l e r résulté différents types de tectoniques de compression intracratoniques incluant un plissement faible de la lithosphère (“buckling”) à une (1990), but for Eastern Europe it was briefly discussed in distance proche de 500-600 km, l’origine (ou la réactivation) de A rkhangelsky (1922), S h a t s k y (1964), G e r a s im o v et structures d’inversion principalement le long d’anciens bassins d’ef­ al. (1962), E. V. M il a n o v s k y (1940) and E. E. M il a ­ fondrement, une subsidence syncompressionaire rapide de certains bassins d’effondrement anciens comme le Bassin du Dnieper, une n o v s k y (1987), without detailed analysis of tectonic accélération du diapirisme lié au sel dans le Bassin de la Caspienne events. There is disagreement between authors on the (Peri-Caspian Basin), un effondrement possible lié à la compression palaeotectonic reconstruction of Europe at the Creta­ (impactogène) dans le Bassin ukrainien. La compression liée aux (Z ie g l e r , D e r c o u r t tectoniques intracratoniques a coïncidé avec des collisions le long de ceous/Palaeocene boundary 1990; la ceinture téthysienne, des Pontides et d’autres zones. L’orogenèse et al., 1993; Y il m a z et al., 1997, S t a m p f l i et al., Laramide s’est fait largement ressentir sur la Terre et a pu conduire à 1998). In this paper we will try to combine all available des changements globaux d’environnements à la limite Crétacé/Paléo­ data and reconstruct the tectonic history of Eastern Eur­ gène. ope at the Cretaceous/Palaeocene (К/T) boundary in Mots-clefs: Craton est-européen, limite Crétacé/Paléocène, tectonique connection with regional tectonic events. d’inversion (inversion tectonique?), orogenèse Laramide, déforma­ From the Senonian to the Palaeocene, Subhercynian tions, reconstructions paléotectoniques. and Laramide inversion tectonics affected large parts of the northern Alpine and Carpathian foreland of Europe (Fig. 1; Z ie g l e r , 1990; Z ie g l e r et al., 1995; N ik is h in et Резюме al., 1997a) as well as the Alpine and Taurides foreland in Africa and Arabia, respectively (G u ir a u d & B o s w o r t h , В сеноне-палеоцене Восточно-Европейский кратон испытал полифазное региональное сжатие. Эго сжатие привело к 1997). Subhercynian and Laramide inversion structures разным типам компрессионной тектоники: к пологой on the East-European Craton and its margins were de­ литосферной складчатости с расстоянием между осями scribed in detail by E. V. M il a n o v s k y (1940) and are складок около 500-600 км ; к формированию или shown on the published maps of B o g d a n o v & K h a in 7° /э NIHSraiN 'П Xioïbuv m Santonian to Palaeocene tectonics 149

(1981). Classical examples of tensional basins that were the Late Triassic to Early Cretaceous the rifted basin inverted during the latest Cretaceous and Palaeocene are underwent postrift subsidence accompanied by stress the Donets Basin [Donbass] - that formed part o f the Mid- events. The Late Cretaceous history of the basin was very Late Dnieper-Donets-Karpinsky rift belt (E. E. complicated (Ziegler, 1990; Dadlez et al., 1995; E. Milanovsky, 1987; Stovba eta l., 1996), the Mid-Polish Gazdzicka, personal communication, 1998): during Trough (Kutek, 1994; Dadlez et al., 1995), the Pre- Cenomanian-Turonian times the basin underwent rapid Volga belt (e.g. Don-Medveditsa, Saratov dislocations; syn-compressional subsidence which was followed by E. V. Milanovsky, 1940; E. E. Milanovsky, 1987), and polyphase inversion of the basin. The timing of the the Pachelma aulacogen (Oka-Tsna, Kerensk-Chembar inversion is not precisely known, but it has been sug­ and Sura-Moksha swells; B ogdanov & Khain, 1981; E. gested that the local uplift started in the Coniacian-San- E. Milanovsky, 1987). Additional similar features, tonian, was more active in the Campanian, and that including the Soligalich, Sukhona and Vyatka swells, the main inversion phase with an amplitude of the uplift have also been described (Bogdanov & Khain, 1981; E. up to 2-3 km, took place in the Maastrichtian-early Pal­ E. Milanovsky, 1987; N ikishin et al., 1997a; U stinova aeocene. et al., 1998). On the East-European Craton (EEC), the The Pripyat-Dnieper-Donets (PDD) Basin is located main problem is to precisely date the deformation age of in the southern part of the EEC (Fig. 2). The history these intraplate compressional features, since most of of this basin is discussed in E. E. M ilanovsky (1987), them were deeply truncated during Cenozoic times, and N ikishin et al. (1996), Stovba et al. (1996) and Stovba were defonned both in pre-Cretaceous times and during & Stephenson (1999). The PDD Basin was a rift basin the Late Cenozoic Alpine orogeny. In any case, the in the Late Devonian and underwent post-rift subs­ European continent was affected by important phases of idence in the Carboniferous to Cenozoic times, com­ intraplate compression during Senonian to pre-Eocene plicated by numerous stress events. The PDD Basin times. has three segments: the Pripyat Basin, the Dnieper (or Dnieper-Donets) Basin, and the Donets Basin (or Don­ bass). Late Cretaceous to Palaeocene inversion structures of During the Early Cretaceous the Dnieper Basin in the the EEC and its margins Ukraine had a very low subsidence rate (Gerasimov et al., 1962; Kaptarenko-Chernousova, 1971; Ivannikov The Mid-Polish Trough is located along the western et al., 1991). During the Late Cretaceous the subsidence margin of the EEC (Fig. 2). For the history of this basin rate was higher; we can recognize two epochs of sub­ we follow data from Ziegler (1990), Kutek (1994), sidence: Cenomanian to Coniacian (relatively low sub­ Dadlez et a i, (1995) and E. Gazdzicka (personal com­ sidence rate with up to 280 meters sediment thickness), munication, 1998). The basin was formed as a rift belt and Santonian to Maastrichtian (relatively high subs­ during the Late -Early-Middle Triassic. During idence rate with 700 meters sediment thickness). As we will see below the Campanian-Maastrichtian (or even Cenomanian to Maastrichtian) subsidence took place in a regional compressional tectonic environment; and we suggest that the compressional stress caused the rapid subsidence [as was discussed for the Mid-Polish Fig. 1 — Tectonic scheme of Europe for the Senonian to Trough in D adlez et al., (1995)]. An erosional event Palaeocene time (mainly at the time close to the took place in the Dnieper Basin at the Maastrichtian/ К/T boundary). Map of Western Europe is prepared Palaeocene boundary: late Maastrichtian to early Danian after Z ie g l e r (1990), mainly. 1 - active orogen, 2 - deposits are missing (Morroz, 1970; Ivannikov et al., remnant deep-water mainly flysch basin, 3 - rem­ 1991), and late Danian(?)- Thanetian marine to continen­ nant deep-water back-arc basin, 4 - oceanic basin, 5 - Palaeocene intraplate sedimentary basin, 6 - Pa­ tal deposits cover Maastrichtian sediments (Morroz, laeocene eroded land in stable Europe, 7 - Palaeo­ 1970). cene subduction zone, 8 - Late Cretaceous subduc­ The Donbass in the Ukraine and Russia underwent a tion zone, 9 - thrust belt o f the Great Caucasus few inversion events between the Permian and earliest Basin, 10 - Senonian to Palaeocene inversional Jurassic times (E. E. M ilanovsky, 1987; Stephenson, swell, 11 - intracontinental topographic arch (pro­ 1997; N ikishin et al., 1998b; Stovba & Stephenson, posed gentle lithospheric anticline), 12 - intra- 1999). It was a relatively uplifted area mainly during continental topographic depression (proposed the Early Cretaceous (Gerasimov et al., 1962). For the gentle lithospheric syncline), 13 - Late Cretaceous Late Cretaceous history of the Donbass we used data magmatic arc. R - Rhodope Block, KB - Kirsehir from Gerasimov et al. (1962), N aidin (1960, 1969), Block, H - Hellenides, MTB - Menderes-Taurus B lank & Gorbenko (1968), Kaptarenko-Chernouso­ Block, SAS - Srednogorie-Strandzha Basin (hypo­ thetical), IAB - Izmir-Ankara Basin, MPT - Mid- va (1971), Savchinskaya (1982), E. E. Milanovsky Polish Trough, D - Dnieper Basin, SS - Simbirsk- (1987), Ivannikov et al. (1991) and Stovba et al. Saratov Basin, PC - Peri-Caspian Basin. Remnant (1996). During the Cenomanian to Coniacian the Don­ Tethys Ocean is shown not to scale. bass was part of a large, shallow water to continental 150 Anatoly M. NIKISHIN et al.

Fig. 2 — Location map for the main Late Cretaceous swells of the EEC and cross-sections for Fig. 3.1-1 location of the cross section. KL - Klaypeda-Lokno Swell, ОТ - Oka-Tsna Swell, SM - Sura-Moksha Swell, KCH - Kerensk-Chembar Swell, DM-S - Don-Medveditsa-Saratov Swell belt, M - Millerovo Swell, KYM - Konka-Yaly-Molochnaya Basin, PB - Pripyat Basin.

sedimentary basin with minor evidence of local uplifting Donbass (B lank & Gorbenko, 1968; E. E. Milanovsky, (in the Cenomanian). During the Santonian the Donbass 1987; Ivannikov et al., 1991; Stovba & Stephenson, started to uplift slowly: clastic sediments were supplied 1999). from the Donbass to the basin along the southern margin In the Pripyat Basin in Byelorussia only the youngest of the Donbass. An important change occurred in the Turonian sediments are found. Post-Turonian Late Cre­ Campanian (Naidin, 1960; Gerasimov et al., 1962; taceous marine sediments were eroded. Regional uplift of B lank & Gorbenko, 1968; Savchinskaya, 1982; Ivan­ the Pripyat Basin region took place at the К/T boundary- nikov et al., 1991): large scale clastic sediments were Palaeocene (Gerasimov et a i, 1962; Beniamovsky, per­ supplied by the uplifted Donbass both to the North and sonal communication, 1998). At these times, minor re­ the South of the Donbass into the carbonate platforms. verse faulting occurred along some former rift faults (R. The maximum of this clastic supply was during the Late Garetsky, personal communication, 1998). Campanian-Maastrichtian. Folding inside the Donbass The Konka-Yaly Basin is located inside the Ukrai­ and thrusting along its northern margins began at the nian Shield in the Ukraine to the South of the Donbass Santonian/Campanian boundary with a maximum at the (Fig. 2) (Gerasimov et al., 1962; Kaptarenko-Chernou- Cretaceous/Palaeocene transition; latest Maastrichtian sova, 1971; Ivannikov et al., 1991), and is oriented deposits are missing along the northern margin of the nearly orthogonally to the Donbass. The Molochnaya Santonian to Palaeocene tectonics 151

(or Melitopol) Basin lies directly to the South of the tory, starting in the Carboniferous but its youngest de­ Konka-Yaly Basin. The Konka-Yaly and Molochnaya formed strata are of Santonian age (Sazonov, 1953). An basins have a graben-like configuration (Kaptarenko- inversion phase took place possibly as early as the San- Chernousova, 1971; Chekunov et al., 1976); they were tonian/Campanian transition, but it was definitely not infilled by Cretaceous sediments (Chekunov et al., 1976; younger than pre-Neogene. Ivannikov et al., 1991). Using the data of Chekunov The Kerensk-Chembar Swell is located along the north­ et al. (1976) and Ivannikov et al. (1991) we can recog­ ern margin of a central segment of the Riphean Pachelma nise two main minor rift events: an Albian (or Aptian- rifted basin. The Sura-Moksha Swell is parallel to the Albian) event with a subsidence close to 100 meters, Kerensk-Chembar Swell 70-100 km to the north, and it and a Santonian-Maastrichtian event with a subsidence is not connected with a rifted basin (E. V. Milanovsky, close to 200-350 meters. During these tectonic events 1940; B ogdanov & Khain, 1981; E. E. Milanovsky, mainly Precambrian faults were reactivated (Kapta- 1987) (Fig. 3). The swells have a polyphase deformation renko-Chernousova, 1971; Chekunov et al., 1976). history. Late Cretaceous sediments are the youngest de­ The Aptian-Albian tension event could have been formed strata. The available data show deformations at connected with a rifting related with the Black Sea pre-Santonian, and also at the Santonian/Campanian and Basin opening (N ikishin et al., 1998b). We assume that Campanian/Maastrichtian boundaries; they lasted until during the Santonian-Maastrichtian times the Konka- the Palaeocene (Chibrikova, 1951; Senchenko, 1951; Yaly-Molochnaya Basin was a graben-like tension struc­ Sazonov, 1953; Khokhlov, 1955; D ashevsky, 1996). ture of impactogen syn-compressional origin: it origin­ The main unconformity in the Sura-Moksha Swell is near ated mainly along the axis of Late Cretaceous compres- the Santonian/Campanian boundary (A. Olferiev, perso­ sional stress, coinciding with the time of the Donbass nal communication, 1998). uplift. The Vyatka Swell is located above the Vyatka (or The Rostov High is located just to the south of the Kirov, or Kazhim) Riphean and Devonian rifted basin Donbass along the southern margin of the EEC. In this in the eastern part o f the EEC (E. V. Milanovsky, 1940; High the Early Eocene marine sediments cover gently B ogdanov & Khain, 1981; E. E. M ilanovsky, 1987). folded Cretaceous strata including those of Maastrichtian The swell had a polyphase inversion history, but age (U lanovskaya, 1988). The Rostov High was part of Albian strata are the youngest deformed ones. The defor­ the Donbass fold zone at the КУТ boundary. mations occurred in post-Albian times (A rkhipov & The Don-Medveditsa-Saratov Swell belt is located V ysotsky, 1996), and latest Cretaceous to Palaeocene along the boundary between the Peri-Caspian Basin and ages are most likely. The Sukhona Swell is located the Russian Platform (Voronezh High), above the Devon­ above the Soligalich aulacogen in the Moscow Basin ian Don-Medveditsa rifted basin (E. V. Milanovsky, (B ogdanov & Khain, 1981). The youngest deformed 1940; Bogdanov & Khain, 1981; E. E. Milanovsky, strata are o f Albian age. And we assume as we did for 1987). The cross-section of this swell is shown on Figure the Vyatka Swell that the inversion occurred near the K/T 3. The swell underwent many inversion events since boundary. the Carboniferous. An important inversion took place The Klaypeda - Lokno Swell belt trends in the Pre- during the Late Cretaceous. Data summarised in Morro- Baltic region almost from Klaypeda (Lithuania), along zov (1962), Senyukov (1949), Senchenko (1951) and the Lithuanian-Latvian boundary to the town of Pskov in Ivanov (1995) show that uplift inversion events took Russia (Bogdanov & Khain, 1981). This swell belt had a place in mid-Santonian, and at the Santonian-Campa- complicated inversion history. The Cretaceous strata are nian, Campanian/Maastrichtian, Maastrichtian/Danian also deformed (Fig. 3). The swell belt is located not far boundaries. Sedimentological data show that in Campa- from the Mid-Polish Trough and we suggest a Late nian-Maastrichtian-Danian the Don-Medveditsa Swell Cretaceous to Palaeocene age for the inversion. New data was a source region for clastic sediments to the South show that compressional events took place in Lithuania at and the East o f the swell (Morrozov, 1962), which the Santonian/Campanian and Campanian/Maastrichtian means that the swell was an uplifted belt. Late Palaeocene boundaries at least (Sliaupa, 1997, and personal commu­ deposits cover deformed Cretaceous strata (Ivanov, nication, 1999). 1995). The Timan Swell underwent many inversion events The Millerovo Swell is parallel to the Don-Medveditsa in pre-Cretaceous times (E. E. M ilanovsky, 1987). It Swell, 200 km to the west. It is a local anticline-like did not generally separate Early Cretaceous basins (E. structure with an uplift of Late Cretaceous strata up to Baraboshkin, personal communication, 1998) and was 40-50 meters (Morrozov, 1962). It could have the same uplifted in post-early Cretaceous epochs. It is not ex­ age as the Late Cretaceous deformations of the Don- cluded that an inversion event took place at the Creta­ Medveditsa Swell. ceous/Palaeogene boundary because some data show that The Oka-Tsna Swell belt is located above the northern compression deformations in the Polar Urals and Pay- part and northern margin of the Riphean Pachelma aula- Khoy lasted until the end of the Cretaceous (Y udin, cogen (rifted basin) in its northern prolongation (E. V. 1994). Milanovsky, 1940; Bogdanov & Khain, 1981; E. E. The palaeogeography of the Urals is badly known for Milanovsky, 1987) (Fig. 3). The swell had a long his­ the time of the К/T boundary. Data for the Polar Urals 152 Anatoly M. NIKISHIN et al. show (Oreshkina et al., 1998) that Coniacian to Campa­ 500-600 km which is typical for intracratonic lithospheric nian shallow-water marine deposits are located along the folding (buckling) (Ziegler et al., 1995; N ikishin et al., western margin of the recent Urals and that they were 1997b) formed in the former West Siberia Basin united with the Pechora Basin. Campanian deposits are covered with mid-Palaeocene marine sediments. An uplift of the Polar Main types of the compression-related tectonics inside Urals could be suggested for the К/T transition. Detailed the EEC facial analysis demonstrates that the southern Urals (the Mugodzhary) were an uplifted area during Santonian to As discussed above, the following compressional-related Danian (Naidin & Kotelnikov, 1998): sandstones and structures can be recognized inside the EEC from the gravelites are found between Mugodzhary and the carbo­ Senonian to the Palaeocene: gentle lithosphere folding nate platform of the Peri-Caspian Basin. Generally we (buckling), origin of inversion structures, syn-compres- can assume that the Uralian foldbelt underwent uplift sional rapid subsidence of former rifted basins, accelera­ events near the К/T boundary, but an uplift event also tion of salt diapirism, compression-related (impactogen) took place at the Santonian/Campanian boundary (Naidin rifting. & Kotelnikov, 1998). The Peri-Caspian Basin has numerous salt diapirs containing Kungurian salts (B ogdanov & Khain, 1981; Late Cretaceous to Palaeocene tectonics in the Scy­ E. E. M ilanovsky, 1987). Uplift of the diapirs oc­ thian Platform-Caucasus-Black Sea-Pontides-Moe- curred at irregular time intervals. Detailed data on the sian area distribution of depositional thicknesses, facies and fossils show (B eniamovsky et al., 1973) that a rapid uplift of The Scythian Platform is located to the South of the EEC. the diapirs took place in the Senonian to Palaeocene, Seismic profiling data show that minor inversion features mainly during regressive phases: at the Santonian/Cam­ developed on the Scythian Platform at the Cretaceous/ panian, the Campanian /Maastrichtian, the Maastrichtian/ Palaeocene boundary (N ikishin et al., 1998a, b). In the Danian, the Danian/Thanetian, and the Thanetian/Ypre- Crimea, minor unconformities are evident at an intra- sian boundaries and also inside the Late Campanian; a Santonian level, at the Maastrichtian/Danian boundary maximum diapiric uplift took place at the Danian/Tha­ as well as at the transition from the Thanetian to the netian boundary. We can assume that the uplift events Danian and Ypresian to Thanetian (Muratov, 1969; of the diapirs coincided with regional compressional Mazarovich & MiLEEV, 1989a, b). Relatively, the pre- events because similar compression events occur in the Ypresian unconformity is the most important. The devel­ EEC. opment of these unconformities is probably related to compression phases (N ikishin et al., 1998b). Field data

Late Cretaceous to Palaeocene gentle lithosphere folds in the EEC Figs 3a, 3b and 3c — Cross sections for some swells which During the Senonian to Palaeocene times the EEC under­ were active during Senonian to Palaeo­ went long-wave deformations of its topography (Fig. 1). cene times. Location of the cross-sec­ This can be seen mainly from palaeogeographical maps tions is shown on Fig. 2. Abbrevia­ of N aidin in Gerasimov et al. (1962) and from our own tions: Q - Quaternary, Ne - Neogene, more recent data. During Cenomanian to Santonian times Pa - Palaeogene, К - Cretaceous, Ku - nearly the complete southern part of the EEC was a Upper Cretaceous, K1 - Lower Creta­ ceous, Cmp - Campanian, San - Santo­ marine sedimentary basin; on the other hand from the nian, Con - Coniacian, Tur - Turanian, Campanian to the Palaeocene an arching of the topogra­ Cen - Cenomanian, Alb - Albian, Apt - phy took place. Three main arches began to rise - the Aptian, Brm - Barremian, Nc - Neoco- Ukrainian Shield together with the Byelorussian High mian, Vlg-Brm - Valanginian-Barre- (the Ukrainian-Byelorussian High), the Voronezh High, mian, Ju - Upper Jurassic, Jm - Middle and the Kama High between the Simbirsk-Saratov and Jurassic, J1 - Lower Jurassic, Civ - Peri-Caspian basins. These highs were separated by sub­ Callovian, Bth - Bathonian, Baj - Ba- sidence belts: the Dnieper Basin between the Ukrainian- jocian, Tr - Triassic, T1 - Lower Trias- Byelorussian and Voronezh highs, and the Simbirsk-Sa- sic, Tat - Tatarian, P - Permian, Pu - ratov Basin between the Voronezh and Kama highs. The Upper Permian, PI - Lower Permian, С - Carboniferous, Cu - Upper Carboni­ amplitude of the arching was not more than 150-300 ferous, Cl - Lower Carboniferous, Fam meters (today the top of the Cenomanian deposits is at - Famennian, Frs - Frasnian, Du - Up­ the topographical level +220 meters on the Voronezh per Devonian, Dm - Middle Devonian, High, but the Dnieper Basin is at -500 to - 550 meters Ou+m - Middle and Upper , (Blank et al., 1992)). The distance between the axes of Cmb - , Vu - Upper Vendian, the arches (proposed lithospheric anticlines) is close to R - Riphean. Santonian to Palaeocene tectonics 153

Oka-Tsna Swell ( SAZONOV, 1953) (2 - 2)

Oka-Tsna swell (Nikitin S. N ., 1985, unpublished) (2a - 2a) metres 0 -

- 100 -

- 200 -

-3 0 0 - — 300

-4 0 0 4 h-400

Sura-Mokcha Swell (AFANASIEV, 1970) (5 - 5)

15 0 15 30 km I____I____ I____ I

Fig. 3a 154 Anatoly M. NIKISHIN et al.

Telshav - Loknov Swell ( GEISLER , 1956) (4 - 4)

Sukhona Swell ( Bembinova, 1998, unpublished ) (6 - 6)

Kcrensk-Chcmbar Swell ( MUC1ŒNKO, 1%3)(3 - 3)

20 0 20 40 60 km ■ » ■ * *

Fig. 3b Santonian to Palaeocene tectonics 155

îlovlinski height of Don-Medvcditsa swell (SMIRNOV, 1962) (1 - 1)

Don-Medveditza Swell (Kolosov et al, 1973, unpublished) (la - la) KU, KL Ku _____A' * metres ------— О metres

-4 5 0 0 10 12 3 4 5km I__I__I__I__ I__I__I

Shorokopolski swell of the Kercnsk-Tchembar system (Dashevskii et al. , 1996. unpublished) (За - 3a)

г-200 metres

Fig. 3c 156 Anatoly M. NIKISHIN et al. for the north-western part of the Alpine Great Caucasus Late Cretaceous to Palaeocene inversion structures in (L. Rastsvetaev, 1998, personal communication) show the Africa-Arabian and other areas that possible compression tectonism took place at the Maastrichtian to Palaeocene transition, because there Guiraud & Bos worth (1997) discussed inversion struc­ are unconformities below the Eocene and inside(?) the tures in regions of Africa and Arabia. They recognised Maastrichtian, and furthermore there are facial changes two main compressional events: in the Santonian (or in the Maastrichtian deposits. I n the north-eastern Cau­ Santonian/Campanian boundary) and at the Cretaceous/ casus in Dagestan gravitational olistostromes origin­ Palaeocene boundary. Close to the Santonian/Campanian ated along the northern margin of the Great Caucasus boundary the inversion tectonics took place along the Trough in Santonian to M aastrichtian times (M o s k v i n , northern margin of the Africa-Arabia continent: Tellian 1962; M a r k u s & S harafutdinov , 1989); their genesis Atlas, High Atlas, Tunisia, Egypt, Palmirides, Oman could be connected with thrusting events and local inver­ (start of emplacement of ophiolites); and also in rifted sion tectonics along the deep-water basin northern mar­ basins inside the continent - Benue, Termit, S. Chad, S. gin. Sudan, Blue Nile Rift, Anza Rift, Lugh Mandera. At the Data on the Pontides (O k a y & S a h i n t u r k , 1997; Cretaceous/Palaeocene boundary, main inversion tec­ U s t a o m e r & R o b e r t s o n , 1997; Y i l m a z et al., 1997) tonics took place along the northern margin of the Afri­ show that collision tectonics occurred in Maastrich- ca-Arabia continent: Egypt, Palmirides, Oman (ophio­ tian(?)-Palaeocene-pre-Lutetian times. The maximum lites). Generally the timing of inversion tectonic events collision took place in the Early Eocene, but the tim­ in the Africa-Arabia continent and in Europe was very ing of these collision events is badly known. It was similar (Ziegler, 1990; Guiraud & Bos worth, 1997) the collision of the Pontides and of the Gondwana-de- but better stratigraphie control is needed for more precise rived Kirsehir block-Menderes-Taurus Platform and the conclusions. Numerous data show that inversion tectonics main closing of the Ankara-Erzincan suture (ophiolitic occurred also in the Tethys belt during the Senonian to melange) (O k a y & S a h i n t u r k , 1997; Y i l m a z et al., Palaeocene (Dercourt et al., 1993; Khain & Balu- 1997). k h o v s k y , 1993). Data on the Lesser Caucasus region show that the Recent investigations summarised in K h a in & B a l u - Ankara-Erzincan ophiolite suture of Turkey reaches the k h o v s k y , (1993) show that near the К/T boundary oro­ Sevan-Akera suture in Armenia-Azerbaijan (L l o r d k i p a - geny affected many areas: the Laramide orogeny was n i d z e , 1980; B o g d a n o v & K h a i n , 1981; M o n in & Zo- very important f.i. in Northern and Southern America n e n s h a i n , 1987; E. E. M i l a n o v s k y , 1991). The geologi­ and in the Asian Far East. cal structure of the region (K m p p e r & S o k o l o v , 1974; E. E. M i l a n o v s k y , 1991; G a s a n o v , 1996) shows that colli­ sion of the European continent with the South Armenian Origin of the Late Cretaceous to Palaeocene compres­ (Nakhichevan) Gondwana-derived terrane occurred in sion stress in Eastern Europe Late Cretaceous times; collision tectonics started in the Cenomanian-Coniacian and ended in mid-Santonian. A The origin of the Late Cretaceous to Palaeocene compres­ remnant flysch basin existed along the suture at the sion stress is a controversial problem. These important Cretaceous/Palaeocene transition. phases of intraplate compression of Senonian to Palaeo­ Data on the Bulgarian shelf for the Balkan thrust cene age affected both the northern and southern Peri- wedge show (S i n c l a i r et al., 1997) that according to Tethyan continents and were probably controlled by the offshore seismic stratigraphy the first evidence of short­ accelerated counter-clockwise rotational convergence of ening was the reactivation of deep-level normal faults at Africa-Arabia with Eurasia (L iv e r m o r e & S m it h , 1985; the end of the Cretaceous. A regional uplift event took W e s t p h a l et al., 1986; L e P ic h o n et al., 1988). The place, certainly at least in the eastern part of the Moesian Santonian/Campanian boundary coincided almost with Platform near the Cretaceous/Palaeogene boundary a change of motion of Africa relative to Europe: oblique (mainly inside the Danian) (H a r b u r g & C o h e n , 1997). convergency was followed by more direct collision It could have occurred in connection with a compression (G u i r a u d & B o s w o r t h , 1997) with f.i. changes in sub­ phase. duction systems. We suggest three main reasons for such Data on the Scythian-Caucasus-Pontides-Moesian re­ inversion tectonics: global plate kinematic reorganisation gion demonstrate that Subhercynian and Laramide inver­ in the Senonian-Palaeocene, collisional tectonics along sion tectonics in Europe were probably connected with the Tethyan margins, and changes in subduction systems collision tectonics and orogeny along the southern mar­ after accretions of new terranes. gins of the European continent (Z i e g l e r et al., 1998). We can add as further evidence that the inner Dinarides- Hellenides and Taurides started to collide with the Eur­ Latest Cretaceous-Palaeocene global orogeny and bio­ opean margin during the Senonian. With the final closure logical crisis at the К/T boundary of the Vardar Ocean, this collision became important during Maastrichtian-Palaeocene times (S t a m p f l i et al., New data show that the Laramide orogeny was very 1998). widely spread on the Earth. This led to changes in global Santonian to Palaeocene tectonics 157 topographical distribution of continents and oceans and basins; syn-compressional rapid subsidence of former f.i. also to changes in oceanic water currents and so on. In rifted basins; acceleration of salt diapirism; compres- total, this could have led to a global environmental crisis. sion-related (impactogen) rifting. This could have been one of the main reasons for the 3. The compression tectonics inside the EEC coincide biological crisis during the latest Cretaceous to Palaeo­ with the orogenic epoch along the Tethyan belt. cene with a climax at the К/T boundary.

Conclusions Acknowledgements

We are very grateful to Prof. D. P. Naidin for numerous discussions and 1. Senonian to Palaeocene compressional polyphase re­ help in our research. We would also like to thank E. Milanovsky, V. gional stresses affected the East European Craton as well Khain, A. Alekseev, Ludmila Kopaevich, E. Baraboshkin, S. Bolotov, as the whole European palaeocontinent. This led to pa- A. Ershov, V. Beniamovsky, A. Olferiev, V. Dashevsky, L. Rastsve- laeogeographical changes and compressional tectonics taev, A. Morozov, Annie Dhondt, S. Cloetingh, R. Guiraud, Marie- Françoise Brunet, J. Dercourt, S. Stovba, S. Sliaupa and R. Garetsky for inside the EEC. fruitful discussions and support. This work was sponsored by DWTC 2. We can recognise the following types of compres­ grant, INTAS (grant 97-0743) and Peri-Tethys Programme. The prin­ sional tectonics inside the EEC: gentle lithospheric fold­ cipal investigators were funded by the Russian Geological Survey and RFFI (RBFI). ing (buckling) with wave-length around 500-600 km; This is Netherlands Research School of Sedimentary Geology Con­ origin of inversion structures mainly above former rifted tribution No. 99-304.

References

A f a n a s ie v , T.P. (ed.), 1970. Hydrogeology of the USSR, Ne- the Mid-Polish Trough: modelling implications and signifi­ dra, Moscow, vol. 13, 800 pp. (in Russian). cance for central European geology. Tectonophysics, 252:

A rkhangelsky , A .D ., 1922. A review of the geological struc­ 179-195. ture of the European part of Russia, vol. 2, Central Russia. PG, D e r c o u r t , J., Ricou, L.E. & V r ie l y n c k , B. (eds.) 1993. Atlas Petrograd, 467 pp. (in Russian). Tethys, paleoenvironmental maps. Gauthier-Villars, Paris, 307

A r k h ip o v , Y u .V . , V y s o t s k y , K .A . & K a l in in , A.T., 1996. pp. About deformation of platform cover of the Volga-Ural Region. G a s a n o v , T. Ab., 1996. Geodynamics of ophiolites in the Geotektonika, 5: 55-66 (in Russian). structure of the Lesser Caucasus and Iran. Baku, Elm, 454

B e n ia m o v s k y , V.N., V olchegursky , L.F., Z h u r a v l e v , V .S ., pp. (in Russian). K o b l o v a , F.P., R o m a s h e v , A.A., 1973. Peculiarities of tec­ G e is l e r , A.M., 1956. New data on stratigraphy and tectonics of tonic movements in the eastern part of the Peri-Caspian Basin the Lower Palaeozoic of the North-Western part o f the Russian during Late Cretaceous times. Byulleten Moskovskogo Ob- Platform. In: Data on geology of the European part of the shchestva Ispytatelei Prirody, Geologia, 48, 3: 40-54. (in Rus­ USSR. V s e g e i, Gosgeoltehizdat, Moscow, p. 174-185. sian). G e r a s im o v , P.A., M ig a c h e v a , E.E., N a id in , D.P. & S t e r l in , B l a n k , М., Y a . & G o r b e n k o , V.F., 1968. Stratigraphy of the B.P., 1962. Jurassic and Cretaceous deposits of the Russian Upper Cretaceous deposits of the northern Donbass. In: Materi­ Platform. Moscow University Press, 196 pp. (in Russian). als on the geology of the Donets Basin. Moscow, Nedra, p. 34- G u ir a u d , R . & B o s w o r t h , W., 1997. Senonian basin inversion 47. (in Russian). and rejuvenation of rifting in Africa and Arabia: synthesis and B l a n k , М., Y a ., N a id in , D.P. & O l f e r ie v , A.G., 1992. Relief implications to plate-scale tectonics. Tectonophysics, 282: 39- of Cenomanian root in Dniepr-Donets Trough, Voronezh Ante- 82. clyse and adjacent structures of the East-European Platform. H a r b u r y , N. & C o h e n , М., 1997. Sedimentary history of the Byulleten Moskovskogo Obshchestva Ispytatelei Prirody, Geo­ Late Jurassic-Paleogene of Northeast Bulgaria and the Bulgar­ logia, 67, 6: 43-47. (in Russian). ian Sea. In: A.G. R o b in s o n (ed.), Regional and Petroleum B o g d a n o v , A. A. & K h a in , V.E., 1981. Tectonic map of Europe Geology of the Black Sea and surrounding areas. American and adjacent areas, 1: 2.500.000, 2nd Ed. International Geolo­ Association of Petroleum Geologists, Memoir, 68: 129-168. gical Congress, Commission of the Geological Map of the Ivannikov, A.V., L ip n ik , E.S., Plotnikova, L.F., B l a n k , M . World, Subcommission of the Tectonic Map of the World. Ya., Gavrilishin, V.I., Pasternak, S.I., Nerodenko, V.M., Academy of Sciences of the USSR. Konashov, V.G., M atyushonok, V.A., Goncharuk, L.F., C h e k u n o v , A .V ., V e s e l o v , A .A . & G l ik m a n , A.I., 1976. Geo­ Gubkina, T.B., Rozumeyko, S.V., K arelov, M.I., & Lyulie- logical structure and history of the Peri-Black Sea basin. Kiev, v a , S.A., 1991. Regional stratigraphical scheme o f the Late Naukova Dumka, 164 pp. (in Russian). Cretaceous deposits of the platform region of the Ukraine. C h ib r ik o v a , S.V., 1951. To the problem of connection of the Institute of the Geological Sciences (preprint), K ie v , 31 pp. (in Kerensk-Chembar and Saratov dislocations. Scientific Notes of Russian).

Saratov University, Geological Issue, 23; 36-46. (in Russian). K a p t a r e n k o -C h e r n o u s o v a , O.K. (ed.), 1971. Stratigraphy of D a d l e z , R., N a r k je w ic z , М., S t e p h e n s o n , R.A., V is s e r , the Ukraine. Vol. 8, Cretaceous. Naukova Dumka, Kiev, 320 M.T.M., & V a n W e e s , J.-D ., 1995. Tectonic evolution of pp. (in Ukrainian). 158 Anatoly M. NIKISHIN et al.

K h a in , V.E. & B a l u k h o v s k y , A.N., 1993. Historical Geotec- of the Russian Platform. Acta Universitatis Stockholmiensis. tonics. Mesozoic and Cenozoic. INIAR, Moscow, 451 pp. (in Stockholm Contributions in Geology, 6, 4: 39-61.

Russian). N a id in , D.P. & K o t e l n ik o v , D.D., 1998. Palaeogeographical K h o k h l o v , P.S., 1955. Tectonics and history o f development of environments of deposition and clay minerals in the Lower the Kerensk-Chembar and Sura-Moksha dislocations. Moscow, Campanian of Aktyubinsk Pre-Mugodzhary region. Izvestia Gostoptehizdat, 250 pp. (in Russian). Vysshikh Uchebnykh Zavedeniy, Geologia i Razvedka, 4: 23- K n ip p e r , A.L., & S o k o l o v , S .D ., 1974. Pre-Senonian tectonic 34. (in Russian). thrusts of the Lesser Caucasus. Geotektonika, 6: 74-80. (in Najdin, D.P., 1969. Biostratigraphie und Palàogeographie der Russian). Oberen Kreide der Russischen Tafel. Geologisches Jahrbuch, K utek, J., 1994. Jurassic tectonic events in south-eastern cra- 87: 157-186. tonic Poland. Acta Geologica Polonica, 44, 3-4: 167-221. N ik is h in , A.M., Z ie g l e r , P.A., C l o e t in g h , S., S t e p h e n s o n , R., L e P ichon, X ., B ergerat, F. & R oulet, M-J., 1988. Plate F u r n e , A .V ., F o k in , P.A., E r s h o v , A .V ., B o l o t o v , S .N ., K o r- kinematics and tectonics leading to the Alpine belt formation: o t a e v , M .V ., A l e k s e e v , A.S., G o r b a c h e v , V.I., S h ip il o v , a new analysis. Geological Society of America. Special Paper, E .V ., L a n k r e u e r , A ., B e m b in o v a , E . Y u , & S h a l im o v , I . V . , 218: 11-131. 1996. Late Precambrian to Triassic history of the E a st-E u r-

L iv e r m o r e , R.A. & S m it h , A.G., 1995. Some boundary condi­ opean Craton: dynamics of sedimentary basin evolution. Tec- tions for the evolution of the Mediterranean Region. In: D.J. tonophysics, 268: 23-63. S t a n l e y & F-C. W e z e l (eds.), Geological Evolution of the N ik is h in , A .M ., B o l o t o v , S.N., F o k in , P.A., N a z a r e v ic h , Mediterranean Basin. Springer-Verlag, New York, Berlin, Hei­ B .P ., P a n o v , D.I., A l e k s e e v , A.S., B a r a b o s h k in , E . Y u , E r ­ delberg, Tokyo, pp. 83-98. s h o v , A .V ., K o p a e v ic h , L.F., K o r o t a e v , M .V ., U s t in o v a ,

L lordkipanidze , M .B . 1980. Alpine volcanism and geody­ M.A., B r u n e t , M.-F., C l o e t in g h , S . & S t e p h e n s o n , R.A., namics of the central segment o f the Mediterranean fold belt. 1997a. Devonian to Cenozoic geological history and d y n a m ic s Tbilisi, Metsniereba, 162 pp. (in Russian). of Scythian Platform-Donets Basin-South Russian Platform r e g io n . In: Intracratonic Rifting and Inversion. EUROPROBE M a r k u s , M .A . & S harafutdinov , V.F., 1989. Oligocene olis- GeoRifit Workshop. ETH Zurich, O c to b e r 16-19, 1997, p. 9-11. tostrome of the Eastern Caucasus and late A lp in e tectonics. Geotektonika, 4: 87-98. (in Russian). N ik is h in , A.M., B r u n e t , M.-F., C l o e t in g h , S. & E r s h o v , A.V., 1997b. Northern Peri-Tethyan Cenozoic intraplate defor­ M a z a r o v ic h , O.A. & M il e e v , V.S. (eds.), 1989 a. Geological structure of the Kacha Upland o f Mountain Crimea. Stratigra­ mations: influence of the Tethyan collision belt on the Eurasian phy of the Mesozoic. Moscow, Moscow State University Press, continent from Paris to Tian-Shan. Comptes-Rendus Académie 168 pp. (in Russian). Sciences Paris, 324, (II a): 49-57. ikishin loetingh olotov araboshkin M a z a r o v ic i-i, O.A. & M il e e v , V.S. (eds.), 1989 b. Geological N , A. М., C , S., B , S.N., B , structure o f the Kacha Upland of Mountain Crimea. Stratigra­ E. Y., K opaevich, L.F., N azarjevich, B.P., Panov, D.I., B ru­ phy of the Cenozoic, magmatism and metasomatism. Moscow, net, M-F., E rshov, A.V., Il ’Ina, V.V., K osova S. S. & Ste­ Moscow State University Press. 160 pp. (in Russian). phenson, R.A., 1998a. Scythian platform: chronostratigraphy and polyphase stages of tectonic history. In: S. Crasquin- M il a n o v s k y , E.V., 1940. Review of the geology of the Middle Soleau & Е. B arrier (eds.), Peri-Tethys Memoir 3. Stratigra­ and Lower Pre-Volga region. Moscow-Leningrad, State Pub­ phy and Evolution of Peri-Tethyan Platforms. Mémoires Mu­ lishing House of Oil Literature, 301 pp. (in Russian). séum national d ’Histoire naturelle, Paris, 177: 151-162. M il a n o v s k y , E.E., 1987. Geology of the USSR. Part 1. Mos­ N ikishin, А. М., Cloetingh, S, B runet, M. F., Stephenson, R., cow University Press. 416 pp. (in Russian). B olotov, S.N. & E rshov, A.V., 1998b. Scythian Platform and M il a n o v s k y , E.E., 1991. Geology of the USSR. Part 3. Mos­ Black Sea region: Mesozoic-Cenozoic tectonic and dynamics. cow, Moscow University Press. 272 pp. (in Russian). In: S. C rasquin-S oleau & E. B arrier (eds.), Peri-Tethys M o r r o z , S.A., 1970. Palaeocene of the Dnieper-Donets Basin. Memoir 3. Stratigraphy and Evolution o f Peri-Tethyan Plat­ Kiev University Press, Kiev, 190 pp. (in Russian). forms. Mémoires Muséum national d ’Histoire naturelle, Paris, M orrozov, N.S., 1962. Upper Cretaceous deposits between the 177: 163-176.

Don river and the Sevemyi Donets river, and southern part of O k a y , A.I. & S a h in t u r k , O ., 1997. Geology of the Eastern the Volga-Don area. Saratov University Press, 222 pp. (in Pontides. In: A.G. R o b in s o n (ed.), Regional and petroleum Russian). geology o f the Black Sea and surrounding region, American M oskvin, М. М., 1962. Upper Cretaceous sediments o f the Association of Petroleum Geologists, Memoir, 68: 291-311. North Caucasus and Subcaucasia. Acta Geologica Polonica, 12, O r e s h k in a , T.V., A l e k s e e v , A.S. & S m ir n o v a , S .B ., 1998. 2: 159-199.(in Russian). Cretaceous-Palaeogene deposits of the Polar Pre-Uralians: M o n in , A.S. & Z o n e n s h a in , L.P., 1987 (eds.). Geological biostratigraphical and palaeogeographical aspects. In: A . K nip­ History of the Tethys Ocean. Moscow. Academy of Sciences p e r , S. K u r e n k o v , & M. S e m ik h a t o v (eds.), Urals: fundamen­ of the USSR, P.P. Shirshov Institute of Oceanology, 155 pp. (in tal problems of geodynamics and stratigraphy. Moscow, Nauka, Russian). p. 183-192. (in Russian).

M u s h e n k o , A.I., 1963. About some peculiarities of the devel­ S a z o n o v , N.T., 1951. Tectonic structure of Zhiguli and Bor- opment of structures of the Russian Platform. In: Data on linsk zons o f dislocations. VNIGRI, Leningrad, vol. 2, p. 19-39. tectonics of the Lower Pre-Volga Region. Nauka, Moscow, (in Russian). p. 147-161. S a z o n o v , N.T., 1953. Tectonic structure of Ryazan and Penza M u r a t o v , M.V. (ed.), 1969. Geology of the USSR, Volume 8, regions and Mordovia ASSSR. In: Stratigraphy and Tectonics Crimea. Part 1, Geology. Moscow, Nedra, 576 pp. (in Russian). of the Russian Platform: Geochemistry and Regional Geology. N a id in , D.P., 1960. The stratigraphy o f the Upper Cretaceous Vol. 3, p. 65-84. (in Russian). Santonian to Palaeocene tectonics 159

Savchinskaya, O.V., 1982. Life conditions of the Late Cretac­ Conference on Plate Tectonics (Moscow, February 17-20, eous fauna of the Donets Basin. Moscow, Nauka, 132 pp. (in 1998). Programme and Abstracts. Moscow, P.P. Shirshov In­ Russian). stitute of Oceanology, p. 134-135.

Shatsky, N.S., 1964. Selected papers. Vol.2. Nauka, Moscow, V eselovskaya , M.M., 1960. Issa deep well. VNIGRI, Lenin­ 528 pp. (in Russian). grad, vol. 26. p. 176-226. (in Russian).

Senchenko G.S., 1951. About some peculiarities in changes of W estph a l, М., B a zh en o v , M .L ., L a u e r , J-Р., P echersky, composition and thicknesses of Upper Cretaceous deposits in D.M. & S ib u et, J.C ., 1986. Paleomagnetic implications on the eastern part of the Kerensk-Chembar Dislocations. Scien­ the evolution o f the Tethys Belt from the Atlantic Ocean to tific Notes of Saratov University, Geological Issue, 23: 55-63. Pamir since Trias. Tectonophysics, 123: 37-82. (in Russian). Y ilm a z, Y ., T u ysu r, 0 ., Y ig itb a s, E., C a n G en c , S. & S en - Senyukov, V.M. & B a k iro v , A.A., 1949. The tasks o f the oil GOR, А.М.С., 1997. Geology and tectonic evolution of the geology in the solving of problems o f oil and gas potential of Pontides. In: A.G. R o binson (ed.), Regional and petroleum the Russian Platform. Moscow, V N IG R I, vol. 1, p. 5-31. (in geology of the Black Sea and surrounding region. American Russian). Association Petroleum Geologists, Memoir, 68: 183-226.

Sinclair, H.D., J u ran o v , S.G ., G eo rg iev , G ., B y rn e, P. & Y u d in , V.V., 1994. Orogenes of the Northern Urals and Pay- M ountney, N.P., 1997. The Balkan thrust wedge and foreland Khoy. Ekaterinburg, Nauka, 284 pp. (in Russian). basin of Eastern Bulgaria: structural and stratigraphie develop­ Z ie g l e r , P.A., 1990. Geological Atlas of Western and Central ment. In: A.G. R o binson (ed.), Regional and Petroleum Geol­ Europe - 2nd Ed., Shell Internationale Petroleum Maatschap- ogy of the Black Sea and surrounding areas. American Associa­ pij., Den Haag, Geological Society. Publishing House, Bath, tion o f Petroleum Geologists, Memoir, 68: 91-114. 239 p. Sliaupa, S., 1997. Tectonics of South Lithuania. PhD Thesis Z ieg le r , P.A., C lo eting h , S. & V a n W ees, J-D ., 1995. D y­ synopsis. Vilnius, 45 pp. (in Russian). namics of intra-plate compressional deformations: the Alpine Stam pfli, G.M., M o sa r, J., D e B ono, A. & V a v a sis, I., 1998 foreland and other examples. Tectonophysics, 252: 7-59. (in press). Late Paleozoic, Early Mesozoic plate tectonics of the Z ieg le r , P.A., V an W e e s, J-D. & C lo etin g h , S., 1998. Me­ Western Tethys. Bulletin of the Geological Society of Greece. chanical controls on collision-related compressional intraplate- Stephenson, R.A., 1997. GeoRift project DOBRE: Late Pa­ deformation. Tectonophysics, 300: 103-129. laeozoic peri-cratonic basin development in Ukraine and Rus­ sia. In: Intracratonic Rifting and Inversion. EUROPROBE Anatoly M. N ik is h in and Maria A. U s t in o v a GeoRift Workshop. ETH Zurich, October 16-19, 1997, p. 1-3. Geological Faculty, Sto v ba, S. M . & St e ph en so n , R. A., 1999. The Donbass Moscow State University, Vorobiovy Gory, Foldbelt: its relationship with the uninverted Donets segment 119899, Moscow, Russia of the Dniepr-Donets Basin, Ukraine. Tectonophysics, in press. [nikishin@ geol.msu.ru] Sto v ba , S.N., S teph en son, R.A. & Kjv s h ik , М., 1996. S truc­ tural features and evolution of the Dnieper-Donets Basin, Uk­ Peter A. Z ieg ler raine, from regional seismic reflection profiles. Tectonophysics, Geological-Palaeontological Institute, 268: 127-147. University of Basel, U lanovskaya, T.E., 1988. Paleogeographic reconstruction Bernoullistr. 32, based on palaeoecology and its applications to palaeotectonic CH-4065 Basel, Switzerland analysis (on the example of the Eocene o f the Azov-Kuban Depression). Izvestiya Vysshikh Uchebnykh Zavedeniy. Geolo- Randell A. Steph en son gia i razvedka, 1:17-25. (in Russian). Institute of Earth Sciences, Vrije Universiteit, U sta om er, T., & R obertso n, A., 1997. Tectonic-sedimentary De Boelelaan 1085, evolution of the North Tethyan margin in the Central Pontides NL-1081 NV Amsterdam, Netherlands of Northern Turkey. In: A.G. R o binson (ed.), Regional and petroleum geology of the Black Sea and surrounding region. American Association Petroleum Geologists, Memoir, 68: 255- 290.

U stinova, M .A ., N ik ish in , A .M ., A lekseev A .S ., D a sh ev sk y , V.V. & O lferiev, A .G ., 1998. Deformational history of inver- Typescript submitted: December 1, 1998. sional structures of the Russian Platform. In: 6th Zonenshain Revised typescript received: February 1, 1999. BULLETIN DE L’INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE SCIENCES DE LA TERRE, 69-SUPP. A: 161-165, 1999 BULLETIN VAN НЕТ K.ONINKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN AARDWETENSCHAPPEN, 69-SUPP. A: 161-165, 1999

Cretaceous Stages Boundaries in central Tunisia: how to follow the Brussels 1995 Symposium Recommendations by Francis ROBASZYNSKI

Abstract coord, et al., 1980; type Turanian: R o b a s z y n s k i et al., 1982; Campanian-Maastrichtian of the Maastricht ^area: At the Copenhagen (1983) and Brussels (1995) symposia, the lower R o b a s z y n s k i et al., 1983). Moreover, several sections, boundaries of the stages were defined by a biological or physical event considered as having a global value. Following the criteria recom­ have been studied in the Northern Tethys margin (D& mended at the Brussels (1995) symposium, the base of each Upper v a l q u e et al., 1983). Cretaceous stage in Central Tunisia is discussed following recent From these data, it became obvious that Tunisia publications with multibiostratigraphic charts. was an excellent area for representing the “ Southern” Key-words: Upper Cretaceous - stage boundaries - Tunisia Tethys. Ten years long, our aim was to find a continuous section in the Upper Cretaceous permitting a comparison between Tethys and Boreal regions. Therefore, the same Résumé biostratigraphic tools were applied to both areas, espe­ cially the study of Ammonites, Planktonic Foraminifera Après les Symposiums de Copenhagen en 1983 et de Bruxelles en 1995, les étages sont maintenant définis à leur base par un événement and Calcareous Nannoplankton. The region of Kalaat biologique ou physique considéré comme ayant une valeur mondiale. Senan seemed suitable because of its palaeogeographi- En ayant pour but de suivre au plus près les critères recommandés à cal position. Kalaat Senan is situated between a plat­ Bruxelles (1995), la base de chaque étage du Crétacé supérieur de Tunisie centrale est discutée à la lumière de travaux récents portant sur form to the south and a basin to the north. Distal sedi­ des échelles multibiostratigraphiques. mentation took place in a very subsiding region. This resulted in a thick sedimentary lithological succession, Mots-clefs: Crétacé supérieur - limites d’étage - Tunisie which often contains all elements of a deposition se­ quence (Shelf Margin Wedge or Lowstand Systems Tract, Transgressive Systems Tract and High Stand Sys­ Резюме tems Tract). This sedimentation is largely continuous and the palaeontological assemblages are of a mixed type, На симпозиумах в Копенгагене (1983) и в Брюсселе (1995) containing both platform organisms (such as bivalves, нижние границы ярусов были определены биологическим или including rudists and inoceramids, echinoderms but also физическим событием, имеющим всемирную ценность. ammonites) and basin organisms (such as planktonic and Следуя рекомендованным в Брюсселе критериям, основа каждого верхнего мелового яруса Центрального Туниса benthic foraminiferans, nannoplancton and dinoflagel- обсуждается в свете новых исследований, изучающих lates). макробиостратиграфические масштабы. A few vertical faults influence the succession. The correlation between partial sections is achieved by the Ключевые слова: Верхний мел, границы ярусов, Тунис use of characteristic beds. The tectonics are nevertheless sufficient for a dip between 15° and 30°, which allows easy observation of the beds, good fossil collecting and sampling of non-alterated levels. Introduction From the Albian to the Maastrichtian the succession has Since 1990, the Upper Cretaceous of the Kalaat Senan a thickness of almost 3700 m, distributed over several region in Central Tunisia is being studied. Its succession formations, from top to bottom: and its palaeontological content are compared with those El Haria Marls (700 m, of which 200 m are Cretaceous): of Boreal regions, and especially with the type areas of Upper Maastrichtian. the stages and “ type sections” previously studied in the Abiod Limestones and Marls (500 m): Upper Campanian Paris Basin (Albian to Santonian: R o b a s z y n s k i, A m é d r o to Lower Maastrichtian. 162 by Francis ROBASZYNSKI

Men&bites CAMR B. parca parca PL bidorsatum 1 U.angüojs -J D. cone.tasym. + 33 J-M. testud. 1 D.conc. + asymetr. R ^ Gi. elevata рвгсз 6л е,е™1а *- 34 U.socialis N S.ca rpa ticai- SANT Cl. undulatoplie. N. gibbera _i St. exs. exs. 4. Pb. cf. inconstans + Pb. inconstans j CL undulatoplic. S. carpatica ?? f 1 St. polonica _j Lu. cayeuxi L. grillii D. asymétries CL J D. asymetrica Texanites 3 _f Texanites J V. involutus M.decussata Pt. serratomarg. J M.subquadratus Paratexanites G. margae ^ Protexanites d CO. 2 ... (abundant) J V. koeneni 5 D.concavata t__ J Pe.tridorsatum С t* 0? Я pefroeor/ens« 1 Micr. ^ B. tunetanum _i Cr. rotundatus cor test. 1 ? M. paraventric. i P. germari P.germari J Cr.waltersdorf. _f G.yombens. _> 5. neptuni . J S. n eptun i .> My.costellatus S. granul. J L. septenarius D.concav. ■*- _f R. deverianum J■ R.deverianum

H. helvet. C. woollgari TUR. C. woollgari J My. hercyn.+cuvieri J My. mytiloides Mm. nodosoides J Hm.nodosoides > V. birchbyi

_> Ps. flexuosum LOW. J ] Ps. MID. flexuosum 1 UP. J My. colombianus J Q.gartneri 1 Watinoceras £ W. devonense Л H helvetica J■ Ni. scoff/ - * My. hattini cr UJ j. N. juddii Rot. cushmani Rot. cushmani f CL _*• Sc. gracile CL 3 _ A.jukesbrownei A. amphibolum Rot. reicheli CEN. Q J A. rhotom. t_ 2 „ A. rhotomagense Cu. tnerme Cu. t'nerme J /. schoendorfi J Rot reicbeli [Sc. roto i C. kenn edyi Дм. mdntelli J P. cretacea ? -i I. crippsii к M. mantelli О J G. theta -J j (Ma. bergeri -Г Stoliczkaia —rlst.clavigera .1 J. anglicus St. glabra ^ D "J, Rot. glob'oides^ \ IAr.'briacensis £ Rot glob ‘noides J Ca. anfractus Rot. ticinensis

ALB. ("VRAC: PL buxtorfi ï> ï> CD О upper upper UPPER Ma. perinflatum -v Rot.subticinensis

01 sk t C. TUNISIA £ My STAG. CEPHAL. INOCER. ECH1N. PLANKI FOR. BENTKF NANNOPL. J 13 С

Fig. 1 — Bioevents and magnetic reversal from Upper Albian to Lower Campanian. Abbreviations for Figs. 1 and 2. AMMONITES, A: Acanthoceras, Ar: Arraphoceras, B: Barroisiceras, C: Collignoni- ceras, Cu: Cunningtoniceras, F: , G.: Gauthiericeras, M: Mantelliceras, Ma: Mariella, Mm: Mammites, Mo: Mortoniceras, N: Neocardioceras, Ni: Nigericeras, P: Prionocyclus, Pb: Pseudoschloenbachia, Pe: Peroniceras, PI: Placenticeras, Ps: Pseudaspidoceras, Pt: Paratexanites, Py: Pachydiscus, R: Romaniceras, S: Subprionocyclus, Sc: Sciponoceras, St: Stoliczkaia, T: Texanites, V: Vascoceras, W: Watinoceras. INOCERAMIDS, Cl: , Cr: , I: Inoceramus, M: Magadiceramus, My: Mytiloides, V: . ECHINODERMS, M: Marsu- pites, Micr: Micraster, U: Uintacrinus. FORAMINIFERA: A: Abathomphalus, C: Contusotruncana, D: Dicarinella, G: Gavelinella, Gi: Globotruncanita, Gs: Gansserina, H: Helvetoglobotruncana, M: Marginotruncana, N: Neoflabellina, PI: Planomalina, Rot: Rotalipora, S: Sigalia, St: Stensioeina. NANNOPLANCTON, B: Broinsonia, Ca: Calculites, G: Gartnerago, L: Lithastrinus, Li: Lithraphidites, Lu: Lucianorhabdus, M: Micula, P: Prediscosphaera, Q: Quadrum, St: Staurolithites.

Aleg or Kef Marls (1250 m): middle Turonian to Cam­ For the lithology, from the Cenomanian to the K/T panian. boundary, about 3000 m of marls and limestones were Trilogy of Bireno Limestones - Annaba - Marls Bahloul measured and described. Samples were taken every 2 to Limestones (250 m): Upper Cenomanian Lower Turonian. 6 m when possible, according to the needs of the studies Fahdène Marls (1500 m): Albian-Cenomanian. on planktonic foraminifera and calcareous nannoplahk- Cretaceous Stages Boundaries in Tunisia 163

ton. Over the whole succession, macrofaunas were col­ ■— In Tunisia: the characteristic inoceramid species is lected especially ammonites and inoceramids. not present and the appearance of Globotruncana para- ventricosa is not really valid. For placing stage boundaries, the first papers on the However, several ammonites allow to place the bound­ Cenomanian and the Turonian (R o b a s z y n s k j et al., ary quite correctly: the extinction of the ammonite Prio- 1990, 1993, 1994) followed the recommendations of the nocyclus germari coincides in Germany with the appear­ 1983 Copenhagen Symposium (B ir k e l u n d et al., 1984). ance of C. rotundatus. Moreover, the abundance of the Some changes in these recommendations were proposed ammonite Barroisiceras cf. tunetanum is a good proxy at the 1995 Brussels Symposium (R a w s o n et al., edit., for marking the basal Coniacian. 1996). The goal of the next paragraph is to explain how the 1996 recommendations should be followed when the Coniacian-Santonian boundaiy type palaeontological marker is not present or not found — Before the Brussels CSB meeting (1995): appearance in the succession. of the ammonite Texanites. -—• Since Brussels 1995: appearance of the inoceramid Cladoceramus undulatoplicatus (which is earlier than the Stage boundaries appearance of Texanites) and which some palaeontolo­ gists consider isochronous with the appearance of the Albian-Cenomanian boundary planktonic foraminiferan Sigalia carpatica. — Before the Brussels CSB (Cretaceous Stage Bound­ — In Tunisia: no Cladoceramus have been collected so aries) meeting (1995): appearance of the ammonite genus far, but Texanites, Pseudoschloenbachia and Platycera- Mantelliceras. mus cycloides occur frequently. — Since Brussels 1995: appearance of the planktonic Since the ammonite Pseudoschloenbachia is known foraminiferan Rotalipora globotruncanoid.es (= brotzeni) in Germany and in USA just above I. undulatoplicatus which is earlier than the appearance of Mantelliceras. (Summesberger, 1980; Kennedy & Cobban, 1991), the. — In Tunisia: R. globotruncanoides is present together coexistence of Texanites and Pseudoschloenbachia is with many Mantelliceras and Stoliczkaia specimens (cf. a good proxy for placing the base of the Santonian Fig. 1). stage. However, the first Texanites are Coniacian. Now Stoliczkaia is present in the basal Cenomanian Some problems arise: the first Sigalia carpatica in the and Mantelliceras in no longer the first appearing Ce­ succession are present clearly at a higher level (+ 50 m) nomanian ammonite genus. and the planktonic foraminiferan marker Dicarinella asy- Note-, the Cenomanian is the beginning of an important metrica appears clearly below (-30 m) the “ proxy” global transgressive pulse, its base is generally marked by boundary. a level with phosphates (in Tunisia, in Algeria, in the Paris Basin and also in SE France, even in the proposed Santonian-Campanian boundary boundary stratotype). — Before the Brussels CSB meeting (1995): appearance of the ammonite Placenticeras bidorsatum (occurs Cenomanian-Turonian boundary rarely). — Before the Brussels CSB meeting (1995): appearance — Since Brussels 1995: id., but a preference has been of the ammonite Pseudaspidoceras flexuosum (recom­ expression for the extinction of the planktonic forami­ mendation of the Copenhagen 1983 meeting). nifera Dicarinella concavata and D. asymetrica (cf. — Since Brussels 1995: appearance of the ammonite Fig. 2). Watinoceras devonense, which means a zone lower. — In Tunisia: neither Placenticeras bidorsatum, nor — In Tunisia: in 1990 the boundary was placed at P. Marsupites testudinarius have been found. flexuosum, at the top of the Bahloul Formation. The extinction of Dicarinella concavata is clearly Now the boundary has to be placed within the Bahloul seen and happens after the appearance of Globo- Fm. The presence of the planktonic foraminiferan Helve- truncanita elevata. The appearance of Globotrunca­ toglobotruncana cf. praehelvetica/helvetica together with na area between the first G. elevata and the last D. some Watinoceras specimens is now demonstrated below asymetrica is also a good proxy for the base of the P. flexuosum. Campanian. Note-, importance of 513C of OAE 2 for long dis­ tance correlations (Pueblo - Dover - Menoyo Kalaat (cf. Campanian-Maastrichtian boundary. A ccarie et al., 1996). — Before the Brussels CSB meeting (1995): appearance of Belemnella lanceolata. Turonian-Coniacian boundary ■— Since Brussels 1995: appearance of Pachydiscus — Before the Brussels CSB meeting (1995): appearance neubergicus (below this appearance there are two ammo­ of the ammonite Forresteria petrocoriensis nite zones, the upper one is the Nostoceras hyatti Zone — Since Brussels 1995: appearance of the inoceramid with Pseudokossmaticeras brandti, the lower one the Cremnoceramus rotundatus sensu Troger non Fiege, Bostrychoceras polyplocum Zone, which was previously which means earlier. considered as the last Campanian zone in the Tethyan 164 by Francis ROBASZYNSKI

-4-J Ы. TU N ISIA g My STAG. Ht. AMMONITES BELEMN.ECHIN. PLANKT FOR. NANNOPLANKT. ОЭ DAN. Globotruncanids т .

A.".' mayaroensis

L quadratus t_ c. - contusa MAAS L. praequadratus N ostoceras aliernatum

,.Nostotcera s Belemnella magdadfae. ^ P. 'neubergicus 4 (anceolata

Nostoc,eras hyattf *

Gs. ■ . £ t - gansseri

. Г •' * Gi. ч calcarata Bostrych^' ' ' poCyplocûm ' CAMP

Menabrtes

J B. parca parca ^ Pi. bidorsatum ■83,5- "*B. D.concav. + 33 M. testud. + D. conc.+ asymetr. parca +asym. R P Gi. eleyata Gi. e(evata ЗІ SANT. J Usocialis N

Fig. 2 — Bioevents for the Campanian-Maastrichtian. For Figs 1 and 2: time scale after G ra dstein et al. (1994); biological and physical events from R a w son et al. edit (1996).

domain, cf. historic aspects in Robaszynski et al., in Maastrichtian-Danian boundary. press), — The boundary is indicated by the extinction of 45 — In Tunisia: Bostrychoceras polyplocum, Nostoce- planktonic foraminiferan taxa among which Abathom­ ras hyatti, Pseudokossmaticeras brandti are found but phalus mayaroensis and Plummerita reicheli (= PI. hant- not Pachydiscus neubergicus. The extinction of Glo­ keninoides). botruncanita calcarata occurs after the last B. poly­ The first Danian zone with a thickness of only 0.5 m, is plocum, but before the first N. hyatti. In the absence the Guembellita cretacea Zone, even though this species of P. neubergicus, Nostoceras (Nostoceras), aff. mag- is already present in the terminal Maastrichtian. Above dadiae is used, a species that indicates the Maastrich­ this first zone, begins the Parvularugoglobigerina eugu- tian in the USA according to Cobban & Kennedy (1995). bina Zone. BULLETIN DE L’INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE SCIENCES DE LA TERRE, 69-SUPP. A: 167-172, 1999 BULLETIN VAN НЕТ KONINKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN AARDWETENSCHAPPEN, 69-SUPP. A: 167-172, 1999

Report 1

Upper Cretaceous Ammonites and their extinction: interpretation of data from the Caucasus and comparison with Mangyshlak, the Crimea and the Maastricht area by Elisso KOTETISHVILI

A bstract mids {Inoceramus azerbaydjanensis Aliev, I. dariensis Dobrov & Pavlova) and rare specimens of the ammonite Eupachydiscus Comparison of Upper Cretaceous ammonite faunas from the Caucasus, launayi de Grossouvre - (thickness 30 to 40 m). the Crimea, Mangyshlak and around Maastricht. Higher up follows an alternation of white and light-creamy limestones with clay marls of increasing thickness (from 10 to Key words: ammonites, Upper Cretaceous, distribution, evolution. 15 up to 70 to 80 cm), containing Hauericeras pseudogardeni Schlüter, Inoceramus balticus Boehm, I. muelleri Petrascheck, Micraster coravium Posl. & Moskvin, Seunaster gillieroni de' R ésum é Loriol, Offaster pilula Lamarck, Galeola senonensis d’Or- ' bigny, Conulus matesovae Posl. & Moskvin. In the upper part Comparaison des ammonites du Crétacé supérieur du Caucase, de la Pseudojfaster caucasicus Druschitz (70 to 80 m.). Crimée, du Mangyshlak, et des environs de Maastricht. Beside these species, in the Campanian Pachydiscus koeneni de Grossouvre, Bostrychoceraspolyplocum (Roemer), Glyptox- Mots-clefs: ammonites, Crétacé supérieur, répartition, évolution. oceras retrorsum (Schlüter), Menuites auritocostatus (Schlü­ ter), Baculites vertebralis Lamarck, Inoceramus balticus, Mi­ craster brongniarti Hébert, Pseudoffaster caucasicus, Galeola Резюме gauthieri Lambert, and rare fragments of Belemnitella mucronata (Schlotheim) are found. Сравнение аммонитов верхнего мена Кавказа, Крыма, Eastwards, the Campanian sediments extend almost un­ Мангышлака и окрестностей Маастрихта. changed up to Malchick. Further to the East in the Lower Campanian Offaster pomeli, Pseudoffaster schmidtae, Inocer­ Ключевые слова: аммониты, верхний мел, распределение, amus azerbaydjanensis are present; in the upper part Micraster развитие coravium, Seunaster gillieroni, Pseudoffaster caucasicus, Con­ ulus matesovae, Inoceramus balticus.. In the Ardon basin the Campanian was washed out. To the west of the Bolshoi Zelenchuk River, sediments INTAS project 94-1414 studies the evolution of the faunas and enriched with clays are of reduced thickness (15-20 m), but their environments in three stratigraphically and palaeontolo- both substages o f the Campanian are present: in the lower part: gically important regions. A detailed comparison o f latest data Micraster schroederi, Pseudoffaster caucasicus, Conulus ma­ from the following regions is presented: 1. Mangyshlak (West tesovae', in the upper part Micraster brongniarti, Galeola Kazakhstan), 2. Upper Crimea, 3. The Maastricht type area gauthieri, Pseudoffaster caucasicus. (Belgium-the Netherlands). The Upper Cretaceous ammonite fauna from the Caucasus The Maastrichtian stage is characterised by an abundant fau­ forms a link between Mangyshlak and Upper Crimea, and its na. The Lower Maastrichtian substage consists o f clayey lime­ characteristics shall help to define faunistic relations. Even stones with marly “ interlayers” with numerous inoceramids more so as the Upper Cretaceous Caucasian basins are re­ (.Inoceramus alaeformis sensu Tsagareli non Zekeli, I. pertenuis stricted to shallow marine basins, a kind of environment in Meek & Hayden, I. sagensis Owen, I. convexus Hall & Meek), which the Cretaceous/Tertiary boundary has rarely been stu­ cephalopods [Hoploscaphites constrictus (J. Sowerby), Hauer­ died. In Georgia some continuous sections are known which are iceras sulcatum (Rner), Didymoceras schloenbachi (Favre), of interest from this point view. Pseudokossmaticeras galicianum (Favre), P. brandti (Redten- bacher), Baculites vertebralis, B. anceps Lamarck, rarely Be­ Let us start with the Northern Caucasus. lemnitella conica obesa Naidin], echinoids (Micraster grim- In its central part the Campanian stage is represented by mensis Nietsch., Orthaster ciplyensis Lambert, Coraster cuba- white limestones with stylolite horizons and thin clay marl nicus Posl. & Moskvin, Galerites vidgaris Leske) are present. beds. These strata contain echinoids (Micraster schroederi Higher up these taxa occur more rarely, but we also find Stolley, Echinocorys tuirita Lambert, Pseudoffaster schmidtae Diplomoceras cylindraceum (Defiance), Belemnitella conica Posl. & Moskvin, Offaster pomeli Munier-Chalmas), inocera- rotunda (Naidin), Guettaria rocardi (Cotteau), Stegaster chal- 168 Elisso KOTETISHVILI: Upper Cretaceous Ammonites and their extinction

Mangyshlak Mangyshlak Atabekian, 1986 crassus Baculites Baculites anceps Hoploscaphites constrictus Pachydiscus stobaei Pachydiscus

Tsagareli, Tsagareli, 1954 haugi

Transcaucasus Transcaucasus Gambashidze, 1979 cf colligatus cf cf Diplomoceras Diplomoceras cylindraceum Pachydiscus neubergicus gollevillensisP. Hoploscaphites constrictus P. subrobustus subrobustus P. orientalis galicianum Pseudokossmaticeras Pachydiscus Pachydiscus neubergicus Hoploscaphites Hoploscaphites constrictus perfrdus Pa. Diplomoceras Diplomoceras cylindraceum Acanthoscaphites tridens Hauericeras sulcatum Pa. retrorsum Glyptoxoceras P. P. brandti Pa. Pa. koeneni Parapachydiscus icenicus Anapachydiscus fresvillensisAnapachydiscus polyplocum Bostrychoceras schloenbachi wemickeiGlyptoxoceras Eupachydiscus Eupachydiscus levyi Scaphites Hoplitoplacenticeras Hoplitoplacenticeras vari Discoscaphites gibbusDiscoscaphites Eupachydiscus Eupachydiscus levyi

Moskvin, 1986 North North Caucasus Hoploscaphites Hoploscaphites constrictus Pachydiscus neubergicus gollevillensis P. P. colligatus Baculites vertebralis Didymoceras schloenbachi Diplomoceras cylindraceum sulcatum Hauericeras retrorsum Glyptoxoceras Hypophylloceras Hypophylloceras surya B. B. anceps Hoploscaphites constrictus Pseudokossmaticeras galicianum P. brandti Baculites Baculites anceps B. vertebralis Neancyloceras retrorsum Baculites Baculites vertebralis Bostrychoceras polyplocumBostrychoceras Hauericeras pseudogardeniHauericeras Pachydiscus koeneni Menuites Menuites auricostatus Eupachydiscus launayi

anceps ex ex gr. Maslakova, 1986 Upper Upper Crimea Hypophylloceras surya Hypophylloceras Pseudokossmaticeras Hoploscaphites Hoploscaphites constrictus gollevillensis P. Diplomoceras cylindraceum Hoploscaphites constrictus sulcatum Hauericeras galicianum Pachydiscus Pachydiscus neubergicus Acanthoscaphites tridens Pachydiscus Pachydiscus koeneni Baculites pseudogardeniHauericeras

subcompressum

cf.

cf sp.

Naidin, 1978 sp. sp. Kennedy, Kennedy, 1986a, b Maastricht area Maastricht circulare coesfeldiensis cf cf cf cf verneuilianus Glyptoxoceras G. P.jacquoti Sphenodiscus binkhorsti H. H. tenuistriatus spiniger Trachyscaphites Pachydiscus gollevillensis Pachydiscus Diplomoceras Diplomoceras cylindraceum Hoploscaphites constrictus pungens H. felderi H. Diplomoceras cylindraceum Saghalinites B. vertebralis Hoploscaphites constrictus Baculites Baculites anceps Acanthoscaphites fresvillensis Anapachydiscus Nostoceras Acanthoscaphites tridens Baculites Hoplitoplacenticeras marroti Hoplitoplacenticeras H. colligatus Pachydiscus Scaphites hippocrepis Scaphites Pachydiscus duelmensis Pachydiscus

a g ^ s q n s isddQ іэмот; i s d d f t ІЭМ.О'}

э З щ й - Tret)X[3ijq.sBEj\[ trenredtnBQ Report 1 169 masi Seunès, Echinocoiys pyramidata Portlock, Galeaster ber- relia carseyae (Plummer), Globotruncana stuarti (de Lappar- trandi Seunès, Homoeaster tunetanus Pomel. (thickness of the ent), Globotruncana coronata Bolli, Bolivinoides draco Mars- Lower Maastrichtian: 200 to 250 m). son, Inoceramus tenuilineatus Hayden & Meek, I. incurvus The Upper Maastrichtian consists of limestones interbedded Meek, I. tegulatus sensu Tsagareli non von Hagenow (= Tenuip­ with marls, and only in the upper part with thin stylolite teria argentea (Conrad)), I. georgicus. horizons. The lower part contains: Pseudoffaster renngarteni In the Somkhiti block Campanian and Maastrichtian stages Schmidt, Echinocorys pyramidata, Galerites vulgaris. No in- are represented by limestones, in places with variegated tuffs. oceramids except rare Inoceramus caucasicus Dobrov [= Spyr- In the Lower Campanian we found Glyptoxoceras retrorsum idoceramus tegulatus (Ravn)]. The upper part contains: Pachy­ (Schlüter) and almost the same complex of inoceramids and discus gollevillensis (d’Orbigny), P. neubergicus (Hauer), echinoids as in Ajara-Trialeti. In the Upper Campanian only Pseudophyllites indra (Forbes), Phylloceras (Hypophylloceras) inoceramids were found. In the Lower Maastrichtian we recog­ surya (Forbes), Baculites vertebralis, Neancyloceras retrorsum nised Pachydiscus perfidus de Grossouvre, P. fresvillensis (Schlüter), Neobelemnella kazimiroviensis Skolozdrowna, In­ Seunès, Parapachydiscus icenicus (Sharpe) and Inoceramus oceramus "tegulatus ’ ’ sensu Dobrov & Pavlova (= Tenuipteria cf salisburgensis Fugger & Kastner, Austinocrinus erckerti argentea Conrad), Echinocorys perconica von Hagenow, E. Dames, and in the Upper Maastrichtian only Pachydiscus neu­ ciplyensis Lambert, Cyclaster integer Seunès, Abathomphalus bergicus. mayaroensis Bolli. Hoploscaphites constrictus occurs through­ In the Lesser Caucasus, in the Debeda-Terter facies type, out the Maastrichtian (M o s k v in , 1986). which is represented in a calcareous marly facies, and in which, according to G a m b a s h id z e (1979) the Lower and Upper Cam­ In Transcaucasian Georgia Late Cretaceous ammonites were panian are each divided into two parts. studied by T s a g a r e l i (1954) and G a m b a s h i d z ï (1979). Kote- The lower Lower Campanian is characterised by: Inocera­ tishvili and Magalashvili provided supplementary data. Shallow mus sammensis Woods, I. subsanimensis Renngarten, I. con­ marine environments dominate on the Georgian Block, and in vexus, I. balticus, I. prons Renngarten, I. adjakendensis Aliev, the Ajtvin-Bolnisi Block and in the Adjara-Trialetian basin. I. cf. lingua Goldfuss, I. cf. mitraikyensis Sornay, Pseudoffaster On the Georgian Block three facies types were distinguished caucasicus, Caronaster cupulifonnis Airaghi, Echinocorys in calcareous-marly sediments by G a m b a s h id z e (1979). In the ovatus Leske, E. cf. pyramidatus, Isomicraster fraasi Rouch., ' uppermost part of the Campanian, in one of the blocks, Bos- Galeola senonensis. tiychoceraspolyplocum schloenbachi (Favre) was found. In the The upper Lower Campanian contains: Glyptoxoceras wer- Transcaucasus during the Maastrichtian ammonites are more nickei (Wollemann), Discoscaphites cf. gibbus (Schlüter), abundant: in the lower part of the substage Pachydiscus neu- Inoceramus decipiens Zittel, I. tausensis Aliev. . bergicus, Acanthoscaphites tridens (Kner), Hoploscaphites The lower Upper Campanian yielded Hoplitoplacenticeras constrictus, Diplomoceras cylindraceum were found, whereas coesfeldiense (Schlüter), Scaphites cf. haugi de. Grossouvre, in the upper part Pachydiscus neubergicus, Hoploscaphites cf. Belemnitella mucronata (Schlotheim), Inoceramus balticus. constrictus were collected. In the Dzirula type in the Lower The upper Upper Campanian Inoceramus regidaris d’Or­ Maastrichtian Hauericeras sulcatum, Pseudokossmaticeras ga- bigny non Münster (= Selenoceramus sornayi Dhondt). licianum and P. brandti were observed; in the Upper Maas­ In the Lower Maastrichtian were observed: Pachydiscus neu­ trichtian only Pachydiscus neubergicus was noticed. bergicus, Diplomoceras cylindraceum Ivovense Mich., Belem- In the Ajara-Trialeti basin the Campanian is represented only nella lanceolata (Schlotheim), Inoceramus colchicus, I. nebras­ by limestones and variegated marls, and it is defined only by censis Owen. inoceramids: Inoceramuspseudoregularis Sornay, I. alaeformis In the Upper Maastrichtian Pachydiscus gollevillensis, Pa­ sensu Tsagareli non Zekeli, I. convexus, I. géorgiens Tsagareli, chydiscus colligatus (Binkhorst), Pachydiscus haueri haueri I. cf. adjakendensis Aliev, I. salisburgensis Fugger & Kastner, Collignon, P. egertoni jacquoti Seunès, Pseudokossmaticeras in the lower part, and I. balticus, I. alaeformis sensu Tsagareli brandti, Diplomoceras cylindraceum, Inoceramus regidaris non Zekeli, I. barabini Morton, I. proximus Tuomey, I. géorgi­ d’Orbigny non Miinster, Guettaria rocardi, Echinocoiys du- ens, I. colchicus Tsagareli in the upper part. ponti Lambert, Austinocrinus meyni Stolley. The Maastrichtian is represented by marly limestones and in places by variegated marls. In the Lower Maastrichtian we In Upper Crimea the Campanian stage is represented found: Pachydiscus neubergicus, P. cf. subrobustus Seunès, mainly by white marls, and the upper part by light grey chalky Hauericeras sp. , Inoceramus nahorianensis Kotsyubinskij, I. marls. colchicus, I. simonovitchi Tsagareli, I. salisburgensis, I. cf. The Lower Campanian is divided into two zones: lowermost nebrascensis Owen, Echinocorys cf. elatus Amaud, and the is the Micraster schroederi Zone and above it the Hauericeras microfossils Arenobulimina obliqua (d’Orbigny), Bolivina in- pseudogardeni Zone: crassata (Reuss), Anomalina clementiana (d’Orbigny), Cyroi- - the schroederi Zone is characterised by the following for- dina caucasica Subbotina. aminifers: Globotruncana area Cushman, Bolivinoides decora- In the Upper Maastrichtian Pachydiscus neubergicus, P. tus Jones, Gavelinella clementiana (d’Orbigny), Orbignyana subrobustus orientalis Tsagereli, Diplomoceras cylindraceum, inflata (Reuss); Hoploscaphites constrictus, Coraster vilanovae Cotteau, Or- - the pseudogardeni Zone contains: rare Hauericeras pseudo­ nithaster anthulai (Lambert), Seunaster georgicus Rouch., Car­ gardeni, Belemnitella ex gr. mucronata (Schlotheim), Ino­ diotaxis heberti Cotteau, Galeaster seunesi Lambert, Ventilab- ceramus balticus, I. azerbaydjanensis, and the foraminifers Globotruncanita elevata Brotzen, Rugoglobigerina kelleri (Subbotina), Cibicidoides aktulagayensis Vassilenko; in the Lower Campanian Inoceramus dariensis was also observed Fig. 1 —■ Maastrichtian and Campanian ammonites species (65 - 70 m). from the Maastricht area, from Upper Crimea, from The Upper Campanian is divided into two zones based on the Caucasus and from Mangyshlak. belemnites: 170 Elisso KOTETISHVILI: Upper Cretaceous Ammonites and their extinction

- the lower Upper Campanian Zone contains Belemnitella ory>s lamberti Smiser, E. conica Agassiz, E. belgica Lambert mucronata senior and also foraminifers are numerous. - the upper Upper Campanian Zone contains Belemnitella Sometimes an Upper Maastrichtian hardground rests on the langei. The lower Upper Campanian Zone further contains Lower Maastrichtian. The lower Upper Maastrichtian strata Inoceramus balticus, rare Pachydiscus koeneni, Globotruncana correspond to the Kopet-Dagh Diplomoceras cylindraceum morozovae Vassilenko, G. majzoni Sac. & Deb., Brotzenella Zone and contain Baculites anceps, Echinocorys ciplyensis, menneri Keller, B. monterelensis Marie, Stensioeina pommer- E. belgica Lambert, E. lamberti, Conulus magnificus d’Or­ ana Brotzen. bigny, rare Neobelemnella kazimiroviensis. The Tenuipteria The upper Upper Campanian further contains Baculites ex argentea Zone, besides the zonal species, contains: Hoplosca­ gr. anceps, Pachydiscus koeneni, Inoceramus buguntaensis phites constrictus crassus Lopuski, Oxytoma danica (Ravn), Dobrov, I. caucasicus Dobrov (???), Cibicidoides voltzianus Echinocorys ciplyensis, E. pyramidata, Galerites sulcatus (d’Orbigny), Bolivina kalinini Vassilenko, B. incrassata d’Orbigny, G. vulgaris Leske, Cyclaster integer Seunès and (Reuss). In the uppermost part of the section were found: also foraminifers: Bolivina incrassata crassa Vassilenko, B. Bolivinoides miliaris Hiltermann & Koch, Globotruncana plaita Carsey, Karreria fallax Rzeh. contusa Cushman, Neoflabellina praereticulata Hiltermann. In the Crimean lowland the Campanian is divided into two When we compare the three main localities of the Alpine line: parts on foraminifers: the Lower Campanian contains Globo­ Upper Crimea, the Caucasus and Mangyshlak, we can see that in truncana area Cushman, Globotnincanita elevata Brotzen, - the Campanian the genera Hauericeras, Bacidites and Pa­ Rugoglobigerina kelleri Subbotina, Bolivinoides decoratus chydiscus occur both in the Crimea and the Caucasus; Pachy­ Jones; the Upper Campanian is characterised by Globotruncana discus was also found in Mangyshlak, where it is the only morozovae Vassilenko, Stensioeina pommerana Brotzen, Brot­ Campanian ammonite genus known so far. zenella menneri Keller, Cibicidoides voltzianus (d’Orbigny), - in the Maastrichtian the genera common between the Cau­ Bolivina incrassata (Reuss). casus and the Crimea are: Hoploscaphites, Diplomoceras, The Maastrichtian stage is widespread in the Crimea, Hauericeras, Pseudokossmaticeras. Thus the Campanian- where it is represented by grey sandy marls and sandstones. Maastrichtian Crimean ammonite complex contains taxa also The Lower Maastrichtian substage is characterised by the known from the Caucasus, and has no distinctive elements. Belemnella lanceolata - Acanthoscaphites tridens Zone - this is In Mangyshlak two genera were observed: Baculites and the equivalent of the Globotruncanita stuarti Zone. Also ob­ Hoploscaphites. Both are also known in the Caucasus and the served in this zone are: Belemnella sumensis Jeletzky, Hoplos­ Crimea. caphites constrictus, Diplomoceras cylindraceum, Hauericeras sulcatum, Pseudokossmaticeras galicianum, and foraminifers, In the Maastricht type area the following genera are known: bivalves, brachiopods and echinpids. - in the Campanian: Baculites, Scaphites, Trachyscaphites, The Upper Maastrichtian is represented by the Neobelemnel- Hoplitoplacenticeras, Pachydiscus. Only Trachyscaphites is la kazimiroviensis Zone, or the equivalent Abathomphalus not known from the Caucasus. mayaroensis Zone. Herein occur Hoploscaphites constrictus, - in the Maastrichtian: Saghalinites, Baculites, Nostoceras, Pachydiscus neubergicus, P. gollevillensis, Phyllopachyceras Glyptoxoceras, Diplomoceras, Hoploscaphites, Acanthosca­ - (?) sui-ya, inoceramids, other bivalves, gastropods, brachio- phites, Pachydiscus, Anapachydiscus, Sphenodiscus. Saghali­ 'pods, Bryozoa, Foraminifera. nites, Nostoceras and Sphenodiscus are not known from Crimea Near Bakhchisaray remains of a dinosaur ( Orthomerus we- nor from the Caucasus nor from Mangyshlak. beri Rjab.), near Skalistoe fragments of a mosasaur (Tylosaurus cf. anceps Owen) and near Sevastopol fragments o f a crocodile Ammonites are a group of organisms which went extinct at the СThoracosaurus macrorhynchus Blainville) were found. end of the Maastrichtian. The Late Cretaceous is the last epoch On the Crimean lowland Maastrichtian the following fora­ o f their existence. How were they distributed during this time? minifers were recognised: Raceguembelina Jructuosa Egger, Usually it is accepted that the stratigraphie importance of Bolivinoides draco, Globotruncanita stuarti etc. (500 to 800 m ammonites in the Late Cretaceous is decreasing - more pre­ on Tarkhankut peninsula). cisely they decrease in number and there are hiatuses in their distribution. Therefore belemnites, inoceramids, echinoids and In the Mangyshlak peninsula (W. Kazakhstan) the Campanian foraminifers become stratigraphically more important is represented by chalks and chalk-like limestones, which In the Caucasus already in the Albian zonation only with north-eastwards (in Central Usturt) become marls and clayey ammonites is impossible. limestones (thickness 30 to 150 m). Four zones, recognised In order to have a complete view of the distribution and in the Kopet Dagh are confirmed in Mangyshlak: Offaster extinction of the ammonites, we review them for the complete pomeli Zone, Eupachydiscus levyi Zone, Hoplitoplacenticeras Upper Cretaceous: coesfeldiense/Stegaster gillieroni Zone, Bostiychoceras poly­ CENOMANIAN plocum Zone. All four zones are also characterised by inocer- Caucasus - 19 - Hypophylloceras, Gaudryceras, Tetragonites, amids, echinoids, belemnites, brachiopods and foraminifers. In Sciponoceras, Baculites, Anisoceras, Hypoturrilites, Turrilites, the uppermost zone Pachydiscus stobaei Nilsson has been Bostrychoceras, Scaphites, , Austeniceras, Latidorsel- found. la, Schloenbachia, Mantelliceras, Calycoceras, Acanthoceras, The Mangyshlak Maastrichtian is represented by rocks Cunningtoniceras, Couloniceras. which are similar to those of the Campanian: chalk-like lime­ Crimea - 6 - Mesogaudtyceras, Sciponoceras, Scaphites, Pu­ stones and chalks, in places with flint nodules and in the zosia, Schloenbachia, Mantelliceras. upper part enriched with “ aleurites” (10 to 30 to 175 m). Mangyshlak - 14 - Sciponoceras, Anisoceras, Idiohamites, The Lower Maastrichtian contains Belemnella lanceolata Neostlingoceras, Turrilites, Scaphites, Worthoceras, Hypho- (Schlotheim), Inoceramus ovifomiis Arzum., I. buguntaensis plites, Schloenbachia, Submantelliceras, Acompsoceras, Dobrov & Pavlova, Micraster grimmensis Nietsch., Echinoc- Acanthoceras, Euomphaloceras, Karamaites. Report 1 171

Mangyshlak - 0. CAMPANIAN Caucasus - 9 - Baculites, Bostiychoceras, Glyptoxoceras, Dis- coscaphites, Hauericeras, Pachydiscus, Menuites, Eupachydis­ cus, Hoplitoplacenticeras. Crimea - 3 - Baculites, Hauericeras, Pachydiscus. Mangyshlak - 1 - Pachydiscus. Maastricht - 5 - Baculites, Scaphites, Tr achy scaphites, Hopli­ toplacenticeras, Pachydiscus. MAASTRICHTIAN Caucasus - 16 - Hypophylloceras, Helicoceras, Baculites, Didymoceras, Diplomoceras, Neancyloceras, Hoploscaphites, Acanthoscaphites, Hauericeras, Kossmaticeras, Discosca- phites, Pachydiscus, Parapachydiscus, Pseudophyllites, Disco- hoplites, Pseudokossmaticeras. Crimea - 6 - Phyllopachyceras, Diplomoceras, Hoploscaphites, Hauericeras, Pachydiscus, Pseudokossmaticeras. Mangyshlak - 2 - Baculites, Hoploscaphites. Maastriocht - 11 - Saghalinites, Baculites, Nostoceras, Glyp­ toxoceras, Diplomoceras, Scaphites, Hoploscaphites, Acan­ thoscaphites, Pachydiscus, Anapachydiscus, Sphenodiscus. Fig. 2 — Number of ammonite genera in the Upper Creta­ ceous of the studied regions. To summarize: Caucasus Crimea Mangyshlak Maastricht Maastrichtian 16 6 2 11 TURONIAN Campanian 9 3 0 5 Caucasus - 11 - Neogaudryceras, Sciponoceras, Tetragonites, Santonian 6 0 0 - Scaphites, Puzosia, Lewesiceras, Romaniceras, Mammites, Coniacian 3 0 0 - Collignoceras, Subprionocyclus, Arkhangelskiceras. Turonian 11 3 6 - Crimea - 3 - Hypanthoceras, Scaphites, Lewesiceras. Cenomanian 19 6 14 — Mangyshlak - 6 - Sciponoceras, Hypanthoceras, Scaphites, Lewesiceras, Metoiococeras, Collignoceras. In the Cenomanian the maximum number of genera was pre­ CONIACIAN sent; during the Turonian it decreased. In the Coniacian and Caucasus - 3 - Baculites, Eubostiychoceras, Nowakites. Santonian (two short stages) the number of ammonite genera Crimea - 0. was minimal, and in Crimea and Mangyshlak they were not Mangyshlak - 0. found. From the Campanian upwards the number of genera SANTONIAN increased again and reached (except in Mangyshlak) in the Caucasus - 6 - Gaudryceras, Scaphites, Puzosia, Hauericeras, Maastrichtian a level comparable to that known from the Cen­ Nowakites, Eupachydiscus. omanian. Thus shortly before the complete extinction of the Crimea - 0. ammonites in the Maastrichtian they knew a last expansion.

References

A t a b e k ja n , A. A., 1986. West of Middle Asia. Upper Series, M o s k v in , М. М., 1986. The Caucasus. Upper Series, in: Cre­ in: Cretaceous System. Volume 1. Stratigraphy of the USSR, taceous System. Volume 1. Stratigraphy of the USSR. pp. 190- pp. 277-298 (in Russian). 238 (in Russian).

G a m b a s h id z e , R. A., 1979. Stratigraphy of Upper Cretaceous N a id in , D. P., 1978. On stratotypes of Upper Cretaceous stages deposits in Georgia and in adjacent areas of Azerbaïdjan and (example o f the Maastrichtian stage). Byulleten Moskovskogo Armenia. Trudy GIN AN Gruzhinskoi SSR, N.S. 61, 226 pp. (in Obshestva Ispytateley Prirody - Serija Geologicheskaja 53, 3: Russian). 56-77 (in Russian). T s a g a r e l i, A. L., 1954. Upper Cretaceous o f Georgia.Mcmc- K en n e d y , W . J., 1986a. The Campanian-Maastrichtian ammo­ nite sequence in the environs of Maastricht (Limburg, The graphs of the Institute of Geology and Mineralogy, 5: 436 Netherlands), Limburg and Liège provinces (Belgium). News­ pp. (in Russian). letters on Stratigraphy, 16, 3: 149-168. Author’s address: K e n n e d y , W. J., 1986b. The ammonite fauna of the type Elisso K otetishvili, Maastrichtian with a revision of Ammonites colligatus Bin- Geological Institute of khorst, 1861. Bulletin Institut royal Sciences naturelles de the Georgian Academy of Sciences, Belgique, Sciences de la Teire, 56: 151 - 267 Z. Ruchadze Street 1-9, M a s l a k o v a , N. I., 1986. The Crimea. Upper Series, in: Cretac­ 380093 Tbilisi, Georgia eous-System. Volume 1. Stratigraphy o f the USSR. pp. 136-144 (in Russian). Typescript submitted: 1.6.1998 172 Elisso KOTETISHVILI: Upper Cretaceous Ammonites and their extinction

Addendum

Stratigraphie distribution of Upper Cretaceous ammonite genera from the Caucasus, the Crimea, Mangyshlak and the Maastricht area

1. Phyllopachyceras Spath, 1925, br - m 2. Hypophylloceras Salfeld, 1924, h - m 3. Neogaudryceras Shimizu, 1935, tur - m (= Gaudryceras) 4. Mesogaudryceras Spath, 1927, cen 5. Gaudryceras de Grossouvre, 1894, tur - m 6. Tetragonites Kossmat, 1895, al2 - cen3 7. Pseudophyllites Kossmat, 1895, camp, -m 8. Helicoceras d’Orbigny, 1842, al2 [= Hamites (Hamitella)\ 9. Sciponoceras Hyatt, 1894, al3 - tur2 10. Baculites Lamarck, 1799, tur2-m 11. Anisoceras Pictet, 1854, al3 - tur3 12. Idiohamites Spath, 1925, al3 - cen 13. Hypotunilies Dubourdieu, 1953, cen 14. Neostlingoceras Klinger & Kennedy, 1978, ceni_2 15. Tunilites Lamarck, 1801, cen-turi 16. Bostiychoceras Hyatt, 1900, cen-n^ 17. Eubostiychoceras Matsumoto, 1967, al - sant (? camp) 18. Hyphantoceras Hyatt, 1900, tur-sant 19. Didymoceras Hyatt, 1884, camp -m ( = Ciroceras Conrad, 1868) 20. Nostoceras Hyatt, 1884, camp 21. Diplomoceras Hyatt, 1900, camp 22. Neancyloceras Spath, 1926, camp2-m 23. Glyptoxoceras Spath, 1925, sant - m 24. Scaphites Parkinson, 1811, al3 - m 25. Hoploscaphites Nowak, 1911, camp - m 26. Discoscaphites Meek, 1870, camp - m 27. Acanthoscaphites Nowak, 1911, camp 28. Trachyscaphites Cobban, 1964, camp - m 29. Worthoceras Adkins, 1928, al3 - tur2 30. Puzosia Bayle, 1878, al) - tur2 31. Austiniceras Spath, 1922, cen3 - tur2 (= Parapuzosia) 32. Latidorsella Jacob, 1908, al3 - cen (= Desmoceras Zittel) 33. Hauericeras de Grossouvre, 1894, con - m 34. Kossmaticeras de Grossouvre, 1901, tur2 - camp 35. Pseudokossmaticeras Spath, 1922, camp2 - m 36. Brahmaites Kossmat, 1897, m 37. Lewesiceras Spath, 1939, cen3 - con 38. Nowakites Spath, 1922, con-sant 39. Pachydiscus Zittel, 1884, camp-m 40. Parapachydiscus Hyatt, 1900, “ Senonian” 41. Anapachydiscus Yabe & Shimizu, 1926, con-m 42. Menuites Spath, 1922, sant - camp 43. Eupachydiscus Spath, 1922, con - camp 44. Pseudophyllites Spath, 1926, con 45. Hoplitoplacenticeras Spath, 1922, campi - m 46. Discohoplites Spath, 1925, al3 47. Hypoplites Spath, 1922, al3 - cen3 48. Schloenbachia Neumayr, 1875, al3 - cen3 49. Mantelliceras Hyatt, 1903, ceni 50. Shaipeiceras Hyatt, 1903, cen 51. Submantelliceras Spath, 1923, cenj (= Mantelliceras) 52. Acompsoceras Hyatt, 1903, сеП[ 53. Calycoceras Hyatt, 1900, cen - tur! (= Newboldiceras) 54. Acanthoceras Neumayr, 1875, ceni - cen3 55. Euomphaloceras Spath, 1923, cen3 56. Cunningtoniceras Collignon, 1937, cen3 (= Euomphaloceras) 57. Romaniceras Spath, 1923, cen3 - tur2 58. Metoiococeras Hyatt, 1903, turi 59. Mammites Laube & Bruder, 1886, tur 60. Collignoniceras Breistroffer, 1947, tur 61. Prionotropis Meek, 1878, tur 62. Subprionocyclus Shimizu, 1932, tur2 63. Bairoisiceras de Grossouvre, 1894, con 65. Arkhangelskiceras Iljin, 1957, cen? 66. Couloniceras Busnardo, 1966, cen 67. Karamaites Sokolov, 1961, cen BULLETIN DE L’INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE SCIENCES DE LA TERRE, 69-SUPP. A: 173-178, 1999 BULLETIN VAN НЕТ KONINKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN AARDWETENSCHAPPEN, 69-SUPP. A: 173-178, 1999

Report 2

Stratigraphie distribution of lamnoid sharks at Cretaceous and Palaeogene stage boundaries in the Eastern Peri-Tethys by Viktor I. ZHELEZKO

Abstract 1999). The study of the stratigraphie distribution and of the phylogenetic development o f Cretaceous and Palaeogene fishes The distribution of lamnoid sharks during the Cretaceous and Palaeo­ bring information on the development of the seas and faunas of gene was studied in the Eastern Peri-Tethys in W. & N. Kazakhstan and this extensive territory (Fig. 1). in Preuralia. The Santonian/ Campanian, Cretaceous/ Palaeocene, and The best shark teeth material was collected in sediments of Palaeocene/ Eocene were given special attention. Santonian/ Campanian, Cretaceous/ Palaeocene and Palaeo­ Key-words: Cretaceous, Palaeogene, Lamnoid sharks, Eastern Peri- cene/ Eocene transitions. Tethys.

Santonian/ Campanian boundary Résumé The Santonian/ Campanian boundary deposits were studied La distribution des requins lamnoïdes pendant le Crétacé et le Paléo­ gène a été étudié dans la Peri-Tethys orientale, dans l’ouest et le nord during several field conferences under the direction of D. P. du Kazakhstan et dans le Préural. Les limites santono-campanienne, Naidin and G. N . Papulov (P a p u l o v & N a id in , 1979; A k im e t s Crétacé-Paléocène et Paléocène-Eocène ont été particulièrement étu­ et al., 1979) in Aktyubinskoe Premugodzharia and Mangyshlak diées. (W. Kazakhstan). In the Aktyubinsk - Premugodzharie area, the Altykuduk Fm., Mots-clefs: Crétacé, Paléogène, requins lamnoides, Péri-Tethys orien­ tale. unconformably overlying white Albian - Cenomanian sands, contains the following beds: Kubley beds (Santonian): quartz-glauconitic sands with phos­ phorites are divided into three beds, from bottom to top: Резюме - bed A: irregular granular sands, with phosphatic pebbles at the base. Fossil content: Squalicorax santonicus Glackmann & Zhelezko, 1979, Eostriatolamia aktobensis Zhelezk.0, 1988;_/ide N a id in (1979) Распределение ламноидных акул в меле и палеогене было the belemnite Goniocamax lundgreni uilicus. Thickness of the fossil изучено в восточном Перитегисе, в западном и северном bed: 1.5 - 3.5 m. Казахстане и в Преуралье. Особое внимание было уделено - bed B: sandy clays, with phosphatic concretions at the base. Fossil content: Squalicorax papulovi Zhelezko, 1988, Eostriatolamia akto- изучению сангоно-кампанской, мелово-палеоценовой и beiisis\ fide N a id in (1979) the belemnite Goniocamax lundgreni uili­ палеоцено-эоценовой границам. cus. - bed C: fine-grained quartz-glauconitic sands, interbedded with clays, and with a phosphoritic bed at the base. Thickness of the bed is 3 - 4 m. Ключевые слова: мея, палеоген, ламноидные акулы, Fossil content: Squalicorax kaupi (Agassiz, 1843), Eostriatolamia venusta (Leriche, 1906), Archaeolamna macrorhiza (Copé)\fide N a i­ восточный Перитетис d in (1979) the belemnites Belemnitella praecursor praecursor, Acti- nocamax verus fragilis. The Kubley beds are characterized by the Gavelinella infra- santonica foraminifer complex (B e n ia m o v s k h et al., 1979); the Introduction higher part of the section - the Zhurun beds - are characterized by the G. stelligera complex for the Santonian part of the The regions of the Eastern Peri-Tethys (mainly Mangyshlak section and by the Cibicidoides temiremsis complex for the and the NE Pericaspian, Kazakhstan) contain relatively com­ Campanian (ibid.). plete sections of all stages of the Cretaceous and Palaeogene Zhurun beds (Santonian-Campanian) - the section is de­ systems. scribed from bottom to top: From these sediments (Mangyshlak, Aktyubinskoe Premu- - Santonian part: quartz - siltstone sands with a few phosphatic nodules. Fossil content: Squalicorax kaupi, Eostriatolamnia venusta, godzharia, Ustyurt, Preuralia, Turgay) many elasmobranch Archaeolamna macrorhiza', fide N a id in (1979) the belemnite Belem­ teeth were collected (G luckjMAN, 1964, 1980; G l Oc k m a n & nitella praecursor media and fide B o b k o v a (1979) the bivalve Oxyto- Z h e l e z k o , 1979; Z h e l e z k o , 1994,1995; Z h e l e z k o & K o z l o v , ma tenuicostata. 174 Viktor I. ZHELEZKO: Stratigraphie distribution of lamnoid sharks

of the absence of ammonites. The problem is complicated further because Aktyubinsk and Preuralia are part of the Tem­ perate realm and Mangyshlak of the Tethyan realm. The clas­ sical index fossils in the Precaspian are belemnites, and in Mangyshlak for this boundary Marsupites is used. Locally, stratigraphical correlation can be undertaken with taxa of the genus Squalicorax: bed 4 in the Mangyshlak sec­ tions contains the foram complex Gavelinella clementiana, the echinoid Offaster pilula and the shark Squalicorax kaupi - they indicate the Santonian. The lower boundary of the Campanian in the NE Pericaspian correlates with the base of the beds with Belemnitella praecursor mucronatiformis, Paractinocamax grossouvrei pseudoalfridi ànd Squalicorax lindstromi.

Cretaceous/ Palaeocene boundary

The faunal turnover at the К/ T boundary is extensive and occurs in many different fossil groups (N a id in , 1976; A l e k ­ s e e v , 1989). Also in the development of elasmobranch sharks this boundary is clearly visible (Fig. 2). Shark teeth localities In the Cretaceous basins the main osteodont fishes belonged Cretaceous: 1- Aktyubinsk to the families Cretodontidae, Cretoxyrhinidae, Anacoracidae 2- Mangyshlak and Ptychodontidae. From their teeth it is obvious that they Palaeogene: 3- Emba River were large fishes (7 to 10 m, or even more). They dominated in 4- Tobol River the pelagic and in the littoral zones. Cretodontidae, Cretoxyr- hinidae and Anacoracidae had teeth of the tear-cutting type. Fig. 1 — Localities from where shark teeth were studied Ptychodontidae had huge chewing teeth, with a thick layer o f enamel, capable of crushing animals, even those with a thick armour. The acme of the Cretodontidae, Cretoxyrhini­ dae and Ptychodontidae is situated in the Albian-Santonian time interval. From the Campanian onwards, distinct signs of de­ - Campanian part: fine-grained sands, clayey siltstones, with phos­ crease in number of taxa are seen. In the Anacoracidae the phorites in basal part. Thickness of the bed: 4 - 6 m. Fossil content: maximum development was in the Santonian-Campanian inter­ • Squalicorax lindstromi (D a v is , 1890), Eostriatolamia lerichei G lC ick- val; during the Maastrichtian their number decreased. At the 'MANN & Z h e le z k o , 1979, Archaeolamna arcuata (W oodward, 1874); end of the Maastrichtian the last representatives of the Creto­ fide N a id in (1979) the belemnites Paractinocamax grossouvrei dontidae, Cretoxyrhinidae, Anacoracidae, and Ptychodontidae pseudoalfridi, Actinocamax laevigalus laevigatiformis, A. verus fragi- lis, Belemnitella praecursor media and B. praecursor mucronatifor- died out. mis. Another group of lamnoid sharks (families Jaekelodonti- Santonian-Campanian boundary deposits in Mangyshlak dae, Odontaspididae, Otodontidae, Isuridae, Alopiidae, and peninsula have been studied in the Zhalgan, Kush, Aksyrtau Scapanorhynchidae) had their origin in the late Cretaceous, and Sulukapy sections. A composite section of the sections in but the main development of this group was in the Palaeo­ these individual outcrops would be as follows (from bottom to gene. top): The Scapanorhynchidae had three genera in the Cretaceous: (1) greenish-grey marl, with Inoceramus undulatoplicatus (fide Scapanorhynchus, Raphiodus and Anomotodon; in the Palaeo­ Atabekian, 1979); in the basal levels the Stensoeina exculpta gene the family was less developed. The acme of the Jaekelo- foraminifer complex, in the top levels the S. granulata perfecta com­ dontidae was during the Palaeogene; in the Cretaceous the plex (fide Beniamovskii et al., 1979). Thickness: over 5 m. Age: family was represented by the genus Eosti'iatolamia. Simi­ Santonian. (2) white, coarse-grained chalk, with numerous Osangidaria. Thick­ larly, in the Cretaceous, the Odontaspididae were represented ness: 3 to 5 m. Age: Santonian. by the genera Hispisdaspis and Serratolamna, the Otodontidae (3) white chalk, more sandy in its upper part, with the crinoids by the genus Cretolamna, the Isuridae by the genus Acrolamna, Uintacrinus and Marsupites, the Gavelinella stelligera foraminiferal the family Alopiidae by the genus Paranomotodon; in the complex (fide BeniajMOVSKII et a i, 1979) and th e shark Squalicorax Palaeogene the Alopiidae expanded into many taxa of the kaupi. Thickness: 3 to 4 m. Age: Santonian. (4) white, coarse-grained chalk, with the Gavelinella clementiana compound genus Alopias. New phylogenetic lines developed foraminifer complex (fide Beniamovskii et al., 1979) in the top levels, for the Jaekelodontidae, Odontaspididae, Otodontidae, Isuridae and with the echinoid Offaster pilula and the shark Squalicorax kaupi. and Alopiidae in the Palaeogene. Thickness: 6 m. Age: Santonian. (5) interbedded white chalk and greenish, marly chalk. Fossil content: The К/T boundary can be dated by the extinction of the lamnoid the echinoids Micraster schroederi and Offaster pilula, the shark Squalicorax lindstromi-, also foraminiferal complexes with Bolivi- noides decoratus/ Cibicidoides temirensis (fide Beniamovskii et a l, 1979). Thickness: 7 to 11 m. It is difficult to precisely place the Santonian-Campanian Fig. 2 — Distribution of Cretaceous and Palaeogene lamnoid boundary in Mangyshlak and in the Pericaspian strata because sharks MESOZOIC CENOZOIC CRETACEOUS PALAEOGENE ra r О n о w % Q W О OQ> CD ш

8 H Pseudoisurus ? о a Cretodus о н - z ■ Protolamna H Ѳ Archaeolamna > w -■ -- Lepîostirax Odontaspis " robusta africana a > Palaeohypotodus-Jaekelotodus ° E2 Mennerotodus Borealotodus > H en о Tobolamna Eostriatolamia Glueckmanotodus \ \ Synodontaspis Hispidaspis Üо Araloselachus о. z Clerolamna $ I I — Serratolamna 'Lampa о Hypotodus ‘Odontaspis’ g CD Striatolamia Otodus О 3 Cretolamna CD 3 ° со 5 o Parotodus 1 i i-hО ? Palaeocarcharodon - - H , gf s § о Cretoxyrhina ms Paraisurus Macrorhizodus Acrolamna со Isurolamna tr Lamio.itorr a - - 1 ■ Xyphodolamia w Karaisurus iz: Squalicorax > о Palaeoanacorax о , 1 1 1 HI----- I Pseudocorax11 £ Microanacorax о Ptychocorax ѳ I I I Paraanacorax Paranomotodon A lopias' Scapanorhynchus ^ г 1 S £ Khaphiodus - 3 ! m> :> Anomotodon I I I

ç i \ z 176 Viktor I. ZHELEZKO: Stratigraphie distribution of lamnoid sharks

shark families Cretodontidae, Cretoxyrhinidae and Anacoraci- sional surfaces. From bottom to top the following beds have dae. been identified: (1) white marls with belemnites (Maastrichtian); thickness: more The orthodont sharks also were influenced by the К/T bound­ than 3 m; (2) sands with phosphatic nodules; fossil content: Striatolamia striata ary. More than 15 families o f Cretaceous orthodont sharks are (Winkler, 1874), Palaeohypotodus mtoti (Winkler, 1874); age: Upper known. The most important among them are: Polyacridontidae, Palaeocene; Hexanchidae, Heterodontidae, Squatinidae, Ginglimostomati- (3) quartz-glauconitic sands, with phosphatic nodules at the base; dae, Rhinobatidae, Squalidae, Dalatiidae. fossil content: Striatolamia stiiata, Otodus obliquus Agassiz, 1843; These small and medium-sized sharks and batoids were age: according to Tabachnikova (1989a) narmoplankton zone UP 8 part of benthos in littoral waters. They mainly fed on small (upper part of Palaeocene); thickness: 0.6 m; (4) clayey sands, at the base with phosphoritic concretions; fossil species of invertebrates and fishes. At the К/T boundary these content: Striatolamia elegans (Agassiz, 1843), Otodiis obliquus', age: Selachians show changes at the generic and specific level. In lower part of the Ypresian; thickness: more than 4 m. the Palaeogene new orthodont families such as the Myliobati- dae, Torpedinidae, Echinorhinidae, Triakidae and Carcharini- The Belinsky quarry (Tobol River basin) shows the following dae arose. They were the first representatives o f the neosela­ Palaeogene section, from bottom to top: chians, which in recent seas and oceans have a prevalent posi­ (1) conglomerate, without fauna (0.5 m); tion. (2) siltstone, fine grained sand, weakly carbonaceous, with flint peb­ bles at the base; fossil content: Striatolamia striata', age: Thanetian; thickness: 1.3 to 3.7 m; (3) interbedded clays and irregularly grained gravel sands; fossil con­ tent: Striatolamia elegans and Otodus obliquus', age: according to Palaeocene - Eocene boundary Tabachnikova (1989b) narmoplankton zone NP 12, dinoflagellate zone W 6-7 according to V a s ilj e v a (1990), Lower Ypresian; thick­ ness: 2.3 m; The Thanetian/ Ypresian boundary was studied in sections at (4) olive-green clays with pebbles at the base; fossil content: Striato­ Shatyrlisay (on the Emba River) and at Belinsky/ Ajat on the lamia macrota (Agassiz, 1843); age: Bartonian; thickness: 1.9 m Tobol River in northern Kazakhstan. For comparative purposes the Marke and Egem quarries in Belgium, and the Thanetian Between the Palaeocene and Eocene important changes oc­ stratotypical section at Heme Bay (England) were also curred in the selachians; in some groups (especially the large sampled. predators) this development seems to have been progressive The section at Shatyrlisay (Emba River basin) contains Pa­ whereas in others it seemed more sudden. Many existing groups laeocene and Lower Eocene deposits: clayey to sandy strata of smaller sharks had an explosive evolution in the early with phosphoritic concretions at the base, delimited by ero- Eocene.

References

- A k im e t s , V . S., B eniamovskii, V . N ., G l a d k o v a , V . I., Z h e ­ G l Oc k m a n , L. S., 1964. Sharks of the Palaeogene and their l e z k o , V. I. & N a id in , D. P., 1979. Foraminifera of the Santo­ stratigraphie significance. Nauka Izdatelstvo, Moscow-Lenin- nian/ Campanian boundary sediments (Upper Cretaceous) of grad, 299 pp. [in Russian]. Mangyshlak. Byulleten Moskovskogo Obshchestvo Ispitateley G l Oc k m a n , L . S., 1980. Evolution of Cretaceous and Cainozoic Prirody- Serija Geologia 54, 6: 113-120. [in Russian]. lamnoid sharks. Akademia Nauk SSSR, Moscow, 247 pp. [in A l e k s e e v , A . S., 1989. Global biotic crises and mass extinc­ Russian]. tions in the Phanerozoic history of the world. In: M e n n e r , V. G l Oc k m a n , L. S. & Z h e l e z k o , V. I., 1979. Sharks. In: P a pu­ V., Biotic events at the main Phanerozoic boundaries [in Rus­ l o v , G. N. & N a id in , D. P., Eds., The Santonian/ Campanian sian]. boundary on the East European Platform. Tnidy Instituta Geo­ A t a b e k y a n , A . A ., 1979. Inoceramids of the Santonian-Cam- logii i Geokhimii, Akademya Nauk SSSR - Uralskij nauchnij panian boundary strata in the Aktyubinsk district. In: P a p u l o v , tsentr, 148: 90-105. [in Russian]. G . N . & N a id in , D. P ., Eds., The Santonian/Campanian bound­ N a id in , D. P., 1976. The Cretaceous/Palaeogene boundary. In: ary on the East European Platform. Tnidy Instituta Geologii i Boundaries of geological systems. For the 70 th birthday of Geokhimii, Akademya Nauk SSSR - Uralskij nauchnij tsentr, Academician V. V. Menner. Nauka, Moscow, pp. 225 - 257. [in 148: 42 - 65. [in Russian], Russian]. B eniamovskii, V.N., G l a d k o v a , V. I. & K o p a e v ic h , L. F. , N a id in , D. P., 1979. Belemnitellidae. In: Papulov, G. N. & 1979. Foramimfera. In: P a p u l o v , G. N. & N a id in , D. P. , Eds., N a id in , D. P., Eds., The Santonian/ Campanian boundary on the The Santonian/Campanian boundary on the East European East European Platform. Tnidy Instituta Geologii i Geokhimii, Platform. Trudy Instituta Geologii i Geokhimii, Akademya Akademya Nauk SSSR - Uralskij nauchnij tsentr, 148: 75 - 89. Nauk SSSR - Uralskij nauchnij tsentr, 148: 31 - 41. [in Rus­ [in Russian]. sian], P a p u l o v , G . N . & N a id in , D. P. , Eds., 1979. The Santonian/ B o b k o v a , N . N ., 1979. Oxytomas from the Santonian-Campa- Campanian boundary on the East European Platform. Tnidy nian interval of the Aktyubinsk district. In: P a p u l o v , G. N . & Instituta Geologii i Geokhimii, Akademya Nauk SSSR - Uralskij N a id in , D. P . , Eds., The Santonian/ Campanian boundary on the East European Platform. Trudy Instituta Geologii i Geokhi­ nauchnij tsentr, 148: 117 pp. [in Russian]. mii, Akademya Nauk SSSR - Uralskij nauchnij tsentr, 148: 66 - T abachnikova , I.P., 1989a in: B e n y a m o v s k y , V.N., L ev ina , 70. [in Russian]. A. P., P r o n in , V .G ., T abachnikova , I. P ., Palaeocene of the Report 2 177

Turgay depression. Izvestiya Vysshikh Uchebnykh Zavedenii. Z h e l e z k o , V. I. & K o z l o v , V. A., 1999. Elasmobranchii and Geologiya i Razvedka, 1989, 6: 47-55 [in Russian]. Palaeogene biostratigraphy of Trans Urals and Central Asia.

T abachnikova , I.P ., 1989b in: B e n y a m o v s k y , V.N., L e v i­ Materials on Stratigraphy and Palaeontology o f the Urals, 3. n a , A. P., P r o n in , V.G., T abachnikova , I. P., 1989a. Lower Ekaterinburg: Urals Branch o f Russian Academy of Sciences Eocene of the Turgay depression. Izvestiya Vysshikh Ucheb­ Publ. House, 1999. 324 pp. [in Russian]. nykh Zavedenii. Geologiya i Razvedka, 1989, 9: 3-16 [in Rus­ sian].

V a l s iu e v a , O.N., 1990. Palynology and microphytoplancton of Palaeogene of South Trans Urals. Sverdlovsk. 54 pp. [in Author’s address: Russian], Viktor I. Z h e l e z k o , Z h e l e z k o , V . I., 1994. Sharks of the family Jaekelotodontidae Institute of Geology and Geochemistry, from European and middle Asian palaeogeographic provinces. Urals Brach of the Russian Academy Byulleten Moskovskogo Obshchestvo Ispitateley Prirody- Geo- of Sciences, logicheskii Seriya, 69, 6: 47 - 62. [in Russian]. Pochtoviy per. 7, 620219 Ekaterinburg, Z h e l e z k o , V. I., 1995. Biostratigraphy of Palaeogene sedi­ Russia ments of the northern Karagia depression (Mangyshlak, Ka­ zakhstan). Akademya Nauk SSSR - Uralskij otdelenie, Ekater­ inburg, pp. 6-10. [in Russian]. Typescript submitted: 15.1.1999 178 Viktor I. ZHELEZKO: Stratigraphie distribution of lamnoid sharks

APPENDIX

Stratigraphie distribution of lamnoid shark genera іл Cretaceous and Palaeogene.

CRETACEOUS FAMILIES AND GENERA Family Ptychodontidae Woodward, 1932 Ptychodus Agassiz, 1839. Heteroptychodus Yabe et Obata, 1930. Family Cretodontidae Zhelezko, fam. nov., 1999 ? Pseudoisurus Glückman, 1957 Cretodus Sokolov, 1965 Protolamna Cappetta, 19S0 Archaeolamna Siverson, 1992 Leptostirax Williston, 1900 Family Cretoxyrhinidae Glückman, 1958. Cretoxyrhina Glückman, 1958. Paraisurus Glückman, 1957. Family Anacoracidae Casier, 1947. Palaeoanacorax Glückman, 1971 Squalicorax Whitley, 1939. Pseudocorax Priem, 1897. Microanacorax Glückman, 1979. Ptychocovax Glückman, 1979. Paraanacorax Glückman, 1979. CRETACEOUS AND PALAEOGENE FAMILIES AND GENERA Family Jaekelotodontidae, Glückman, 1964 (Cretaceous-Palaeogene). Eostriatolamia Glückman, 1979, Cretaceous. Palaeohypotodus Glückman, 1964, Palaeogene. Jaekelolodus Menner, 1928, Palaeogene. Glueckmanotodus Zhelezko, 1999, Palaeogene. Mennerotodus Zhelezko, 1985, Palaeogene. Borealotodus Zhelezko, 1999, Palaeogene. Tobolamna Zhelezko, 1999, Palaeogene. Family Odontaspididae Müller & Henle, 1839 (Cretaceous-Palaeo­ gene). Hispidaspis Sokolov, 1978, Cretaceous. Serratolamna Landemame, 1991, Cretaceous. Synodontaspis White, 1931, Palaeogene. Araloselachus Glückman, 1964, Palaeogene. Clerolamna Zhelezko, 1999, Palaeogene. Hypotodus Jaekel, 1985, Palaeogene. Striatolamia Glückman, 1964, Palaeogene. ' Family Otodontidae Glückman, 1964 ( Cretaceous-Palaeogene). 'Cretolamna Glückman, 1958, Cretaceous. Otodiis Agassiz, 1843, Palaeogene. (The genus Carcharocles is herein included into the genus Otodus). Parotodus Cappetta, 1980, Palaeogene. Palaeocarcharodon Casier, 1961, Palaeogene. Family Isuridae Gray, 1851 (Cretaceous- Palaeogene). Acrolamna Zhelezko, 1990, Cretaceous. Macrorhizodus Glückman, 1964, Palaeogene. Isurolamna Cappetta, 1976, Palaeogene. Lamiostoma Glückman, 1964, Palaeogene. Xiphodolamia Leidy, 1877, Palaeogene. Family Alopiidae Gill, 1S55 (Cretaceous-Recent) Paranomotodon Herman in Cappetta & Case, 1975, Cretaceous-Pa­ laeogene. Alopias Rafinesque, 1810, Palaeogene-Recent. Family Scapanorhynchidae Bigelow & Schroeder, 1948 (Cretaceous- Palaeogene). Scapanorhynchus Woodward, 1889, Cretaceous-Palaeogene. Rhaphiodiis Glückman, 1980, Cretaceous. Family Mitsukurinidae Jordan, 1898 Anomotodon Arambourg, 1952, Cretaceous-Palaeogene. Mitsukurina Jordan, 1818, Palaeogene- recent Recommandations aux auteurs

Le Bulletin de l’I.R.Sc.N.B. est publié annuellement en trois Tableaux séries: Biologie, Entomologie, Sciences de la Terre. Seuls seront acceptés les articles originaux. Les manuscrits Les tableaux seront présentés séparéments. Ils seront numérotés doivent être rédigés en anglais, français, allemand ou néerlan­ en chiffres arabes accompagnés d’une légende et porteront le dais. Les articles seront soumis à un comité de lecture dont la nom de l’auteur. décision est souveraine. Celle-ci sera communiquée à l’auteur dans les meilleurs délais. Les manuscrits non conformes aux présentes recommandations seront refusés. Dessins, photographies et planches En principe, aucune limite n’est imposée pour la longueur des manuscrits. Cependant, pour des articles particulièrement Les dessins, photograhies et planches de bonne qualité doivent longs, une contribution financière pourra être demandée à être réalisés en tenant compte de la justification du Bulletin l’auteur. (17,6x24,5 cm pour une page entière et 8,5 x24,5 cm pour Les manuscrits sont à envoyer à M. le Directeur de une colonne) et de la réduction éventuelle que l’auteur préci­ l’I.R.Sc.N.B. sera. Chaque illustration portera le nom de l’auteur et le numéro Cinquante tirés-à-part seront gratuits. de la figure. Les légendes des illustrations seront dactylogra­ phiées sur des feuilles séparées. Il est souhaitable que chaque illustration comporte une échelle. Texte

Le texte doit être dactylographié dans sa forme définitive en Remarques générales trois exemplaires sur format DIN A4, avec des marges suffi­ santes (4 cm côté gauche), double interligne, recto seulement. Il Les noms de genres et d’espèces et les mots latins seront doit mentionner le(s) nom(s), le(s) prénom(s) du (des) auteur(s) soulignés. et leur adresse professionnelle à placer après les références On utilisera les unités du système SI et les symboles interna­ bibliographiques. tionaux. Il doit indiquer, outre le titre, un titre abrégé (35 caractères L’emploi de notes inftapaginales doit être évité si possible'. maximum). Il doit être accompagné d’un résumé en deux Les remerciements figureront à la fin du texte avant les réfé­ langues, dont un en anglais. Chaque résumé sera suivi d e trois rences. à six mots-clefs. Le renvoi aux références bibliographiques se fera en mentionnant dans le texte le nom de l’auteur (en petites capitales), suivi de l’année et éventuellement d e la page, pla­ Epreuves cées entre parenthèses. Le manuscrit doit être accompagné des illustrations et de deux L’auteur recevra une première et éventuellement une seconde photocopies de chacune d’elles. L’auteur mentionnera dans la épreuve. Les épreuves devront être renvoyées dans les délais marge du texte les endroits où il souhaite voir insérer les fixés. Tout retard entraînera la remise de la publication à une tableaux et les figures. Dans les manuscrits taxonomiques les date ultérieure. Les corrections sont apportées en rouge, dans listes synonymiques éventuelles doivent être aussi précises que la marge au moyen des signes conventionnels. Toute modifica­ possible. tion appportée au texte original sera facturée à l’auteur. Short contributions: rubrique pour articles ne dépassant pas 4 pages imprimées (traitant de résultats nouveaux ou d’actualité) qui peuvent être soumis jusqu’à deux mois avant la mise à l’impression du volume. Le manuscrit doit également être soumis sur disquette (WORD ou WP).

Liste de références

Les références seront classées par ordre alphabétique des au­ teurs et par ordre chronologique pour chaque auteur. Les titres des périodiques ne seront pas abrégés, mais écrits en toutes lettres. Les références seront présentés de la manière suivante:

B r o w n , S., C a s s u t o , S. & Loos, R.W., 1985. Biomechanics of chelipeds in some decapod crustaceans. Journal of Zoology, 188 (2): 143-159.

G ery, J., 1977. Characoids of the World. Tropical Fish Hob­ byist Publications Inc. Ltd., Neptune City, U.S.A., 672 pp.

H aq, B.U., 1984. A synoptic review of 200 million years of ocean history. In: H a q, B.U. & M illim a n , J.D. (Editors), Marine Geology and Oceanography o f Arabian Sea and coastal Pakistan. Van Nostrand Reinhold, London, pp. 201-232.

M il l e , G.S., 1913. Revision o f the Bats of the genus Glos- sophaga. Proceedings of the United States National Museum, 46: 413-429. Richtlijnen у о or de auteurs

Het Bulletin van het K.B.I.N. verschijnt jaarlijks in drie reek- M il l e , G.S., 1913. Revision of the Bats of the genus Glos- sen: Biologie, Entomologie, Aardwetenschappen. sophaga. Proceedings of the United States National Museum, Enkel originele artikels worden aanvaard. Ze dienen geschreven 46: 413-429. te zijn in het Engels, Frans, Duits o f Nederlands. De ingezon- den artikels worden ter beoordeling voorgelegd aan een leesco- mité. De beslissingen van dit comité zijn bindend en worden zo Tabellen spoedig mogelijk medegedeeld aan de auteur(s). Manuscripten niet opgesteld volgens deze richtlijnen worden geweigerd. Tabellen worden op afzonderlijke vellen toegevoegd. Ze wor­ Er is in principe geen beperking wat de lengte van de artikels den genummerd met arabische cijfers, en zijn voorzien van een betreft. Wel kan eventueel een fïnanciële tussenkomst gevraagd legende en van de naam van de auteur. worden voor langere artikels. De manuscripten worden naar de Directeur van het K.B.I.N. gezonden. Tekeningen, foto’s en platen Per artikel worden 50 gratis overdrukken ter beschikking gesteld. Tekeningen, foto’s en platen moeten van goede kwaliteit zijn. De auteurs dienen rekening te houden met de afmetingen van Tekst het Bulletin (17,6 x 24,5 cm voor een volledige bladzijde en 8,5 x 24,5 cm voor een kolom) en dienen de eventuele reductie De tekst wordt ingezonden in zijn defmitieve vorm, in drie te vermelden. exemplaren op DIN A4-formaat, uitsluitend recto getypt met Op iedere illustratie zal de naam van de auteur(s) en het een dubbele regelafstand en met een 4 cm brede linkermarge. nummer van de illustratie vermeld zijn. Naam en adres van de auteur(s) worden na de literatuurlijst De legendes van de figuren worden op een afzonderlijk blad geplaatst. toegevoegd. Er dient een verkorte titel opgegeven te worden van maximum Het is wenselijk figuren van een schaal te voorzien. 35 lettertekens, die bovenaan de tekstbladzijden zal gedrukt worden. De samenvatting dient opgesteld te worden in tenminste twee Algemene opmerkingen talen, waarvan één het Engels, en wordt telkens gevolgd door drie tôt zes trefwoorden. Genus- en speciesnamen en Latijnse woorden worden steeds Verwijzing in de tekst naar de literatuurlijst gebeurt als volgt: onderstreept. tussen haakjes worden de naam van de auteur (in kleine kapi- De auteurs worden verzocht eenheden van het Sl-systeem en taaltjes), het jaar en eventueel de bladzijde aangegeven, o f de internationale symbole te gebruiken. auteursnaam wordt gevolgd door jaar en eventueel bladzijde Het gebruik van voetnota’s dient zoveel mogelijk vermeden te tussen haakjes. worden. De originele illustraties en twee kopieën worden samen met het De bedankingen worden aan het einde van de tekst geplaatst manuscript ingediend. De auteur geefit in de marge van de tekst juist voor de literatuurlijst. -de plaats van de figuren en tabellen aan. In taxonomische artikels worden de eventuele aanwezige syno- nymielijsten zo nauwkeurig mogelijk opgesteld. Drukproeven Short contributions: rubriek voor korte artikels (maximum 4 gedrukte bladzijden) over onderwerpen die nieuw zijn of ac- De auteurs ontvangen één en indien nodig twee drukproeven. tueel in de belangstelling staan; mogen voorgelegd worden tôt Deze dienen teruggestuurd te worden binnen de vastgestelde 2 maanden voor het in druk gaan van het volume. termijn, zoniet zal de publikatie van het artikel naar een latere Het manuscript moet eveneens op diskette (WORD of WP) datum verschoven worden. ingediend worden. Verbeteringen worden in het rood aangebracht in de marge, door middel van de conventionele tekens. Ieder wijziging van de tekst, aangebracht in de drukproef, zal aan de auteur aange- Literatuurlijst rekend worden.

De literatuurlijst vermeldt alleen die werken waamaar in het artikel verwezen wordt, en is alfabetisch gerangschikt, naar de auteursnaam. De titels van de tijdschriften worden niet afge- kort, maar voluit geschreven. De referenties worden opgesteld aan de hand van onderstaande voorbeelden.

B r o w n , S., C a s s u t o , S. & Loos, R.W., 1985. Biomechanics of chelipeds in some decapod crustaceans. Journal of Zoology, 188 (2): 143-159.

G e r y , J., 1977. Characoids o f the World. Tropical Fish Hob­ byist Publications Inc. Ltd., Neptune City, U.S.A., 672 pp.

H a q , B.U., 1984. A synoptic review of 200 million years of ocean history. In: H a q , B.U. & M il l im a n , J.D. (Editors), Marine Geology and Oceanography of Arabian Sea and coastal Pakistan. Van Nostrand Reinhold, London, pp. 201-232. Instructions for contributors

The I.R.Sc.N.B./K.B.I.N. Bulletin is published annually in Tables three series: Biology, Entomology, Earth Sciences. Only original contributions will be considered. Articles written Tables should be type-written on separate sheets, and should be in English, French, German and Dutch can be submitted. An numbered consecutively using arabic numerals. Each table editorial committee will referee all papers; its decision is final, must have a legend, and must have the name of the author. and will be communicated to the author(s) as quickly as possi­ ble. Papers not conforming to the present instructions will be refused. Illustrations: figures, photographs, plates There is, a priori, no limit as to the length of the papers published. However, in some cases, after consulting the Drawings, diagrams, photographs and plates must be of good author(s), shortening o f the text or a financial contribution quality. Authors must keep the size of the Bulletin in mind (17.6 may be requested. x 24.5 cm for a full page, and 8.5 x 24.5 for one column) when Manuscripts should be sent to the Director of the preparing illustrations, and when necesssary indicate the re­ I.R.Sc.N.B./K.B.I.N. duction. Each illustration must carry the name(s) of the Authors will receive 50 free offprints. author(s) and the number of the illustration. The legends of the illustrations should be typed on a separate page or pages. Symbols used in the illustrations are to be defined in the Text legends. It is preferable to add a scale on drawings and photo­ graphs. Articles should be submitted in their final form (three copies) on DIN A4 paper, typed only recto, double spaced throughout and with margins on both sides of the text (4 cm on the left General remarks side). Name and professional address of the paper’s author(s) should be placed after the reference-section. The names o f genera and species and Latin words must be An article must be provided with a title, and a “ running head” , underlined throughout the manuscript. Authors are requested not exceeding 35 characters. Abstracts should be written in to use SI system symbols. Footnotes should be avoided. Place English and in at least one other language, and each abstract acknowledgements at the end of the text, just before the biblio­ should be followed by 3 to 6 key-words. graphic references. Bibliographic references in the text should indicate the name of the author (in small capitals) and be followed by the year of publication, together with the exact page reference (if appro­ Proofs priate), both between brackets. Original illustrations with two extra copies should be submitted with the manuscript. The Authors will receive one and if necessary two proofs. These author(s) should indicate in the margin o f the text where the must be returned within the time limit indicated. If this does figures and tables are to be inserted. In taxonomic papers not happen, the publication of the paper will be postponed synonymies must be as precise as possible. automatically to a later date. Make corrections in red in the Short contiibutions: for papers, not longer than 4 printed pages margin using conventional symbols. Each change to the origi­ (presenting new results of a topical subject) which can be nal text made in proof stage will be charged to the author. submitted up to two months before the volume goes to the printers. The manuscript must also be submitted on diskette (WORD or WP).

Literature cited

Bibliographic references should be classified alphabetically ac­ cording to the author’s names. Include only papers mentioned in the text of the paper. Do not abbreviate the titles of journals. Exemples are as follows:

B r o w n , S., C a s s u t o , S. & Loos, R.W., 1985. Biomechanics of chelipeds in some decapod crustaceans. Journal of Zoology, 188 (2): 143-159.

G e r y , J., 1977. Characoids of the World. Tropical Fish Hob­ byist Publications Inc. Ltd., Neptune City, U.S.A., 672 pp.

H a q , B.U., 1984. A synoptic review of 200 million years of ocean history. In: H a q , B.U. & M il l im a n , J.D. (Editors), Marine Geology and Oceanography o f Arabian Sea and coastal Pakistan. Van Nostrand Reinhold, London, pp. 201-232.

M il l e , G.S., 1913. Revision of the Bats of the genus Glosso- phaga. Proceedings of the United States National Museum, 46: 413^-29. TABLE DES MATIÈRES CONTENTS

Contents 3 K e n n e d y W. J. & Cobban, W. A ., Pachydis­ cus (Pachydiscus) hornbyense JONES, 1963, Frontispiece: D. P. N a id in 4 and P. (P.) catarinae (Anderson & Hanna, Preface 5 1935) (Cretaceous, Campanian: Ammonoi- dea), Pacific Realm marker fossils in the Acknowledgements 6 Western Interior Seaway of North America 119 H a n co ck , J. M., The contributions of D. P. Naidin to the study of the Cretaceous system 7 Kopaevich, L. F. & Beniamovskii, V. N., Foraminiferal distribution across the Maas- Alekseev, A. S., Kopaevich, L. F., O v e c h k i­ trichtian/Danian boundary of Mangyshlak pe­ n a , M. N. & O lferiev, A. G., Maastrichtian ninsula (West Kazakhstan) 129 and Lower Palaeocene of Northern Saratov Region (Russian Platform, Volga River): Fo­ N ik ish in , A. M. Z i e g le r , P. A. Stephenson, raminifera and calcareous nannoplankton 15 R. A. & U s t in o v a , M. A., Santonian to Pa­ laeocene tectonics of the East-European cra­ C o b b a n , W . A ., Ke n n e d y , W . J. & L a n d m a n , ton and adjacent areas 147 N. H. Platyscaphites, a new ammonite from the Lower Campanian (Upper Cretaceous) of Robaszynski, F., Cretaceous Stages Boun­ the United States Western Interior 47 daries in central Tunisia: how to follow the Brussels 1995 Symposium Recommendations 161 D h o n d t, A. V., Upper Maastrichtian bivalve faunas from the Crimea, Maastricht and Man­ gyshlak 55 G a le , A. S., H a n c o c k , J. M. & K e n n e d y , W.. J., Biostratigraphical and sequence correla­ Reports: tion of the Cenomanian successions in Man­ gyshlak (W. Kazakhstan) and Crimea (Ukraine) with those in southern England 67 K otetishvili, E., Upper Cretaceous Ammo­ Gabdullin, R. R., G u z h ik o v , A. Ju., B o - nites and their extinction: interpretation of g a c h k in , A. B., Bondajrenko, N. A., L u b i­ data from the Caucasus and comparison with m o v a , T. V. & W id rik , A. B ., Periodites Mangyshlak, the Crimea and the Maastricht below and above the К/T boundary 87 area 167 J a g t, J. W. М., An overview of Late Creta­ Z h e le z k o , V. I., Stratigraphie distribution ceous and Early Palaeogene echinoderm fau­ of lamnoid sharks at Cretaceous and Palaeo­ nas from Liège-Limburg (Belgium, The Ne­ gene stage boundaries in the Eastern Peri- therlands) 103 Tethys 173