GbE.PocketG.fm Page 1 Friday, March 3, 2006 9:43 AM

Carrier Class , tester, Metro Ethernet testing, Metro Ethernet installation, Metro Ethernet maintenance, Metro Ethernet commissioning, Carrier Class Ethernet tester, Carrier Class Ethernet testing, Carrier Class Ethernet installation, Carrier Class Ethernet maintenance, tester, Gigabit Ethernet testing, Gigabit Ethernet installation, Gigabit Ethernet maintenance, Gigabit Ethernet commissioning, Gigabit Ethernet protocols, 1000BASE-T tester, 1000BASE-LX test, 1000BASE-SX test, 1000BASE-T testing, 1000BASE-LX testing

Trend’s Gigabit EthernetPocket Guide

AuroraTango Gigabit Ethernet Multi-technology Personal Test Assistant Platform for simple, fast and effective testing of Gigabit Ethernet, ADSL, OSI model 802.3 model SHDSL, and ISDN. Aurora Tango 7 Application Upper layers Gigabit Ethernet has an exceptional 6 Presentation Reconciliation range of features Upper ensuring reliable delivery of end-to-end 5 Session layers services over Metropolitan networks MII Media independent based on Gigabit Ethernet. 4 It includes a full range of tests and Transport measurements, such as RFC-2544, PCS top ten addresses, real-time Ethernet 3 Network LLC (802.2) statistics, multilayer BERT, etc. Two PMA Gigaport allow terminate, 2 Data Link MAC (803.3) loopback and monitor connections to networks, plus a 10/100/1000BASE-T Physical cable port for legacy testing. 1 PHY (802.3) dependent Media MDI A PDA provides an intuitive graphical menu structure for testing and workflow Media organization.

Figure 1 Ethernet layers, 802.3 model compared with OSI. MII and Autonegotiation are optional.

Encoding Standard Interface Media Type FDX Data Symbol MFS Distance 10BASE-2 One 50 Ohm thin coaxial cable H 4B/5B Manchester 64 <185 m 10BASE-5 One 50 Ohm thick coaxial cable H 4B/5B Manchester 64 <500 m 10Broad36 One 75 Ohm coaxial (CATV) H 4B/5B Manchester 64 <3600 m 10BASE-T Two pairs of UTP 3 (or better) H/F 4B/5B Manchester 64 <100 m 10BASE-FP Two optical 62.5 μm MMF passive hub H 4B/5B Manchester 64 <1000 m 10BASE-FL Two optical 62.5 μm MMF asyn hub F 4B/5B Manchester 64 2000 m 10BASE-FB Two optical 62.5 μm MMF sync hub H 4B/5B Manchester 64 <2000 m Ethernet 802.3a-t IEEE (clauses1-20) AUI 100BASE-T4 Four pairs of UTP 3 (or better) H 8B/6T MLT3 64 <100 m 100BASE-T2 Two pairs of UTP 3 (or better) H/F PAM5x5 PAM5 64 <100 m 100BASE-TX Two pairs of UTP 5 (or better) H/F 4B/5B MLT3 64 <100 m 100BASE-TX Two pairs of STP cables F 4B/5B MLT3 64 200 m 100BASE-FX Two optical 62.5 μm MMF F 4B/5B NRZI 64 2 km 100BASE-FX Two optical 50 μm SMF F 4B/5B NRZI 64 40 km Fast 802.3u IEEE 21-29) (clauses MII 1000BASE-CX Two pairs 150 Ohm STP (twinax) F 8B/10B NRZ 416 25 m 1000BASE-T Four pair UTP 5 (or better) H/F 4D-PAM5 PAM5 520 <100 m 1000BASE-SX Two 50 μm MMF, 850 nm F 8B/10B NRZ 416 500/750 m 1000BASE-SX Two 62.5 μm MMF, 850 nm F 8B/10B NRZ 416 220/400 m 1000BASE-LX Two 50 μm MMF, 1310 nm F 8B/10B NRZ 416 550/2000 m 1000BASE-LX Two 62.5 μm MMF, 1310 nm F 8B/10B NRZ 416 550/1000 m 1000BASE-LX Two 8-10 μm SMF,1310 nm F 8B/10B NRZ 416 5 km

1000BASE-ZX Two 8-10 μm SMF, 1310 nm F 8B/10B NRZ 416 80 km Gigabit Ethernet Gigabit 802.3z/ab IEEE 34-42) (clauses GMII

10GBASE-SR Two 50 μm MMF, 850 nm F 64B/66B NRZ N/A 2 ~ 300 m s n

10GBASE-SW Two 62.5 μm MMF, 850 nm F 64B/66B NRZ N/A 2 ~ 33 m o i 10GBASE-LX4 Two 50 μm MMF, 4 x DWM signal F 8B/10B NRZ N/A 300 m t

10GBASE-LX4 Two 62.5 μm MMF, 4 x DWM signal F 8B/10B NRZ N/A 300 m a c

10GBASE-LX4 Two 8 ~ 10 μm SMF, 1310 nm, 4 x DWM signal F 8B/10B NRZ N/A 10 km i n

10GBASE-LR Two 8 ~ 10 μm SMF, 1310 nm F 64B/66B NRZ N/A 10 km u

10GBASE-LW Two 8 ~ 10 μm SMF, 1310 nm F 64B/66B NRZ N/A 10 km m 10GBASE-ER Two 8 ~ 10 μm SMF, 1550 nm F 64B/66B NRZ N/A 2 ~ 40 km 10GBASE-EW Two 8 ~ 10 μm SMF, 1550 nm F 64B/66B NRZ N/A 2 ~ 40 km m

10GEthernet 802.3ae IEEE 48-53) (clause XGMII

o

C d

Figure 2 Ethernet layers, 802.3 model compared with OSI. MII and Autonegotiation are optional. n

e

r T GbE.PocketG.fm Page 2 Friday, March 3, 2006 9:43 AM

Gigabit Ethernet test, Gigabit Ethernet testing, Gigabit Ethernet installation, Gigabit Ethernet maintenance, Gigabit Ethernet commissioning, Gigabit Ethernet troubleshooting,

Fibre Channel IEEE 802.3z IEEE 802.3 802.3z 802.3ab FC-4 LLC (802.2) Higher Layers Gigabit MAC FC-3 MAC (802.3) GMII (optional) Connection Services CSMA/CD or FDX FC-2 PCS - 8B/10B PCS 4DPAM5

Signalling PCS 1000BASE-T Phy Coding Sublayer PMA PMA FC-1 Codification PMA Autonegotiation Autonegotiation Phy Med Attachment FC-0 CX LX SX PMD Medium Interface PMD Phy Med Dependent MDI MDI MDI MDI 1000BASE-X MDI Medium Dependent I/F 2 x STP Single/Multimode Multimode 4 x UTP Cat.5

1000BASE-LX and 1000BASE-SX 1000BASE-T Tx Rx Tx Rx Recovery Tx Rx clock GMII (125 MBytes/s) 8MHz 125 bits, Carrier Sense Transmit Receive T T T T R R R R R

8bits 8bits PCS 8B/10B encoder 8B/10B decoder Auto- Negotiation Synchronisation abcdei-fghj HGFEDCBA 10B codes codes 10B Serialiser Deserialiser PMA Hybrid Hybrid Hybrid HybridH Slave

125 Mcodes/s PMD

(serial interface) (serial Laser Driver Photo-Detector 125 Mbaud 125 Mbaud 125 Mbaud 125 Mbaud MDI

125 Mbauds Optical fiber Four pair UTP-5 FDX (optical interface) (optical Figure 3 Gigabit Ethernet defines several transmission media: 802.3z (1000BASE-X) based on the existing Fibre Channel technology, and 802.3ab (1000BASE-T) which uses UTP.

IEEE 802.3ae

LLC

MAC Control OSI model MAC 7 Application Reconciliation Sublayer (RS) 6 Presentation XGMII XGMII XGMII 5 Session PCS 4 Transport 64B/66B PCS PCS 64B/66B 8B/10B 3 Network WIS

2 Data link PMA PMA PMA 1 Physical PMD PMD PMD MDI MDI MDI

10GBASE-W 10GBASE-R 10GBASE-X

Figure 4 Layered model of IEEE 802.3ae . GbE.PocketG.fm Page 3 Friday, March 3, 2006 9:43 AM

Gigabit Ethernet test, Gigabit Ethernet testing, Gigabit Ethernet installation, Gigabit Ethernet maintenance, Gigabit Ethernet commissioning, Gigabit Ethernet troubleshooting,

PSD 20 Category 3 limit Category 5 limit 1000BASE-T 10 100BASE-TX 100BASE-T2 -0 10BASE-T

-10 dB -20

-30

-40

-50 MHz 0 20 40 60 80 100 120 140 160 180 200 220 240

Figure 5 Power Spectrum Density (PSD).

Data 1010000 110000 0 00010

NRZ

RZ

NRZI

Manchester

MLT-3

Figure 6 Symbol encoding schemes used in Ethernet.

>96 bit Rx buffer Tx buffer Frame gap Frame gap Frame gap Frame Interface Physical Interface Physical RX TX MAC MAC

Pause gap Pause gap Pause gap Frame

TX RX Tx buffer Rx buffer

71 6622 2 424 Pre SDF DA SA Length Opcode Timer Reserved FCS PAUSE

Figure 7 FDX operation enables two-way transmission simultaneously without contention, collisions, extension bits or retransmissions. The only restriction is that a gap must be allowed between two consecutive frames. FDX also requests flow control, which is transmitted by the receiver to request that the trans- mitter temporarily stops transmitting. GbE.PocketG.fm Page 4 Friday, March 3, 2006 9:43 AM

Gigabit Ethernet test, Gigabit Ethernet testing, Gigabit Ethernet installation, Gigabit Ethernet maintenance, Gigabit Ethernet commissioning, Gigabit Ethernet troubleshooting,

Autonegotiation Base Page 10/100/1000BASE-T 0151234567891011121314

S0 S1 S2 S3 S4 A0 A1 A2 A3 A4 A5 A6 A7 RF Ack NP Priority Resolution Next Page present Highest Selector Field Acknowledgement 1000BASE-T full duplex 00001 - IEEE 802.3 1000BASE-T Remote Fault Indicator 00010 - IEEE 802.9 100BASE-T2 full duplex Reserved 100BASE-TX full duplex 00011 - 802.5 100BASE-T2 Asymmetric PAUSE (full duplex only) 100BASE-T4 PAUSE (full duplex only) 100BASE-TX 100BASE-T4 Half Duplex 10BASE-T full duplex 100BASE-TX Full Duplex 10BASE-T 100BASE-TX Half Duplex Lowest 10BASE-T Full Duplex 10BASE-T Half Duplex Autonegotiation Base Page 1000BASE-X 0 123456789101112 131415

Rsv Rsv Rsv Rsv Rsv FD HD PS1PS2 Rsv Rsv Rsv RF1 RF2 Ack NP

Reserved Reserved Next page present Acknowledgement Full duplex Remote fault: 00=OK Half duplex 01=Offline Pause: 00 No Pause 10=Link Failure 01 Asymmetric pause 11=Autonegotiation Error 10 Symmetric pause 11 Symmetric and Asymmetric pause Message Next Page 0151234567891011121314

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 T Ac2 MP Ack NP

Next Page present Message Acknowledgement 1000000000 - Null Message Page 0100000000 - One Technology UP follows Acknowledgement 1100000011 - Two Technology UP follows 0010000000 - One Binary UP follows Toggle 1010000000 - Organizationally Unique Id. 0110000000 - PHY Id. 1110000000 - 100BASE-T2 One Ability UP follows 1110000000 - 1000BASE-T Two Ability UP follows Unformatted Page 1 1000BASE-T 0151234567891011121314

U0 U1 U2 U3 U4 0 0 0 0 0 0 T Ac2 MP Ack NP

Half Duplex Next Page present Full Duplex Acknowledgement Port type (1=Multiport) Message Page Configuration (1=Master, 0=Slave) Acknowledgement Master/Slave Configuration (1=Manual) Toggle Unformatted Page 2 1000BASE-T

0151234567891011121314

SB0 SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8 SB9 SB10 TAc2MPAckNP

Next Page present Master/Slave Seed value Acknowledgement The device with the higher SEED Message Page value is configured as MASTER Acknowledgement Toggle

Figure 8 Autonegotiation messages. On link initialization, the two stations send 16 bits page messages to their partners. The interchange can consist of many pages in addition to the base page. Scope: 10/100BASE-T autonegotiation: only systems 10/1000 Mbit/s using UTP and RJ-45. 1000BASE-X autonegotiation: media equivalent systems at 1000 Mbit/s 1000BASE-T autonegotiation: negotiable 10/100/1000 Mbit/s using UTP and RJ-45. GbE.PocketG.fm Page 5 Friday, March 3, 2006 9:43 AM

Gigabit Ethernet test, Gigabit Ethernet testing, Gigabit Ethernet installation, Gigabit Ethernet maintenance, Gigabit Ethernet commissioning, Gigabit Ethernet troubleshooting,

Idle Frame 1 extensionextension gap Frame 2 Idle

... /I2/ /I2/ /S/ 8B/10B codification /R/ /R/ ... /R/ /R/ ... /R/ /S/ 8B/10B codification /I2/ ...

Code Description Encoding Comment 8B value 10B code 10B code + Data Name /C1/ Configuration /K28.5/D21.5/Msg Alternating C1 and C2, HGF-EDCBA abcdei fghj abcdei fghj /C2/ Configuration /K28.5/D2.2/Msg Autonegotiation D7 110 10111 /D23.6/ 111010 0110 000101 0110 /I1/ Idle /K28.5/D5.6/ Interframe gaps. /I1/ /I2/ Idle /K28.5/ 001111 1010 110000 0101 /I2/ Idle /K28.5/D16.2/ Correcting, /I2/ preserving D16.2/ 011011 0101 100100 0101 /R/ Carrier Extend /K23.7/ Also interframe gaps /R/ Carrier Extend /K23.7/ 111010 1000 000101 0111 /S/ Start of Frame /K27.7/ Delimiter /S/ Start of Frame /K27.7/ 111010 1000 000101 0111 /T/ End of Frame /K29.7/ Delimiter /T/ End of Frame /K29.7/ 101110 1000 010001 0111 /V/ Error /K30.7/ Error notification /V/ Error /K30.7/ 011110 1000 100001 0111

Figure 9 At the Line Coding for 1000BASE-X. The use of code words to encapsulate the frame is made to unambiguously distinguish data from control information.

1

(a) (b) Ready to send?

2 (a) yes (k) (a) busy (c) Medium (b) Restart Process Idle? (h)

3 (b) yes

collision (c) (c) Transmit while detected 1. Stopstop transmissiontransmission (c) 2.2. transmitTransmit jam jam signal signal listening (i) 3. waitWait randomrandom timetime 4 (d) no collision (j)

Transmission OK (a) (i) (d)

5 Half Duplex Operation limits

Bit rate Type Diameter With repeaters (k) (j) 1000 Mbit/s 1000BASE-T 100 m 200 m 1000 Mbit/s Fiber 316 m 200 m 6 100 Mbit/s UTP 100 m 205 m 100 Mbit/s Fiber 412 m 205 m 10 Mbit/s UTP 100 m 2500 m (a) (j.2)

7 Frame 1 Frame 2 Collision (i)(j)(k) (h) (a) Jam

Figure 10 Half-duplex operation. CSMA/CD flow chart. The jamming signal ensures that all the stations know that there has been a collision. The amount of random time waited depends on the back-off strategy. GbE.PocketG.fm Page 6 Friday, March 3, 2006 9:43 AM

Gigabit Ethernet test, Gigabit Ethernet testing, Gigabit Ethernet installation, Gigabit Ethernet maintenance, Gigabit Ethernet commissioning, Gigabit Ethernet troubleshooting,

DIX frame (1970) bytes 8 6 6 2 46 up to 1500 4 Preamble DA SA Type LLC Data FCS Data Link Encapsulation Encapsulation IEEE 802.3x frame (1983) bytes 7 1 6 6 2 46 up to 1500 4 up to 448 Preamble SDF DA SA Length LLC Data Pad FCS Extension Data Link Encapsulation IEEE 802.3x frame (1997) bytes 7 1 6 6 2 46 up to 1500 4 up to 448 Preamble SDF DA SA Type/Length LLC Data Pad FCS Extension

Preamble: Synchronization pattern SDF: Start Frame Delimiter (10101011) DA: Destination Address SA: Source Address Type: Nature of the client protocol *IP, IPX, AppleTalk, etc Length: Number of bytes of the LLC data LLC data: Information supplied by LLC layer Pad: Bytes added to ensure a minimum frame size of 46 bytes Extension: Only for Gigabit, ensures a minimum frame size (520 or 416 bytes depending on the version) FCS: Frame Check Sequence CRC code based on all the fields except Preamble and SDF

Figure 11 The basic IEEE 802.3 MAC frame format.

MAC address coding IP into MAC multicast address mapping

bit 1 2425 48 Ambiguity bits Bits mapped to the MAC address OUI Vendor IP Address 1110aaaa.axxxxxxx.xxxxxxxx.xxxxxxxx OUI: Organizationally Unique Identifier, IEEE administrated code Vendor: Code administrated by the manufacturer IP multicast prefix

MAC Address 00000001-00000000-01011110-0xxxxxxx-xxxxxxxx-xxxxxxxx

Ethernet MAC multicast prefix

Figure 12 The 48-bit Ethernet MAC address is composed by a 24-bit word administered by the IEEE, and a sec- ond 24-bit word administrated by NIC vendors. Multicast IP addresses can be directly mapped into multicast addresses with a special multicast prefix.

Virtual LAN 7 1 6 6 222 n m 4 Pre SDF DA SA Ethertype TCI Length Data Pad FCS Extension

Ethertype: Must be 0 x 8100 for a 802.1Q/p tag bits 3 1 12 TCI: Tag control information field 802.1p CFI VLAN-ID 802.1p: Priority bits CFI: Canonical format indicator VLAN-ID: VLAN identification tag

Figure 13 with 802.1Q/p VLAN field structure. GbE.PocketG.fm Page 7 Friday, March 3, 2006 9:43 AM

Gigabit Ethernet test, Gigabit Ethernet testing, Gigabit Ethernet installation, Gigabit Ethernet maintenance, Gigabit Ethernet commissioning, Gigabit Ethernet troubleshooting,

Source Destination J K M N

(1) Host J wants to send information to host K but only knows its IP address 1 (2) Host J broadcasts an ARP packet (3) Host K responds to the request, the rest of the hosts ignore it (4) Host J receives the response and matches 2 the MAC and IP addresses from host K (5) Data transmission from host J to K starts 4 3 5

Figure 14 ARP operation when source and destination hosts are both in the same Ethernet network.

Source Destination J R S

(1) Host J wants to send information to host K but only knows its IP address (2) Host J broadcasts an ARP packet containing the destination IP address 1 (3) Router R responds to the ARP 2 with its own MAC address (4) Host J receives the response and 3 matches the MAC address of 4 router R to the IP address of host S (5) Data transmission from host J to 5 6 host S starts 7

Figure 15 ARP operation when source and destination hosts are in different Ethernet networks and the informa- tion is forwarded between them by a router.

Source Router Destination A R Z (1) Host A wants to send information to host Z. (2) Host A sends data without ARP because PPP PPP is point to point. (3) Router R receives the packet. If the firewall grants access to host Z, the packet can pass. An ARP operation 1 is needed to reach host Z, the final destination. 2 (4) Router R forwards the data to host Z. 3 It swaps public and private addresses. 5 (5) Data arrives to host Z. 4 (6) Host Z tries to get the MAC address of 6 host A. Router R answers with its own MAC address. (7) Router R grants access to the Internet 7 and swaps private and public source IP 8 addresses. (8) Host A receives the response from Z.

Figure 16 Access to a remote host placed behind an NAT firewall with a PPP connection to the Internet. GbE.PocketG.fm Page 8 Friday, March 3, 2006 9:43 AM

Gigabit Ethernet Testing Ref: 700701 03 03.06

CPE Under Test

Device Under Test

AuroraTango Network Under Test Cable Under Test IP

Link Under Test Troubleshooting Service Provider

Acronyms

ARP Address Resolution Protocol NAT Network Address Translation CPE Customer Premises Equipment NIC Network Interface Card CSMA/CD Carrier-Sense Multiple Access Collision Detect NRZ Non-Return to Zero DIX Digital Intel and Xerox OSI Open Systems Interconnection DUT Device Under Test PAM Pulse Amplitude Modulation FDX Full-Duplex Capacity PCS Physical Code Sublayer GMII Gigabit Media-Independent Interface PHY PHYsical layer IEEE Institute of Electrical and Electronics Engineers PMA Physical Medium Attachment IP Internet Protocol PMD Physical Media Dependent LAN PPP Point to Point Protocol LLC Logical Link Control RZ Return to Zero MAC Media Access Control RZI Return to Zero Inverted MDI Media-Dependent Interface SMF Single-Mode Fibre MFS Minimum Frame Size STP Shielded Twisted Pair MII Media-Independent Interface UP Unformatted Page MLT3 Multi-Level Threshold UTP Unshielded Twisted Pair MMF Multi-Mode Fibre VLAN Virtual Local Area Network

Trend Communications Ltd. Whitebrook Park, Lower Cookham Road, Maidenhead, Berkshire, SL6 8XY, UK TrendCommunications International: +44 (0)1628 503500 China: +86 1085183141 Deutschland: +49 (0)8932300930 España: +34 933003313 France: +33 169355470 India: +91 2228521059 UK: +44 (0)1628503500 More information in: Gigabit Ethernet roll-out US: +1 2564610790 2005 (c) Trend Communications, ISBN 84-609-5042-5 Email: [email protected] Web: www.trendcomms.com