Palaeontological Society of Japan

Total Page:16

File Type:pdf, Size:1020Kb

Palaeontological Society of Japan Transactions and Proceedings of the Palaeontological Society of Japan New Series No. 87 Palaeontological Society of Japan September 30, 1972 Editor: Takashi HAMADA Associate editor: Yasuhide IWASAKI Officers for 1971 -1972 President: · Tokio SHIKAMA Councillors (* Executives): Kiyoshi ASANO*, Kiyotaka CHINZEI*, Takashi HAMADA*, Tetsuro HANAI*, Kotora HATAI, Itaru HAYAMI, Koichiro IcHIKAWA, Taro KANAYA, Kametoshi KANMERA, Tamio KOTAKA, Tatsuro MATSUMOTO*, Hiroshi OZAKI*, Tokio SHIKAMA *, Fuyuji TAKA!*, Yokichi TAKA YANAGI Secretaries: W ataru HASHIMOTO, Saburo KANNO Executive Committee General Affairs: Tetsuro HANAI, Naoaki AOKI Membership: Kiyotaka CHINZEI, Toshio KOIKE Finance: Fuyuji T AKAI, Hisayoshi !Go Planning : Hiroshi OZAKI, Kazuo ASAMA Publications Transactions : Takashi HAMADA, Y asuhide IwASAKI Special Papers: Tatsuro MATSUMOTO, Tomowo OzAWA " Fossils": Kiyoshi ASANO, Toshiaki TAKAYAMA All communications relating to this journal should be addressed to the PALAEONTOLOGICAL SOCIETY OF JAPAN c/o Business Center for Academic Societies, Japan Yayoi 2-4-16, Bunkyo-ku, Tokyo 113, Japan. Sole agent: University of Tokyo Press, Hongo, Tokyo Trans. Proc. Palaeont. Soc. Japan; N.S., No. 87, pp. 377-394, pl. 47, September 30, 1972 601. TWO SMALL DESMOCERATID AMMONITES FROM HOKKAIDO (STUDIES OF THE CRETACEOUS AMMONITES FROM HOKKAIDO AND SAGHALIEN-XXIV)* TATSURO MATSUMOTO!), TATSUO MURAMOT02> and AKITOSHI INOMN> ~l::.ffljitffti:-T:A.:c-e 7 :Af31.'H~~7 :..-'.:C-;1-1 ~ 2 f!fi: -t'O) 1 fi~~}]IJ!I!!)JJ3.!1E.;'f-O)r$-e / ~ =- 7 :..-'0) Mantelliceras japonicum 1\'.'17• t?:>iit L. t: "b 0)'"(', Wfr~Wfrm! C. VC:::.. :::.lr.ilcl!lXT .Qo :::.. hvinl<:f*~O)fE:Q~ 2 em JE.l?:>fO)'J''!!'t', JLI:l~v'ijWiWTrilfi~ "b t:,, mi»EEIB~Jl!:Q~y L. fh LV' .Qo ~~ilfilr.li~am77~f'I C. k C.?J:v'o ~~lifT U~v' < v~~'Li7~mltt,gl]".)lr.lJ.gU.) l?:>~'L.Q o ~-8- ~.~lii7'tJ: f) lJ!*-4ifl:: L. LV' .Q:Q~, fimf*~~i3"JICiJi! .Q C. 7':7. .:C -e 7 :A O)~!j't"C:· £> .Q o :!9J~fi-:l: .Q:::.. "'o ;:.0)~? tJ:!I;t~~~~ff-T'l'J!!O)tO)fi 7 :..-'.:C-;1-1 ~ 0))1fdl::'ii:'.J:v'ov'~:dJ::f.;J.fc.iE)J!i7' !?:> -t":tLf.:,HJ':t1( C. L. L~glib t?:>tL.Q o fl!!f1UC. Fol~iJ~-t'O)iJ1iJZ!~iLU~ .iE1i1iHciJi!tLf, Ji!Jif J:::r:i!!!m ~I%:Ji!.v't.:~~'LLv'.Qo ;::O)"bO)fitcfi!Ji0)7:A.:C-e7:Aill!:fJI.O) .;( /'/~-lr.li::.A:L, £>-:1: fJi! 9E'l:"tJ:v'1:.ffitJtr.\':~"b"" Lv'f.:O)'t'vitl:v'i7'ctiH~~tL.Qo r~ :<fs: ;~ Jl!~ • N :<fs: m t.it -t'0)21i~$~!1!!~0)-lj-/' I· =-7/':Q>t;:,f~l?:>~'Lt.:"bO)'t', Kitchinites (Neopuzosia) O)Wfr l'illC. l..Lilc!ll\1-t'.Qo 7"Y"Y7.i!E.f-'Hcli ;kJ!!O)"bO):Q~~ < ~nl?:>:tLLv'.Qi7~. U'LiiJil<:f*~O)jj[ f~;>7~fli7> 3 em ij!J.!t't'.:li;,.Q C. C. "biC, -t'O)~Q*~ICj!jj~tJ:Jfii;£>.Q:::.. C.:Q;~~'"(:"Ji;,.Qo -t'O) :*Jil<:~~li K. (N.) ishikawai 0)-t'~'LC.~f.C),i'.Q:Qt, JfO)~~O)iJjj;!~ii;T't'lr.~~.lOI?:>h, JiX: f*~'l:"liAJHi.lr.~tJ: .Qo :::.nlr.~iili L. L, '/"" 7 ~ 7 :..-'.:C-;1- 1 ~ 't'llftllii£~~0)~{7~ UHR~ hLv' .Qt~-fr C. O);f:DW:>7t:5(tfj·:Q,~'L.Q OYt". 7"v'"Y7!llil'-'HC.t;lt .Q llf:!Hi~~O) RJfiEiif:.lc '? ~­ r.G~~iL.t::Qt, ~litl'L.0~~13"J't'£>.Qo Jls:!llif-'[0)7 /'.:C-;1-1 r li, -%"i0)~0)~-fr~-~~"b -::>Lv'.Qnt, ;k~~. ~O)~ftffiC.<Ir.{±EJ:}O)~ft[fj, ~I=!O)j1~tJ:ciC.Bv'L, i.PtJ:fJO)M;n f1~~To *fll!li-t" :j L.f.:rJ11::~/iO)-J'ijffi~ff,T~{?IjC.7;1.fJ:~~1,Qo ~*;~f.!r;.mra,AJ1f:il:: for one of them, belonging to the sub­ Introduction family Desmoceratinae, is T. MATSU­ In this paper descriptions and remarks MOTO and T. MURAMOTO and that for are given on two small, peculiar ammo­ the other, belonging to the subfamily nite species which are assignable to the Puzosiinae, is T. MATSUMOTO and A. family Desmoceratidae. The authorship !NOMA. Before going further we thank Dr. Itaru HAYAMI, Miss Yuko WADA and * Received Jan. 23, 1972; read Jan. 20, 1972 at Chiba. Miss Seiko HAY AKA w A in their kind 1) Department of Geology, Kyushu Univer­ assistance in preparing the plates and sity, Fukuoka 812. typescript. For the study of the second 2) Yayoi, Mikasa, Hokkaido 068-22. species we thank the Japan Petroleum 3) Japan Petroleum Exploration Co., Ote­ Exploration Company and Professor Wa­ machi, Tokyo 100. taru HASHIMOTO for their kind support. 377 378 Tatsuro MATSUMOTO, Tatsuo MURAMOTO & Akitoshi !NOMA Systematic description from the Lower Cenomanian of Hokkai­ do. Its comparisons· and affinities with Family Desmoceratidae other genera are to be given after the description of the species. Subfamily Desmoceratinae* Several years ago when we were con­ Microdesmoceras tetragonum MATSU­ centrated in a field work to obtain fossils MOTO and MURAMOTO, sp. nov. from the Cenomanian of the Ikushum­ bets area, central Hokkaido, one of us Pl. 47, Figs. 1-4; Text-figs. 1-4 (T. MURAMOTO) was successful to find four small, peculiar ammonite specimens. Material.-Holotype, GK. H5653, from They show very distinctive characters of loc. Ik 1101, Kami-Katsurazawa, Ikushum­ one and the same species, which requires bets. Three paratypes, of which one a new genus in the Desmoceratinae. from loc. Ik 1101 and another from Ik 1051b are preserved in the MuRAMOTO Genus llficrodesmoceras MATSUMOTO Museum and the last from loc. Ik 1067bp and MURAMOTO, nov. is in Kyushu University (GK.) with re­ Type-species.-Microdesmoceras tetrago­ gister number H5650. The last one has num sp. nov., to be described below. been cut into two main parts and a few Generic diagnosis.-A small desmocera­ minute pieces (of the first whorl) to ex­ tid, with somewhat simplified pattern of amine the characters of the inner whorls. sutural elements, showing a broad and Specific characters.-The shell is small. trifid lateral lobe (L) and somewhat phyl­ The holotype, which is regarded as re­ loid terminals of saddles aligned on a presenting an adult stage, is 18 mm in descending line. Coiling of moderate involution; slight­ ly deviated from normal spire in the last whorl. The body-whorl and the c preceding part of the late, septate whorl characterized by somewhat tetragonal outline in cross-section. The surface of the shell nearly smooth, only with flexu­ ous weak lirae, which show a moderate­ ly projected ct~rve on the venter and another on the middle part of the flank. Gently sigmoid, periodic constrictions marked on the internal mould of late whorls, but not accompanied with a Text-fig. 1. Microdesmoceras tetragonum perceptible elevation on the surface of sp. nov. Diagrammatic sketch of the halo­ the shell. type in two lateral and an apertural views Remarks.-This genus is at present (above). A part of the !irate surface (left) represented by only a single species and constriction on the internal mould (center) are shown. The external part of * The authorship of the description under the second last suture (below) exposed at subfamily Desmoceratinae is Tatsuro MATsu­ s. u.s. =umbilical seam; u.sh. =umbilical MOTO and Tatsuo MURAMOTO. shoulder. · (T. MAT. delin.) 601. Two small desmocemtid ammonites 379 E c U2 U3 U4= 5 U.Jh. t.!.S', Text-fig. 2. Microdesmoceras tetragonum sp. nov. Diagrammatic sketch of a para· Text-fig. 3. Microdesmoceras tetragonum type, from Joe. Ik 1101, in lateral and sp. nov. Diagrammatic sketch of a para­ apertural views (above) and the suture type, from Joe. Ik 105lb, in lateral and exposed at s. (T. MAT. delin.) apertural views (above) and the external part of the last suture exposed at s. (T. MAT. delin.) diameter. The involution is moderate and the umbilicus is of moderate width, about 34(±1) percent of the shell diame­ flank and then recurved at the ventro­ ter. The mode of coiling of the adult lateral part passing to a moderate ven­ whorl, as seen in the holotype, is slightly tral projection. The lateral and the deviated from the normal spire, i.e. ventral projections are rounded. The slightly scaphitoid. outline of the apertural margin is not The body-whorl occupies about three precisely known. quarters of the last volution. It is· nearly There are three or four constrictions as high as broad and approximately per whorl in the late growth-stages. tetragonal in cross-section, having flat They are roughly sigmoid on the flank and parallel flanks, a broadly arched but not so much projected as the lirae venter and vertical umbilical walls. The on the venter. They are impressed only preceding septate part of at least a half on the internal mould and the corn~s­ volution has also flat and parallel flanks ponding elevations on the test are but is somewhat broader than high. Still hardly discernible. The constrictions of inner whorls are much broader than high the body-whorl is very faint on the and rounded to reniform in cross-section. flanks but better marked on the venter. They are more evolute than the outer Generally speaking the suture is of whorls. The above mentioned change of desmoceratid type, but is particular in shell-form with growth may be illus· its more simple pattern as compared trated by a cross-section (Text-fig. 4). with those of the nearly contemporary The surface of the shell looks nearly Desmoceras (Pseudouhligella) and Puzosia.
Recommended publications
  • Introduction San Andreas Fault: an Overview
    Introduction This volume is a general geology field guide to the San Andreas Fault in the San Francisco Bay Area. The first section provides a brief overview of the San Andreas Fault in context to regional California geology, the Bay Area, and earthquake history with emphasis of the section of the fault that ruptured in the Great San Francisco Earthquake of 1906. This first section also contains information useful for discussion and making field observations associated with fault- related landforms, landslides and mass-wasting features, and the plant ecology in the study region. The second section contains field trips and recommended hikes on public lands in the Santa Cruz Mountains, along the San Mateo Coast, and at Point Reyes National Seashore. These trips provide access to the San Andreas Fault and associated faults, and to significant rock exposures and landforms in the vicinity. Note that more stops are provided in each of the sections than might be possible to visit in a day. The extra material is intended to provide optional choices to visit in a region with a wealth of natural resources, and to support discussions and provide information about additional field exploration in the Santa Cruz Mountains region. An early version of the guidebook was used in conjunction with the Pacific SEPM 2004 Fall Field Trip. Selected references provide a more technical and exhaustive overview of the fault system and geology in this field area; for instance, see USGS Professional Paper 1550-E (Wells, 2004). San Andreas Fault: An Overview The catastrophe caused by the 1906 earthquake in the San Francisco region started the study of earthquakes and California geology in earnest.
    [Show full text]
  • Non-Invasive Imaging Methods Applied to Neo- and Paleo-Ontological Cephalopod Research
    Biogeosciences, 11, 2721–2739, 2014 www.biogeosciences.net/11/2721/2014/ doi:10.5194/bg-11-2721-2014 © Author(s) 2014. CC Attribution 3.0 License. Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research R. Hoffmann1, J. A. Schultz2, R. Schellhorn2, E. Rybacki3, H. Keupp4, S. R. Gerden1, R. Lemanis1, and S. Zachow5 1Institut für Geologie, Mineralogie und Geophysik, Ruhr Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany 2Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 8, 53115 Bonn, Germany 3Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ Sektion 3.2, Geomechanik und Rheologie, Telegrafenberg, D 429, 14473 Potsdam, Germany 4Institut für Geologische Wissenschaften, Fachrichtung Paläontologie, Freie Universität Berlin, Malteserstrasse 74–100, 12249 Berlin, Germany 5Zuse Institut Berlin, Takustrasse 7, 14195 Berlin, Germany Correspondence to: R. Hoffmann ([email protected]) Received: 28 October 2013 – Published in Biogeosciences Discuss.: 29 November 2013 Revised: 14 March 2014 – Accepted: 29 March 2014 – Published: 22 May 2014 Abstract. Several non-invasive methods are common prac- tially preserved within the surrounding rocks, requires imag- tice in natural sciences today. Here we present how they ing methods that are primarily used in non-destructive test- can be applied and contribute to current topics in cephalo- ing. The conservation of the specimen is of main importance pod (paleo-) biology. Different methods will be compared in using these methods since former techniques used destruc- terms of time necessary to acquire the data, amount of data, tive methods leading to the loss of the specimen or parts accuracy/resolution, minimum/maximum size of objects that of the specimen.
    [Show full text]
  • Download Full Article in PDF Format
    A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans Robert W. BOESSENECKER Department of Geology, University of Otago, 360 Leith Walk, P.O. Box 56, Dunedin, 9054 (New Zealand) and Department of Earth Sciences, Montana State University 200 Traphagen Hall, Bozeman, MT, 59715 (USA) and University of California Museum of Paleontology 1101 Valley Life Sciences Building, Berkeley, CA, 94720 (USA) [email protected] Boessenecker R. W. 2013. — A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans. Geodiversitas 35 (4): 815-940. http://dx.doi.org/g2013n4a5 ABSTRACT e newly discovered Upper Miocene to Upper Pliocene San Gregorio assem- blage of the Purisima Formation in Central California has yielded a diverse collection of 34 marine vertebrate taxa, including eight sharks, two bony fish, three marine birds (described in a previous study), and 21 marine mammals. Pinnipeds include the walrus Dusignathus sp., cf. D. seftoni, the fur seal Cal- lorhinus sp., cf. C. gilmorei, and indeterminate otariid bones. Baleen whales include dwarf mysticetes (Herpetocetus bramblei Whitmore & Barnes, 2008, Herpetocetus sp.), two right whales (cf. Eubalaena sp. 1, cf. Eubalaena sp. 2), at least three balaenopterids (“Balaenoptera” cortesi “var.” portisi Sacco, 1890, cf. Balaenoptera, Balaenopteridae gen. et sp. indet.) and a new species of rorqual (Balaenoptera bertae n. sp.) that exhibits a number of derived features that place it within the genus Balaenoptera. is new species of Balaenoptera is relatively small (estimated 61 cm bizygomatic width) and exhibits a comparatively nar- row vertex, an obliquely (but precipitously) sloping frontal adjacent to vertex, anteriorly directed and short zygomatic processes, and squamosal creases.
    [Show full text]
  • 5 Geologic and Geotechnical Assessments
    5 Geologic and Geotechnical Assessments 5.1 Regional and Site Geology Gilpin Geosciences, Inc. assessed the site conditions and prepared an engineering geologic evaluation of the project area, which is included as Appendix D. The site is located in the Coast Ranges geomorphic province that is characterized by northwest-southeast trending valleys and ridges. These are controlled by folds and faults that resulted from the collision of the Farallon and North American plates and subsequent shearing along the San Andreas Fault. The Merced Formation crops out in a broad trough that is partially exposed along the coastal bluffs of the site vicinity. It is of Plio-Pleistocene age (5 million to 10,000 years ago) and is characterized by sands and fine-grained deposits deposited in near-shore ocean environments with some units deposited onshore as dune fields. It is mapped as filling a northwest-southeast trending, fault-bounded basin that is exposed for approximately 3.8 miles along the sea cliffs from Mussel Rock on the south to the north end of Lake Merced. The Merced Formation is overlain by the Late Pleistocene age (125,000 to 10,000 years ago) Colma Formation, which is composed of sandy near-shore and beach deposits and recent dune sands. Several investigators have mapped the Merced Formation in the bluffs in the site vicinity. Hall (1966 and 1967) and Clifton and Hunter (1987) mapped the Merced Formation in detail to understand the age range and rapid changes in depositional environments preserved in the deposits outcropping along the Fort Funston / Thornton Beach coastal bluffs.
    [Show full text]
  • Lower Jaws of Two Species of Menuites (Pachydiscidae, Ammonoidea) from the Middle Campanian (Upper Cretaceous) in the Soya Area, Northern Hokkaido, Japan
    Bull. Natl. Mus. Nat. Sci., Ser. C, 45, pp. 19–27, December 27, 2019 Lower jaws of two species of Menuites (Pachydiscidae, Ammonoidea) from the middle Campanian (Upper Cretaceous) in the Soya area, northern Hokkaido, Japan Kazushige Tanabe1* and Yasunari Shigeta2 1 University Museum, The University of Tokyo, Hongo 7–3–1, Bunkyo Ward, Tokyo 113–0033, Japan 2 Department of Geology and Paleontology, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan * Author for correspondence: [email protected] Abstract The lower jaws of two pachydiscid ammonites Menuites soyaensis (Matsumoto and Miyau- chi) and Menuites sp. are described on the basis of two specimens from the middle Campanian (Upper Cretaceous) in the Soya area of northern Hokkaido, Japan. They are preserved in situ in the body cham- ber and characterized by a widely open outer lamella with a nearly flat rostral portion. The outer lamella consists of an inner “chitinous” layer sculptured by a median furrow in the anterior to mid-portions and an outer calcareous layer with prismatic microstructure. The lower jaw features of the two Menuites spe- cies are shared by other species of the Pachydiscidae described in previous works, indicating that they are diagnostic characters of this family. In view of the shovel-like shape without a pointed rostrum, the lower jaws of the two Menuites species were likely used as a scoop to feed on microorganisms. Key words: pachydiscid ammonites, middle Campanian, lower jaw, Soya area (Hokkaido) found together retaining their original life orienta- Introduction tion. Based on such well-preserved specimens and Both modern and extinct cephalopod mollusks their comparison with the jaws of modern cephalo- possess a well-developed jaw apparatus that con- pods, previous authors (e.g.
    [Show full text]
  • Fort Funston
    Excerpt from Geologic Trips San Francisco and the Bay Area by Ted Konigsmark ISBN 0-9661316-4-9 GeoPress All rights reserved. No part ofthis book may be reproduced without written permission in writing, except for critical articles or reviews. For other geologic trips see: www.geologictrips.com Ocean Great Hwy Sloat Blvd Beach 19th Ave Beach L ak e M er Bluff ce d Viewing Platform Blvd Skyline Fort Funston Edge of bluff Pacific vd Bl Ocean Day John Fort Funston is on a bluff made up of I-280 sedimentary rocks of the Merced Formation. The Merced Formation was deposited in a M e small sedimentary r c basin that formed along e the San Andreas fault d during the last two F m million years. I - 2 8 1 0 ay hw Hig Mussel Rock S a Trip 5. n A FORT FUNSTON nd re a Geologic Site s fa u l 1/2 Mile t 98 Trip 5. FORT FUNSTON Recent and Ancient Beaches and Dunes The Franciscan rocks are covered by a blanket of younger sedimentary rocks at many places in and around San Francisco. During the trip to Fort Funston you will learn how these sedimentary rocks were formed. The first stop is at Ocean Beach, where you will see how beach sand and sand dunes are presently being deposited along the shoreline. You will then continue to Fort Funston, where you will see how similar sedimentary rocks, called the Merced formation, were deposited in a small basin along the San Andreas fault about half-a-million years ago.
    [Show full text]
  • Early Cretaceous (Albian) Ammonites from the Chitina Valley and Talkeetna Mountains, Alaska
    Early Cretaceous (Albian) Ammonites From the Chitina Valley and Talkeetna Mountains, Alaska GEOLOGICAL SURVEY PROFESSIONAL PAPER 354-D Early Cretaceous (Albian) Ammonites From the Chitina Valley and Talkeetna Mountains, Alaska By RALPH W. IMLAY SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 354-D The Early Cretaceous (Albian) ammonites in southern Alaska have strong affinities with those in California and Oregon but are in part of Boreal and Eurasian origin UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1960 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. - Price SO cents (paper cover) CONTENTS Ammonite faunules and correlations Continued Abstract..________________________________________ 87 Bretrericeras breweri and B. cf. B. hulenense faunule__ 91 Introduction _______________________________________ 87 Frebnhliceros singulare faunule____________________ 92 Biologic analysis____________________________________ 87 Other Albian faunules.__________________________ 93 Stratigraphic summary ______________________________ 88 Comparisons with other faunas_______________________ 93 Talkeetna Mountains ___________________________ 88 Geographic distribution._____________________________ 93 Chitina Valley__________________________________ 88 Summary of results _________________________________ 93 Ammonite faunules and correlations.__________________
    [Show full text]
  • (Campanian and Maestrichtian) Ammonites from Southern Alaska
    Upper Cretaceous (Campanian and Maestrichtian) Ammonites From Southern Alaska GEOLOGICAL SURVEY PI SSIONAL PAPER 432 Upper Cretaceous (Campanian and Maestrichtian) Ammonites From Southern Alaska By DAVID L. JONES GEOLOGICAL SURVEY PROFESSIONAL PAPER 432 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows: Jones, David Lawrence, 1930- Upper Cretaceous (Campanian and Maestrichtian) am­ monites from southern Alaska. Washington, U.S. Govt. Print. Off., 1963. iv, 53 p. illus., maps, diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 432) Part of illustrative matter folded in pocket. 1. Amnionoidea. 2. Paleontology-Cretaceous. 3. Paleontology- Alaska. I. Title. (Series) Bibliography: p. 47-^9. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Abstract-__________________________ 1 Comparison with other areas Continued Introduction. ______________________ 1 Vancouver Island, British Columbia.. 13 Stratigraphic summary ______________ 2 California. ______________--_____--- 14 Matanuska Valley-Nelchina area. 2 Western interior of North America. __ 14 Chignik Bay area._____._-._____ 6 Gulf coast area___________-_-_--_-- 15 Herendeen Bay area____________ 8 Madagascar. ______________________ 15 Cape Douglas area______________ 9 Antarctica ________________________ 15 Deposition and ecologic conditions___. 11 Geographic distribution ________________ 16 Age and correlation ________________ 12 Systematic descriptions.________________ 22 Comparison with other areas _ _______ 13 Selected references._________--_---__-__ 47 Japan _________________________ 13 Index._____-______-_----_-------_---- 51 ILLUSTRATIONS [Plates 1-5 in pocket; 6-41 follow index] PLATES 1-3.
    [Show full text]
  • Geology and Paleontology of the Late Miocene Wilson Grove Formation at Bloomfield Quarry, Sonoma County, California
    Geology and Paleontology of the Late Miocene Wilson Grove Formation at Bloomfield Quarry, Sonoma County, California 2 cm 2 cm Scientific Investigations Report 2019–5021 U.S. Department of the Interior U.S. Geological Survey COVER. Photographs of fragments of a walrus (Gomphotaria pugnax Barnes and Raschke, 1991) mandible from the basal Wilson Grove Formation exposed in Bloomfield Quarry, just north of the town of Bloomfield in Sonoma County, California (see plate 8 for more details). The walrus fauna at Bloomfield Quarry is the most diverse assemblage of walrus yet reported worldwide from a single locality. cm, centimeter. (Photographs by Robert Boessenecker, College of Charleston.) Geology and Paleontology of the Late Miocene Wilson Grove Formation at Bloomfield Quarry, Sonoma County, California By Charles L. Powell II, Robert W. Boessenecker, N. Adam Smith, Robert J. Fleck, Sandra J. Carlson, James R. Allen, Douglas J. Long, Andrei M. Sarna-Wojcicki, and Raj B. Guruswami-Naidu Scientific Investigations Report 2019–5021 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DAVID BERNHARDT, Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2019 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Albian Black Flysch Group Deposits) and Vation of the Abundant Organic Input
    Syntectonic deposits and punctuated limb rotation in an Albian submarine transpressional fold (Mutriku village, Basque-Cantabrian basin, northern Spain) L.M. Agirrezabala* Estratigra®a eta Paleontologia Saila, Euskal Herriko Unibertsitatea, 644 postakutxa, 48080 Bilbao, Spain H.G. Owen Natural History Museum, Cromwell Road, London SW7 5BD, UK J. GarcõÂa-MondeÂjar Estratigra®a eta Paleontologia Saila, Euskal Herriko Unibertsitatea, 644 postakutxa, 48080 Bilbao, Spain ABSTRACT strata and angular unconformity geome- Cenozoic foreland basins. Fewer cases have tries, temporal variation of deformation been reported from strike-slip basins. Field Deep-water syntectonic deposits and an- rates, and bedding-parallel faulting indi- and modeling studies support two contrasting, gular unconformities record the denudation cate folding by progressive limb rotation geometrically based kinematic models: instan- and deformation history of the middle Cre- and associated ¯exural slip. Local northwest- taneous limb rotation and progressive limb ro- taceous Aitzeta structure, interpreted here southeast compression is deduced in for- tation. The former model is based upon kink- as a monoclinal syncline associated with the mation of the Aitzeta syncline. The pres- band migration and displays constant dips on high-angle reverse Mutriku fault (Basque- ence of bedding-parallel oblique faulting the fold limbs (Suppe, 1983; Suppe et al., Cantabrian basin, northern Spain). Sedi- and minor drag folds suggests a component 1997). The second model produces limb ro- mentological and structural analyses, com- of right-oblique movement along the Mu- tation and increasing limb dips during growth bined with a precise chronostratigraphy triku fault. (Riba, 1976; Holl and Anastasio, 1993; Hardy based on ammonites, permit us to docu- and Poblet, 1994; VergeÂs et al., 1996; Schnei- ment in detail the history of this syncline Keywords: Albian, Basque, folding, rates, during ;0.53 m.y.
    [Show full text]
  • Three-Dimensional Geologic Modeling of the Santa Rosa Plain, California
    Three-dimensional geologic modeling of the Santa Rosa Plain, California Donald S. Sweetkind* U.S. Geological Survey, Denver Federal Center, Mail Stop 973, Denver, Colorado 80225, USA Emily M. Taylor U.S. Geological Survey, Denver Federal Center, Mail Stop 980, Denver, Colorado 80225, USA Craig A. McCabe ESRI, 380 New York Street, Redlands, California 92373, USA Victoria E. Langenheim U.S. Geological Survey, Mail Stop 989, 345 Middlefi eld Road, Menlo Park, California 94025, USA Robert J. McLaughlin U.S. Geological Survey, Mail Stop 973, 345 Middlefi eld Road, Menlo Park, California 94025, USA ABSTRACT lence of the clay-rich Petaluma Formation Formation (Fig. 1). Although the outcrop dis- and its heterogeneous nature. Isopach maps tribution of each of these formations has been New three-dimensional (3D) lithologic and of the Glen Ellen Formation and the 3D mapped (e.g., Blake et al., 2002; Wagner et stratigraphic models of the Santa Rosa Plain stratigraphic model show the infl uence of the al., 2006; Graymer et al., 2007), the degree of (California, USA) delineate the thickness, Trenton Ridge, a concealed basement ridge subsurface interfi ngering and overlapping age extent, and distribution of subsurface geo- that bisects the plain, on sedimentation; the relations of the Miocene and Pliocene marine logic units and allow integration of diverse thickest deposits of the Glen Ellen Formation and nonmarine units have only recently been data sets to produce a lithologic, strati- are confi ned to north of the Trenton Ridge. recognized and have important signifi cance for graphic, and structural architecture for the the hydrogeologic system.
    [Show full text]
  • On the Reconciliation of Biostratigraphy and Strontium Isotope Stratigraphy of Three Southern Californian Plio-Pleistocene Formations
    On the reconciliation of biostratigraphy and strontium isotope stratigraphy of three southern Californian Plio-Pleistocene formations Alexandra J. Buczek1, Austin J.W. Hendy2, Melanie J. Hopkins1, and Jocelyn A. Sessa3,† 1 Division of Paleontology, American Museum of Natural History, Central Park West & 79th Street New York, New York 10024, USA 2 Department of Invertebrate Paleontology, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, California 90007, USA 3 Department of Biodiversity, Earth and Environmental Science, Academy of Natural Sciences of Drexel University, 1900 Benjamin Franklin Parkway, Philadelphia, Pennsylvania 19103, USA ABSTRACT INTRODUCTION 2006; Powell et al., 2009; Squires, 2012; Ven- drasco et al., 2012). Based primarily on regional The San Diego Formation, Pico Forma- The mid-Pliocene warm period (ca 3 Ma; macrofossil and microfossil biostratigraphy, tion, Careaga Sandstone, and Foxen Mud- Jansen et al., 2007) was a time of high global these units are hypothesized to be late Pliocene stone of southern California are thought to temperatures (2 °C to 3 °C above pre-industrial to early Pleistocene in age (Figs. 1 and 3), but no be late Pliocene to early Pleistocene; however, temperatures) and high atmospheric CO2 con- numerical ages exist to confirm this hypothesis. numerical ages have not been determined. centrations (360–400 ppm) (Jansen et al., 2007). Previous age determinations must be revisited Following assessment of diagenetic altera- These climatic conditions, combined with the
    [Show full text]