Gigabit Ethernet Pocket Guide

Total Page:16

File Type:pdf, Size:1020Kb

Gigabit Ethernet Pocket Guide GbE.PocketG.fm Page 1 Friday, March 3, 2006 9:43 AM Carrier Class Ethernet, Metro Ethernet tester, Metro Ethernet testing, Metro Ethernet installation, Metro Ethernet maintenance, Metro Ethernet commissioning, Carrier Class Ethernet tester, Carrier Class Ethernet testing, Carrier Class Ethernet installation, Carrier Class Ethernet maintenance, Gigabit Ethernet tester, Gigabit Ethernet testing, Gigabit Ethernet installation, Gigabit Ethernet maintenance, Gigabit Ethernet commissioning, Gigabit Ethernet protocols, 1000BASE-T tester, 1000BASE-LX test, 1000BASE-SX test, 1000BASE-T testing, 1000BASE-LX testing Trend’s Gigabit EthernetPocket Guide AuroraTango Gigabit Ethernet Multi-technology Personal Test Assistant Platform for simple, fast and effective testing of Gigabit Ethernet, ADSL, OSI model 802.3 model SHDSL, and ISDN. Aurora Tango 7 Application Upper layers Gigabit Ethernet has an exceptional 6 Presentation Reconciliation range of features Upper ensuring reliable delivery of end-to-end 5 Session layers services over Metropolitan networks MII Media independent based on Gigabit Ethernet. 4 It includes a full range of tests and Transport measurements, such as RFC-2544, PCS top ten addresses, real-time Ethernet 3 Network LLC (802.2) statistics, multilayer BERT, etc. Two PMA Gigaport transceivers allow terminate, 2 Data Link MAC (803.3) loopback and monitor connections to Autonegotiation networks, plus a 10/100/1000BASE-T Physical cable port for legacy testing. 1 PHY (802.3) dependent Media MDI A PDA provides an intuitive graphical menu structure for testing and workflow Media organization. Figure 1 Ethernet layers, 802.3 model compared with OSI. MII and Autonegotiation are optional. Encoding Standard Interface Media Type FDX Data Symbol MFS Distance 10BASE-2 One 50 Ohm thin coaxial cable H 4B/5B Manchester 64 <185 m 10BASE-5 One 50 Ohm thick coaxial cable H 4B/5B Manchester 64 <500 m 10Broad36 One 75 Ohm coaxial (CATV) H 4B/5B Manchester 64 <3600 m 10BASE-T Two pairs of UTP 3 (or better) H/F 4B/5B Manchester 64 <100 m 10BASE-FP Two optical 62.5 μm MMF passive hub H 4B/5B Manchester 64 <1000 m 10BASE-FL Two optical 62.5 μm MMF asyn hub F 4B/5B Manchester 64 2000 m 10BASE-FB Two optical 62.5 μm MMF sync hub H 4B/5B Manchester 64 <2000 m Ethernet 802.3a-t IEEE (clauses1-20) AUI 100BASE-T4 Four pairs of UTP 3 (or better) H 8B/6T MLT3 64 <100 m 100BASE-T2 Two pairs of UTP 3 (or better) H/F PAM5x5 PAM5 64 <100 m 100BASE-TX Two pairs of UTP 5 (or better) H/F 4B/5B MLT3 64 <100 m 100BASE-TX Two pairs of STP cables F 4B/5B MLT3 64 200 m 100BASE-FX Two optical 62.5 μm MMF F 4B/5B NRZI 64 2 km 100BASE-FX Two optical 50 μm SMF F 4B/5B NRZI 64 40 km Fast Ethernet Fast 802.3u IEEE 21-29) (clauses MII 1000BASE-CX Two pairs 150 Ohm STP (twinax) F 8B/10B NRZ 416 25 m 1000BASE-T Four pair UTP 5 (or better) H/F 4D-PAM5 PAM5 520 <100 m 1000BASE-SX Two 50 μm MMF, 850 nm F 8B/10B NRZ 416 500/750 m 1000BASE-SX Two 62.5 μm MMF, 850 nm F 8B/10B NRZ 416 220/400 m 1000BASE-LX Two 50 μm MMF, 1310 nm F 8B/10B NRZ 416 550/2000 m 1000BASE-LX Two 62.5 μm MMF, 1310 nm F 8B/10B NRZ 416 550/1000 m 1000BASE-LX Two 8-10 μm SMF,1310 nm F 8B/10B NRZ 416 5 km 1000BASE-ZX Two 8-10 μm SMF, 1310 nm F 8B/10B NRZ 416 80 km Gigabit Ethernet Gigabit 802.3z/ab IEEE 34-42) (clauses GMII 10GBASE-SR Two 50 μm MMF, 850 nm F 64B/66B NRZ N/A 2 ~ 300 m s n 10GBASE-SW Two 62.5 μm MMF, 850 nm F 64B/66B NRZ N/A 2 ~ 33 m o i 10GBASE-LX4 Two 50 μm MMF, 4 x DWM signal F 8B/10B NRZ N/A 300 m t 10GBASE-LX4 Two 62.5 μm MMF, 4 x DWM signal F 8B/10B NRZ N/A 300 m a c 10GBASE-LX4 Two 8 ~ 10 μm SMF, 1310 nm, 4 x DWM signal F 8B/10B NRZ N/A 10 km i n 10GBASE-LR Two 8 ~ 10 μm SMF, 1310 nm F 64B/66B NRZ N/A 10 km u 10GBASE-LW Two 8 ~ 10 μm SMF, 1310 nm F 64B/66B NRZ N/A 10 km m 10GBASE-ER Two 8 ~ 10 μm SMF, 1550 nm F 64B/66B NRZ N/A 2 ~ 40 km 10GBASE-EW Two 8 ~ 10 μm SMF, 1550 nm F 64B/66B NRZ N/A 2 ~ 40 km m 10GEthernet 802.3ae IEEE 48-53) (clause XGMII o C d Figure 2 Ethernet layers, 802.3 model compared with OSI. MII and Autonegotiation are optional. n e r T GbE.PocketG.fm Page 2 Friday, March 3, 2006 9:43 AM Gigabit Ethernet test, Gigabit Ethernet testing, Gigabit Ethernet installation, Gigabit Ethernet maintenance, Gigabit Ethernet commissioning, Gigabit Ethernet troubleshooting, Fibre Channel IEEE 802.3z IEEE 802.3 802.3z 802.3ab FC-4 LLC (802.2) Higher Layers Gigabit MAC FC-3 MAC (802.3) GMII (optional) Connection Services CSMA/CD or FDX FC-2 PCS - 8B/10B PCS 4DPAM5 Signalling PCS 1000BASE-T Phy Coding Sublayer PMA PMA FC-1 Codification PMA Autonegotiation Autonegotiation Phy Med Attachment FC-0 CX LX SX PMD Medium Interface PMD Phy Med Dependent MDI MDI MDI MDI 1000BASE-X MDI Medium Dependent I/F 2 x STP Single/Multimode Multimode 4 x UTP Cat.5 1000BASE-LX and 1000BASE-SX 1000BASE-T Tx Rx Tx Rx Recovery Tx Rx clock GMII (125 MBytes/s) 8MHz 125 bits, Carrier Sense Transmit Receive T T T T R R R R R 8bits 8bits PCS 8B/10B encoder 8B/10B decoder Auto- Negotiation Synchronisation abcdei-fghj HGFEDCBA 10B codes codes 10B Serialiser Deserialiser PMA Hybrid Hybrid Hybrid HybridH Slave 125 Mcodes/s PMD (serial interface) (serial Laser Driver Photo-Detector 125 Mbaud 125 Mbaud 125 Mbaud 125 Mbaud MDI 125 Mbauds Optical fiber Optical fiber Four pair UTP-5 FDX (optical interface) (optical Figure 3 Gigabit Ethernet defines several transmission media: 802.3z (1000BASE-X) based on the existing Fibre Channel technology, and 802.3ab (1000BASE-T) which uses UTP. IEEE 802.3ae LLC MAC Control OSI model MAC 7 Application Reconciliation Sublayer (RS) 6 Presentation XGMII XGMII XGMII 5 Session PCS 4 Transport 64B/66B PCS PCS 64B/66B 8B/10B 3 Network WIS 2 Data link PMA PMA PMA 1 Physical PMD PMD PMD MDI MDI MDI 10GBASE-W 10GBASE-R 10GBASE-X Figure 4 Layered model of IEEE 802.3ae 10 Gigabit Ethernet. GbE.PocketG.fm Page 3 Friday, March 3, 2006 9:43 AM Gigabit Ethernet test, Gigabit Ethernet testing, Gigabit Ethernet installation, Gigabit Ethernet maintenance, Gigabit Ethernet commissioning, Gigabit Ethernet troubleshooting, PSD 20 Category 3 limit Category 5 limit 1000BASE-T 10 100BASE-TX 100BASE-T2 -0 10BASE-T -10 dB -20 -30 -40 -50 MHz 0 20 40 60 80 100 120 140 160 180 200 220 240 Figure 5 Power Spectrum Density (PSD). Data 1010000 110000 0 00010 NRZ RZ NRZI Manchester MLT-3 Figure 6 Symbol encoding schemes used in Ethernet. >96 bit Rx buffer Tx buffer Frame gap Frame gap Frame gap Frame Interface Physical Interface Physical RX TX MAC MAC Pause gap Pause gap Pause gap Frame TX RX Tx buffer Rx buffer 71 6622 2 424 Pre SDF DA SA Length Opcode Timer Reserved FCS PAUSE Figure 7 FDX operation enables two-way transmission simultaneously without contention, collisions, extension bits or retransmissions. The only restriction is that a gap must be allowed between two consecutive frames. FDX also requests flow control, which is transmitted by the receiver to request that the trans- mitter temporarily stops transmitting. GbE.PocketG.fm Page 4 Friday, March 3, 2006 9:43 AM Gigabit Ethernet test, Gigabit Ethernet testing, Gigabit Ethernet installation, Gigabit Ethernet maintenance, Gigabit Ethernet commissioning, Gigabit Ethernet troubleshooting, Autonegotiation Base Page 10/100/1000BASE-T 0151234567891011121314 S0 S1 S2 S3 S4 A0 A1 A2 A3 A4 A5 A6 A7 RF Ack NP Priority Resolution Next Page present Highest Selector Field Acknowledgement 1000BASE-T full duplex 00001 - IEEE 802.3 1000BASE-T Remote Fault Indicator 00010 - IEEE 802.9 100BASE-T2 full duplex Reserved 100BASE-TX full duplex 00011 - 802.5 100BASE-T2 Asymmetric PAUSE (full duplex only) 100BASE-T4 PAUSE (full duplex only) 100BASE-TX 100BASE-T4 Half Duplex 10BASE-T full duplex 100BASE-TX Full Duplex 10BASE-T 100BASE-TX Half Duplex Lowest 10BASE-T Full Duplex 10BASE-T Half Duplex Autonegotiation Base Page 1000BASE-X 0 123456789101112 131415 Rsv Rsv Rsv Rsv Rsv FD HD PS1PS2 Rsv Rsv Rsv RF1 RF2 Ack NP Reserved Reserved Next page present Acknowledgement Full duplex Remote fault: 00=OK Half duplex 01=Offline Pause: 00 No Pause 10=Link Failure 01 Asymmetric pause 11=Autonegotiation Error 10 Symmetric pause 11 Symmetric and Asymmetric pause Message Next Page 0151234567891011121314 M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 T Ac2 MP Ack NP Next Page present Message Acknowledgement 1000000000 - Null Message Page 0100000000 - One Technology UP follows Acknowledgement 1100000011 - Two Technology UP follows 0010000000 - One Binary UP follows Toggle 1010000000 - Organizationally Unique Id. 0110000000 - PHY Id. 1110000000 - 100BASE-T2 One Ability UP follows 1110000000 - 1000BASE-T Two Ability UP follows Unformatted Page 1 1000BASE-T 0151234567891011121314 U0 U1 U2 U3 U4 0 0 0 0 0 0 T Ac2 MP Ack NP Half Duplex Next Page present Full Duplex Acknowledgement Port type (1=Multiport) Message Page Configuration (1=Master, 0=Slave) Acknowledgement Master/Slave Configuration (1=Manual) Toggle Unformatted Page 2 1000BASE-T 0151234567891011121314 SB0 SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8 SB9 SB10 TAc2MPAckNP Next Page present Master/Slave Seed value Acknowledgement The device with the higher SEED Message Page value is configured as MASTER Acknowledgement Toggle Figure 8 Autonegotiation messages.
Recommended publications
  • Mikrodenetleyicili Endüstriyel Seri Protokol Çözümleyici Sisteminin Programi
    YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MİKRODENETLEYİCİLİ ENDÜSTRİYEL SERİ PROTOKOL ÇÖZÜMLEYİCİ SİSTEMİNİN PROGRAMI Elektronik ve Haberleşme Müh. Kemal GÜNSAY FBE Elektronik ve Haberleşme Anabilim Dalı Elektronik Programında Hazırlanan YÜKSEK LİSANS TEZİ Tez Danışmanı : Yrd. Doç. Dr. Tuncay UZUN (YTÜ) İSTANBUL, 2009 YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MİKRODENETLEYİCİLİ ENDÜSTRİYEL SERİ PROTOKOL ÇÖZÜMLEYİCİ SİSTEMİNİN PROGRAMI Elektronik ve Haberleşme Müh. Kemal GÜNSAY FBE Elektronik ve Haberleşme Anabilim Dalı Elektronik Programında Hazırlanan YÜKSEK LİSANS TEZİ Tez Danışmanı : Yrd. Doç. Dr. Tuncay UZUN (YTÜ) İSTANBUL, 2009 İÇİNDEKİLER Sayfa KISALTMA LİSTESİ ................................................................................................................ v ŞEKİL LİSTESİ ...................................................................................................................... viii ÇİZELGE LİSTESİ .................................................................................................................... x ÖNSÖZ ...................................................................................................................................... xi ÖZET ........................................................................................................................................ xii ABSTRACT ............................................................................................................................ xiii 1. GİRİŞ ......................................................................................................................
    [Show full text]
  • MPLS-Based Metro Ethernet Networks a Tutorial • Paresh Khatri • 2018
    MPLS-based Metro Ethernet Networks A tutorial • Paresh Khatri • 2018 1 © Nokia 2017 Public Agenda 1. Introduction 2. Introduction to Metro Ethernet Services 3. Traditional Metro Ethernet networks 4. Delivering Ethernet over MPLS 5. Summary 6. Questions 2 © Nokia 2017 Public introduction 3 © Nokia 2017 Public Introduction • Paresh Khatri ([email protected]) - Chief Architect – IP Routing & Transport APAC, Alcatel-Lucent • Key focus areas: - End-to-end network architectures - SDN/NFV - Large-scale IP/MPLS networks - L2/L3 VPNs - Carrier Ethernet - Next-generation mobile backhaul networks • Acknowledgements: - Some figures and text are provided courtesy of the Metro Ethernet Forum (MEF) 4 © Nokia 2017 Public introduction to metro ethernet services 5 © Nokia 2017 Public AGenda 2. Introduction to Metro Ethernet Services a) Why Metro Ethernet ? b) Attributes of Carrier Ethernet c) Carrier Ethernet Services defined by the MEF 6 © Nokia 2017 Public 2.1 Why Metro Ethernet ? 7 © Nokia 2017 Public Introduction to Metro Ethernet Services What is Metro Ethernet ? “… generally defined as the network that bridges or connects geographically separated enterprise LANs while also connecting across the WAN or backbone networks that are generally owned by service providers. The Metro Ethernet Networks provide connectivity services across Metro geography utilising Ethernet as the core protocol and enabling broadband applications” from “Metro Ethernet Networks – A Technical Overview” from the Metro Ethernet Forum 8 © Nokia 2017 Public Introduction to Metro
    [Show full text]
  • Navigating Network Migration Challenges: Upgrade Your 1GE
    Navigating Network Migration Challenges: Upgrade Your 1GE Metro Ethernet Access Network to 10GE A White Paper from Telco Systems Upgrade Your 1GE Metro Ethernet Access Network to 10GE | 2 Intoduction Many businesses and service providers are migrating from • Service providers are finding it more difficult to live up to 1GE to 10GE networks as they attempt to avoid the obstacles their customers’ service level agreements (SLA) to presented by heavy bandwidth, while leveraging the benefits provide multiple services, which require more bandwidth that 10GE networking has to offer. The requirement for • Generating more revenue within the current limits of a more bandwidth has become a constant battle. As internet 1Gig network usage continues to increase with the popularity of data and streaming services, so does the demand for more bandwidth. As the gap between service revenues and the demand for From education (homework, e-learning, campus networks), higher bandwidth grows, providers are looking for ways to finance (online banking, stock trading, bill pay), and business better control their expenses while offering higher bandwidth purposes (company intranets, remote workers), to social media and more services to more customers. With the increasing (Facebook, Instagram, Twitter, Snapchat), political (campaigns demand for more bandwidth with OTT (over-the-top) and outreach) and personal purposes, data requirements applications like video streaming, Hulu, Netflix, and Amazon continue to rise – quicker than service providers can react. Prime becoming more popular, 1GE networks aren’t going to cut it anymore. In support of these activities, service providers are being driven to enhance their network capacities in their business Ethernet, To conquer these challenges, enterprises and service mobile backhaul, E-Rate, cloud networking, and SDN & NFV providers are migrating their 1GE networks to 10GE.
    [Show full text]
  • Gigabit Ethernet
    Ethernet Technologies and Gigabit Ethernet Professor John Gorgone Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 1 Topics • Origins of Ethernet • Ethernet 10 MBS • Fast Ethernet 100 MBS • Gigabit Ethernet 1000 MBS • Comparison Tables • ATM VS Gigabit Ethernet •Ethernet8SummaryCopyright 1998, John T. Gorgone, All Rights Reserved 2 Origins • Original Idea sprang from Abramson’s Aloha Network--University of Hawaii • CSMA/CD Thesis Developed by Robert Metcalfe----(1972) • Experimental Ethernet developed at Xerox Palo Alto Research Center---1973 • Xerox’s Alto Computers -- First Ethernet Ethernet8systemsCopyright 1998, John T. Gorgone, All Rights Reserved 3 DIX STANDARD • Digital, Intel, and Xerox combined to developed the DIX Ethernet Standard • 1980 -- DIX Standard presented to the IEEE • 1980 -- IEEE creates the 802 committee to create acceptable Ethernet Standard Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 4 Ethernet Grows • Open Standard allows Hardware and Software Developers to create numerous products based on Ethernet • Large number of Vendors keeps Prices low and Quality High • Compatibility Problems Rare Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 5 What is Ethernet? • A standard for LANs • The standard covers two layers of the ISO model – Physical layer – Data link layer Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 6 What is Ethernet? • Transmission speed of 10 Mbps • Originally, only baseband • In 1986, broadband was introduced • Half duplex and full duplex technology • Bus topology Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 7 Components of Ethernet • Physical Medium • Medium Access Control • Ethernet Frame Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 8 CableCable DesignationsDesignations 10 BASE T SPEED TRANSMISSION MAX TYPE LENGTH Ethernet8 Copyright 1998, John T.
    [Show full text]
  • VSC8489-10 and VSC8489-13
    VSC8489-10 and VSC8489-13 Dual Channel WAN/LAN/Backplane Highlights RXAUI/XAUI to SFP+/KR 10 GbE SerDes PHY • IEEE 1588v2 compliant with VeriTime™ • Failover switching and lane ordering Vitesse’s dual channel SerDes PHY provides fully • Simultaneous LAN and WAN support IEEE 1588v2-compliant devices and hardware-based KR • RXAUI/XAUI support support for timing-critical applications, including all • SFP+ I/O with KR support industry-standard protocol encapsulations. • 1 GbE support VeriTime™ is Vitesse’s patent-pending distributed timing technology Applications that delivers the industry’s most accurate IEEE 1588v2 timing implementation. IEEE 1588v2 timing integrated in the PHY is the • Multiple-port RXAUI/XAUI to quickest, lowest cost method of implementing the timing accuracy that SFI/ SFP+ line cards or NICs is critical to maintaining existing timing-critical capabilities during the • 10GBASE-KR compliant backplane migration from TDM to packet-based architectures. transceivers The VSC8489-10 and VSC8489-13 devices support 1-step and 2-step • Carrier Ethernet networks requiring PTP frames for ordinary clock, boundary clock, and transparent clock IEEE 1588v2 timing applications, along with complete Y.1731 OAM performance monitoring capabilities. • Secure data center to data center interconnects The devices meet the SFP+ SR/LR/ER/220MMF host requirements in accordance with the SFF-8431 specifications. They also compensate • 10 GbE switch cards and router cards for optical impairments in SFP+ applications, along with degradations of the PCB. The devices provide full KR support, including KR state machine, for autonegotiation and link optimization. The transmit path incorporates a multitap output driver to provide flexibility to meet the demanding 10GBASE-KR (IEEE 802.3ap) Tx output launch requirements.
    [Show full text]
  • T-Metro 200 Carrier Ethernet Multi-Service Ces Aggregation
    T-Metro 200 carrier ethernet multi-service ces aggregation The T-Metro 200 is a feature-rich multiservice access device designed to increase service provider revenues and deliver a complete portfolio of voice, data and video services. The T-Metro family of products supports a wide variety of technologies including Ethernet, circuit emulation services (CES), MPLS, OAM (operations, administration and maintenance) tools and hierarchical quality of service (HQoS). This rich combination of technologies PRODUCT HIGHLIGHTS allows service providers to deliver an enhanced service offering while Enhanced Ethernet services, maintaining competitive pricing. features and capabilities The T-Metro 200 provides access to advanced data services such as virtual – 802.1ad provider bridges for Ethernet private LAN services (VPLS), virtual private wire services (VPWS) and IP virtual based L2VPN services private network (IP-VPN) services. In addition, the T-Metro product line enables – Super VLAN for traffic isolation service providers to carry native TDM traffic transparently across packet – Fast-Ring with sub 50ms recovery switched networks (PSN), using various circuit emulation techniques. The TDM traffic is encapsulated in Ethernet or IP frames to emulate the functionality of a – IEEE 802.3ad link aggregation TDM circuit, ensuring that all original feature-sets are preserved. Circuit Emulation Services deliver traditional voice or leased line Designed for Metro Ethernet Services services Convergence of voice, data and video services over a single Ethernet-based – Structured agnostic traffic over infrastructure is transforming the way enterprises and service providers packet (SAToP) conduct their businesses. The T-Metro 200’s versatility, advanced feature-set, – CES over packet switched networks wire speed performance and robust design makes it an ideal convergence (CESoPSN) platform for metro applications, either in a bridged metro Ethernet or MPLS – T1/E1; DS3/T3, OC-3/STM-1 environment.
    [Show full text]
  • IEEE Std 802.3™-2012 New York, NY 10016-5997 (Revision of USA IEEE Std 802.3-2008)
    IEEE Standard for Ethernet IEEE Computer Society Sponsored by the LAN/MAN Standards Committee IEEE 3 Park Avenue IEEE Std 802.3™-2012 New York, NY 10016-5997 (Revision of USA IEEE Std 802.3-2008) 28 December 2012 IEEE Std 802.3™-2012 (Revision of IEEE Std 802.3-2008) IEEE Standard for Ethernet Sponsor LAN/MAN Standards Committee of the IEEE Computer Society Approved 30 August 2012 IEEE-SA Standard Board Abstract: Ethernet local area network operation is specified for selected speeds of operation from 1 Mb/s to 100 Gb/s using a common media access control (MAC) specification and management information base (MIB). The Carrier Sense Multiple Access with Collision Detection (CSMA/CD) MAC protocol specifies shared medium (half duplex) operation, as well as full duplex operation. Speed specific Media Independent Interfaces (MIIs) allow use of selected Physical Layer devices (PHY) for operation over coaxial, twisted-pair or fiber optic cables. System considerations for multisegment shared access networks describe the use of Repeaters that are defined for operational speeds up to 1000 Mb/s. Local Area Network (LAN) operation is supported at all speeds. Other specified capabilities include various PHY types for access networks, PHYs suitable for metropolitan area network applications, and the provision of power over selected twisted-pair PHY types. Keywords: 10BASE; 100BASE; 1000BASE; 10GBASE; 40GBASE; 100GBASE; 10 Gigabit Ethernet; 40 Gigabit Ethernet; 100 Gigabit Ethernet; attachment unit interface; AUI; Auto Negotiation; Backplane Ethernet; data processing; DTE Power via the MDI; EPON; Ethernet; Ethernet in the First Mile; Ethernet passive optical network; Fast Ethernet; Gigabit Ethernet; GMII; information exchange; IEEE 802.3; local area network; management; medium dependent interface; media independent interface; MDI; MIB; MII; PHY; physical coding sublayer; Physical Layer; physical medium attachment; PMA; Power over Ethernet; repeater; type field; VLAN TAG; XGMII The Institute of Electrical and Electronics Engineers, Inc.
    [Show full text]
  • IEEE 802.3 Working Group November 2006 Plenary Week
    IEEE 802.3 Working Group November 2006 Plenary Week Robert M. Grow Chair, IEEE 802.3 Working Group [email protected] Web site: www.ieee802.org/3 13 November 2006 IEEE 802 November Plenary 1 Current IEEE 802.3 activities • P802.3ap, Backplane Ethernet Published• P802.3aq, 10GBASE-LRM • P802.3ar, Congestion Management Approved• P802.3as, Frame Format Extensions • P802.3at, DTE Power Enhancements • P802.3av, 10 Gb/s EPON New • Higher Speed Study Group 13 November 2006 IEEE 802 November Plenary 2 P802.3ap Backplane Ethernet • Define Ethernet operation over electrical backplanes – 1Gb/s serial – 10Gb/s serial – 10Gb/s XAUI-based 4-lane – Autonegotiation • In Sponsor ballot • Meeting plan – Complete resolution of comments on P802.3ap/D3.1, 1st recirculation Sponsor ballot – Possibly request conditional approval for submittal to RevCom 13 November 2006 IEEE 802 November Plenary 3 P802.3aq 10GBASE-LRM • Extends Ethernet capabilities at 10 Gb/s – New physical layer to run under 802.3ae specified XGMII – Extends Ethernet capabilities at 10 Gb/s – Operation over FDDI-grade multi-mode fiber • Approved by Standards Board at September meeting • Published 16 October 2006 • No meeting – Final report to 802.3 13 November 2006 IEEE 802 November Plenary 4 P802.3ar Congestion Management • Proposed modified project documents failed to gain consensus support in July • Motion to withdraw the project was postponed to this meeting • Current draft advancement to WG ballot was not considered in July • Meeting plan – Determine future of the project – Reevaluate
    [Show full text]
  • Customer Issues and the Installed Base of Cabling
    CustomerCustomer andand MarketMarket Issues:Issues: 1010 GbpsGbps EthernetEthernet onon CategoryCategory 55 oror BetterBetter CablingCabling Bruce Tolley Cisco Systems, Inc [email protected] 1 IEEE 802.3 Interim January 2003 GbEGbE SwitchSwitch Ports:Ports: FiberFiber vsvs CopperCopper Ports (000s) 802.3ab 8,000 STD 7,000 6/99 6,000 802.3z 5,000 STD Total 4,000 6/98 Fiber 3,000 Copper 2,000 1,000 0 1997 1998 1999 2000 2001 2002 2 Source: Dell’Oro 2002 IEEE 802.3 Interim January 2003 SuccessSuccess ofof GbEGbE onon CopperCopper • It is 10/100/1000 Mbps • It runs Cat5, 5e and 6 • It does not obsolete the installed base • It does not require both ends of the link to be upgraded at the same time 3 IEEE 802.3 Interim January 2003 1010 GbEGbE LayerLayer DiagramDiagram Media Access Control (MAC) Full Duplex 10 Gigabit Media Independent Interface (XGMII) or 10 Gigabit Attachment Unit Interface (XAUI) CWDM Serial Serial LAN PHY LAN PHY WAN PHY (8B/10B) (64B/66B) (64B/66B + WIS) CWDM Serial Serial Serial Serial Serial Serial PMD PMD PMD PMD PMD PMD PMD 1310 nm 850 nm 1310 nm 1550 nm 850 nm 1310 nm 1550 nm -LX4 -SR -LR -ER -SW -LW -EW Source: Cisco Systems 4 IEEE 802.3 Interim January 2003 Pluggable 10 GbE Modules: The Surfeit of SKUs 10GBASE XENPAK X2/XPAK XFP PMDs XAUI XAUI -SR X X -LR X X X -ER X X -LX4 X X -CX4 X X -T X X X CWDM, X X X DWDM Please: No new pluggable for 10GBASE-T! 5 IEEE 802.3 Interim January 2003 CumulativeCumulative WorldWorld--widewide ShipmentsShipments 1300 1200 Cat 7 Cat5 Cat5 1100 Cat 6 59% 51% 1000 Cat 5e 900 Cat 5 800
    [Show full text]
  • SGI® IRIS® Release 2 Dual-Port Gigabit Ethernet Board User's Guide
    SGI® IRIS® Release 2 Dual-Port Gigabit Ethernet Board User’s Guide 007-4324-001 CONTRIBUTORS Written by Matt Hoy and updated by Terry Schultz Illustrated by Dan Young and Chrystie Danzer Production by Karen Jacobson Engineering contributions by Jim Hunter and Steve Modica COPYRIGHT © 2002, 2003, Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc. LIMITED RIGHTS LEGEND The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the US government or any contractor thereto, it is acquired as “commercial computer software” subject to the provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351. TRADEMARKS AND ATTRIBUTIONS Silicon Graphics, SGI, the SGI logo, IRIS, IRIX, Octane, Onyx, Onyx2, and Origin are registered trademarks, and Octane2, Silicon Graphics Fuel, and Silicon Graphics Tezro are trademarks of Silicon Graphics, Inc., in the United States and/or other countries worldwide. FCC WARNING This equipment has been tested and found compliant with the limits for a Class A digital device, pursuant to Part 15 of the FCC rules.
    [Show full text]
  • Carrier Ethernet Tutorial
    Carrier . Ethernet Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] These slides and audio/video recordings of this class lecture are at: http://www.cse.wustl.edu/~jain/cse570-19/ Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-19/ ©2019 Raj Jain 6-1 Overview 1. Enterprise vs Carrier Ethernet 2. UNI vs Peer-to-Peer Signaling 3. Metro Ethernet 4. Ethernet Provider Bridge (PB) 5. Provider Backbone Network (PBB) 6. Connection Oriented Ethernet Note: Although these technologies were originally developed for carriers, they are now used inside multi-tenant data centers Washington(clouds) University in St. Louis http://www.cse.wustl.edu/~jain/cse570-19/ ©2019 Raj Jain 6-2 Enterprise vs. Carrier Ethernet Enterprise Carrier Distance: up to 2km Up to 100 km Scale: Few K MAC addresses Millions of MAC Addresses 4096 VLANs Millions of VLANs Q-in-Q Protection: Spanning tree Shortest Path Routing Path determined by spanning Traffic engineered path tree Simple service SLA Priority ⇒ Aggregate QoS Need per-flow QoS No performance/Error Need performance/BER monitoring (OAM) Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-19/ ©2019 Raj Jain 6-3 Carriers vs. Enterprise We need to exchange topology for Sorry, We can’t tell you optimal routing. anything about our internal network. Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-19/ ©2019 Raj Jain 6-4 Network Hierarchy Provider Provider Backbone Provider Customer Bridge Network Bridge Network Bridge Network Customer Network (PBN) (PBBN) (PBN) Network Backbone Provider Provider Core Core Core Bridge Bridge Bridge Customer Provider Provider Customer Edge Edge Backbone Edge Edge Bridge Bridge Provider Backbone Edge Provider Bridge Bridge Edge Edge Bridge Edge Bridge Bridge Bridge Washington University in St.
    [Show full text]
  • Hybridní Ethernet (1)
    Hybridní Ethernet (1) • Jedná se o kombinaci dříve uvedených typů sítě Ethernet • Tuto kombinaci lze provést pomocí: – hybridního adaptéru (BNC/řada N): mezi tenkým a silným koaxiálním kabelem – repeateru: mezi tenkým a silným koaxiálním kabelem – hubu: mezi tenkým, silným koaxiálním kabelem a kroucenou dvojlinkou 2018-06-01 1 Hybridní Ethernet (2) RJ-45 BNC + T + BNC konektor # # # max. 100 (400) m Terminátor # # AUI konektor # # Hub N + T + N konektor nebo jehlový konektor Repeater min. 0,5 m max. 185 (300) m (300) 185 max. # # # m 500 max. Drop kabel Transceiver (MAU) (max 50 m) # # # # # min. 2,5 m 2018-06-01 2 10Broad36 (1) • Jako přenosové médium používá koaxiální kabel s char. impedancí Z0 = 75 W pracující v přeloženém pásmu • Činnost v přeloženém pásmu umožňuje, aby koaxiální kabel byl využíván i pro přenos jiných informací (např. video), než jsou data přenášená v síti • Jednotlivé stanice se ke koaxiálnímu kabelu připojují pomocí transceiveru a pomocného (drop) kabelu (max. 50 m) 2018-06-01 3 10Broad36 (2) • Maximální délka jednoho kabelu je 1800 m • Všechny sítě 10Broad36 jsou zakončeny pomocí tzv. head-end zařízení, které může být na konci jednoho kabelového segmentu nebo jako kořen více kabelových segmentů • Na druhém konci je síť ukončena termináto- rem • Tímto je možné zvětšit fyzický rozsah célé sítě až 3600 m (s drop kabely 3700 m) 2018-06-01 4 10Broad36 (3) • Síť 10Broad36 může být vybudována ve dvou konfiguracích: – s jedním koaxiálním kabelem: • datové přenosy jsou rozděleny do dvou kanálů, z nichž každý využívá jiné
    [Show full text]