The Vlt Survey Telescope (Vst) Is Now a Few Months from Its Completion

Total Page:16

File Type:pdf, Size:1020Kb

The Vlt Survey Telescope (Vst) Is Now a Few Months from Its Completion TTHEHE VLVLTT SSURURVEYVEY TTELESCOPEELESCOPE:: AA SSTTAATUSTUS RREPOREPORTT THE VLT SURVEY TELESCOPE (VST) IS NOW A FEW MONTHS FROM ITS COMPLETION. THIS PAPER BRIEFLY REVIEWS THE PROJECT, ACCOUNTS FOR ITS CURRENT STATUS, ANTICIPATES THE CALENDAR OF FUTURE MILE- STONES UP TO FIRST LIGHT, AND LISTS THE SCIENTIFIC PROGRAMMES FOR THE OBSERVING TIME GUARANTEED TO THE OAC BY ESO FOR PROCUREMENT OF THE TELESCOPE. MASSIMO CAPACCIOLI1,21,2, DARIO MANCINI2, GIORGIOIORGIO SEDMAK3 1DEPARTMENT OF PHYSICAL SCIENCES, UNIVERSITY OF NAPLES “FEDERICO II”, NAPLES, ITALY 2INAF – CAPODIMONTE ASTRONOMICAL OBSERVATORY, NAPLES, ITALY 3DEPARTMENT OF ASTRONOMY, UNIVERSITY OF TRIESTE, TRIESTE, ITALY HE VLTSURVEY TELESCOPE > 5 Mega-Euros observing facility, leading in (VST; Capaccioli et al. 2003a,b) science and capable of boosting the growth is a 2.61-m diameter imaging of the OAC community. A constraint to be telescope conceived for the duly considered was the una tantum nature of Paranal Observatory to support the grant, which strongly suggested that it TtheT VLT through its wide-field capabilities would not support a regular flow of resources and to perform stand-alone survey projects. for operations and maintenance. It features a f/5.5 modified Ritchey-Chretien As a result, in July 1997 the Capodimonte optical layout, a two-lens wide-field correc- Observatory was able to present to ESO a sci- tor, with the dewar window acting as a third entific and technical proposal envisaging the lens and an optional atmospheric dispersion design, construction, and installation at the compensator, an active primary mirror, a dou- Cerro Paranal Observatory, of a new technol- ble-hexapod driven secondary mirror, and an ogy telescope with a medium aperture, spe- alt-azimuth mounting. It will operate from the cialized in, and entirely devoted to wide-field UV- to the I-band, preserving, within a cor- (WF) imaging at optical and infrared wave- rected field of view of 1°× 1°, the excellent lengths. The goal was to ensure, by this in- seeing conditions achievable at the Cerro strument, its camera and the seeing qualities Paranal site. The telescope will be equipped of the Paranal site, a more than tenfold in- with just one focal plane instrument, Omega- crease in the scientific output with respect to CAM, a large-format (16 k × 16 k pixels) CCD the combination of the ESO/MPG 2.2-m re- camera built by an international consortium flector with WFI. Named VST for VLT Sur- of the same name. Fruit of a joint venture vey Telescope, the instrument was intended between ESO and the Capodimonte Astro- to complement the VLT with wide-angle nomical Observatory (OAC) of Naples, now imaging for the detection and pre-char- Figure 1a: The VST acterisation of sources to be further observed mounted up to the top research centre of the newly established ring, in the assembly Italian National Institute for Astrophysics with the larger telescopes, but it was also area at Scafati (Naples). (INAF), the VST (Figure 1a + 1b) is expect- meant for non-VLT related stand-alone sur- ed to become operational at Paranal in the vey programmes. spring of 2006. Figure 1b: The VST top ring with the M2 cell. A BIT OF HISTORY The opportunity to undertake a major scien- tific and technological venture was offered to OAC by the assignment of an unexpected- ly substantial grant in the framework of re- sources reserved by the Italian Government to promote southern regions. Such funds had been previously solicited to further develop the observing station implemented at Toppo di Castelgrande with a 1.5-m alt-azimuthal telescope (TT1). In 1996 the OAC director set a commission of experts with the task of updating the programme with ideas for a 10 The Messenger 120 The principles of the VST project were ac- Figure 2: Example of cepted by ESO a year later (Arnaboldi et al. the VST performances on stellar sources 1998). A Memorandum of Understanding (exposure time = (MoU) between ESO and OAC, subscribed 30 min, seeing = 1Ș, in June 1998, assigned to the Neapolitan ob- airmass = 1, and no moon). The calcu- servatory the procurement of the telescope, lator is available at and to ESO the realization of the enclosure the address: and the responsibility for operations and http://www.na.astro.it/~ maintenance of the instrument for a minimum rifatto/vst/vocet_2.htm. of 10 years. In return of its contribution, OAC was entitled to receive a share of the total VST observing time (GTO) of the order of 15–20% (to be re-evaluated at the end of con- struction on the ground of the actual costs of the various components of the project), and a number of hours at one VLT UT equivalent to 50 observing nights distributed over time, through the involvement in several national egy was defined in order to guarantee the opti- with a maximum of 6 in one semester. and international dedicated projects which mization of the whole system in terms of At its conception, the telescope was led to the following main results: mechanical design and optical interfacing by planned to support at most two instruments: – the completion of the OAC Deep Field the use of finite element analysis and com- a CCD camera for the optical domain (first (OACDF), a multi-band pilot survey over puter modelling. The mechanical design is priority), and a second camera for the non- 0.5 square deg conducted with the driven by the positioning accuracy and sta- thermal infrared domain. Technological and ESO/MPG 2.2-m WFI camera in cooper- bility required by the optical design of each budget limitations, together with the appear- ation with the observatories of Bologna, element for each optical configuration, con- ance of another WF telescope (VISTA), led Padua, and Rome (Alcalà et al. 2004); sidering the detector and its optical elements to specializing VST to the wavelength range – the creation of astrometric and photomet- as a part of the telescope, and so improving from UV to I. The design and manufactur- ric software tools in the context of a col- the integrated system design. The VST basic ing of the optical camera (OmegaCAM), laboration with TERAPIX at the Institut specifications are summarized in Table 1 and with a mosaic of 32 CCDs for a total of d’Astrophysique de Paris (Radovich et al. the expected operational image budget is 256 Mpixels mapping the field of view of 2004). A porting to C++ of these tools, reported in Table 2 (next page). The VST VST at a scale of 0.21 arcsec per 15 µm pixel, which were initially developed in PERL, enclosure at Paranal Observatory has been was contracted by a European consortium is now in progress; realized by ESO as a facility integrated into which includes the Netherlands, Germany, – the participation within the ASTRO- the VLT system (Figure 3, next page). Italy, and ESO. The MoU was signed in Jan- WISE consortium, an EU project funded The VST optics were procured through a uary 2000. through the FP5 RTD programme. In this contract with Carl Zeiss Jena GmbH, with The performance of the VST/OmegaCAM framework, a first version of a pipeline for the Russian firm LZOS JSC as subcontractor. system, computed with reference to the prop- the processing of wide-field images has The primary (M1) and secondary (M2) mir- erties of the optical components and of the been released. In the same context OAC is rors are made from Sitall, an optical glass CCD camera, is expected to exceed 50% ef- developing a tool for photometric varia- produced by LZOS JSC and similar to Zero- ficiency across the whole spectral range from bility, which will be mainly used for dur. The lenses for the WF correctors are of UV- to I-bands. A conservative estimate of SN searches, stellar variability studies, fused silica produced by Schott (Figure 4, the signal-to-noise ratio of the VST system and discovery of exoplanets. next page). The prismatic lenses for the on point sources observed in 5 bands with atmospheric dispersion corrector (ADC) are 30 minutes exposure time gives a limiting DESIGN made from special glasses, also by Schott. In value of ~ 26 AB mag/arcsec2 (Figure 2). The design of the VST has been the respon- 2002 the primary mirror was destroyed in an The expected data rate for the scientific sibility of the Technology Working Group accident during shipment from Europe to projects of the Capodimonte GTO will be (TWG) of OAC in coordination with ESO for Chile. This enforced a series of emergency nearly 5 TB/year of non-compressed data. the validation of consistency to the VLTstan- actions to resolve the problem with minimum This flow raises the need of suitable HW/SW dards (Mancini et al. 2000). The project strat- impact on the final VST schedule. The new facilities. The hardware endowment at OAC consists of two Beowulf clusters: one is made of 17 dual Opteron CPU servers, to be used for data reduction; the second is a set of Table 1: VST telescope basic specifications 10 dual Pentium servers that will be dedicat- Telescope aperture 2 610 mm ed to data analysis. Concerning the manage- Image scale 0.214 arcsec/pixel ment of the VST data, software to archive fits Pixel reference size 15 µm files which uses http as transport protocol has Unvignetted 1.47° diagonal, been developed along with the fitshdr pack- field of view 1°× 1° square format age, a tool for fits header manipulation. The Detector 16 k × 16 k pixels CCD mosaic hardware for the massive data storage will be M1+M2 EE (80 %) < 0.3 arcsec (basic) acquired in time for the start of VST opera- M1+M2 EE (80 %) < 0.15 arcsec (intrinsic) tions.
Recommended publications
  • VLT Telescope Control Software Installation and Commissioning (Pdf
    VLT Telescope Control Software installation and commissioning. K. Wirenstrand, G. Chiozzi, R. Karban European Southern Observatory Karl-Schwarzschild-Strasse 2, 85748 Garching, Germany e-mail: [email protected], [email protected], [email protected] ABSTRACT Out of the four VLT Unit Telescopes, three have had first light and of those, one is in full scientific operation. So the VLT style Telescope Control Software is in regular operation on three out of four originally foreseen telescopes, and is being installed and tested on the fourth. In fact, it is actually installed and successfully operating on a whole family of ESO telescopes: the NTT, the 3.6m La Silla, the Seeing monitor telescopes on Paranal and La Silla. That means that this software is installed and running on a total of eight telescopes of different kinds, for the moment. The three Auxiliary telescopes of the VLT interferometer and the VLT Survey Telescope, now in the development phase, will join the family. Another member of the family is the Simulation Telescope, called "Control Model", at ESO headquarters in Garching. Although it cannot look at the sky (it is pure electronics and software: no mechanics and no optics) it has been, and still is, of great value. It can be reconfigured to emulate any of the actual telescopes and it is used for off-line testing of new software releases and to analyse and fix problem reports and change requests submitted from observation sites, without disturbing operation. It is also used to test instrumentation software and its interfaces with the TCS before the actual integration at the telescope.
    [Show full text]
  • The Case for Irish Membership of the European Southern Observatory Prepared by the Institute of Physics in Ireland June 2014
    The Case for Irish Membership of the European Southern Observatory Prepared by the Institute of Physics in Ireland June 2014 The Case for Irish Membership of the European Southern Observatory Contents Summary 2 European Southern Observatory Overview 3 European Extremely Large Telescope 5 Summary of ESO Telescopes and Instrumentation 6 Technology Development at ESO 7 Big Data and Energy-Efficient Computing 8 Return to Industry 9 Ireland and Space Technologies 10 Astrophysics and Ireland 13 Undergraduate Teaching 15 Outreach and Astronomy 17 Education and Training 19 ESO Membership Fee 20 Conclusions 22 References 24 1 Summary The European Southern Observatory (ESO) is universally acknowledged as being the world leading facility for observational astronomy. The astrophysics community in Ireland is united in calling for Irish membership of ESO believing that this action would strongly support the Irish government’s commitment to its STEM (science, technology, engineering and maths) agenda. An essential element of the government’s plans for the Irish economy is to substantially grow its high-tech business sector. Physics is a core part of that base, with 86,000 jobs in Ireland in this sector1 while astrophysics, in particular, is a key driver both of science interest and especially of innovation. To support this agenda, Irish scientists and engineers need access to the best research facilities and with this access comes the benefits of spin-off technology, contracts and the jobs which this can bring. ESO is currently expanding its membership to include Brazil and is considering some eastern European countries. The cost of membership will increase as more states join and as Ireland’s GDP increases.
    [Show full text]
  • ESO Calendar 2019
    ESO Calendar 2019 European Southern Observatory Cover January February March April May June Rendering of the Extremely Large Telescope The Small Magellanic Cloud The Cat’s Paw and the Lobster Nebulae APEX and snowy Chajnantor VISTA’s cosmic view A sky full of galaxies ALMA’s dramatic surroundings This artist’s impression displays the Extremely One of our closest neighbours, the Small Magellanic This spectacular image from the VLT Survey The slumbering Atacama Pathfinder Experiment The Visible and Infrared Survey Telescope for This image contains a plethora of astronomical ALMA is a revolutionary astronomical telescope, Large Telescope (ELT) in all its grandeur. Sitting Cloud (SMC), is a dwarf irregular galaxy 200 000 Telescope (VST) shows the Cat’s Paw (upper right) (APEX) telescope sits beneath reddened skies in Astronomy (VISTA) is located at ESO’s Paranal treats. A subtle grouping of 1000 yellowish galaxies comprising an array of 66 giant antennas observing atop Cerro Armazones, 3046 m up in the Chilean light-years away. In the southern hemisphere, the and the Lobster (lower left) Nebulae. These vivid the snow covered Chajnantor landscape. Snow Observatory in Chile. The extreme altitude and arid cluster together near the centre of the frame. at millimetre and submillimetre wavelengths. It is Atacama Desert, the ELT’s mirror will be 39 metres SMC can be seen with the naked eye. The bright displays are sites of active star formation: photons blankets not only the ground, but also the many climate make for cloudless skies and excellent Combined with large quantities of hot gas and dark situated on the breathtaking Chajnantor Plateau, at in diameter: “the world’s biggest eye on the sky.” globular star cluster, 47 Tucanae, appears to the from hot young stars excite surrounding hydrogen peaks that encircle the Chilean plateau, which also viewing conditions.
    [Show full text]
  • Operating the Very Large Telescope
    Operating the Very Large Telescope Credit: ESO/B. Tafreshi (twanight.org) Introduction: From scientific idea to data legacy The Very Large Telescope (VLT) was built to allow European astronomers and their colleagues world- wide to perform ground-breaking research in obser- vational astronomy and cosmology. It provides them with state-of-the art facilities and instrumentation able to reach unprecedented combinations of sensi- tivity, sharpness and coverage of the ultraviolet, visible and infrared regions of the electromagnetic spectrum. More than thirteen years after science observations started, the potential of the VLT continues to be developed with innovative instrumentation and new capabilities that keep it in line with the increasing demands posed by forefront research. This ensures that it retains its leading position among ground- based astronomical facilities. Operating a complex facility like the VLT and making sure that it is able to fulfil its enormous potential is not an easy task. Its carefully designed operations scheme, which involves specialised groups of scien- tists and engineers both in Chile and in Europe, is Credit: ESO/B. Tafreshi (twanight.org) an essential component in the continued success of The ESO Very Large Telescope gets ready for a night of observing. the VLT. Science operations from end to end VLT science operations constitute a seamless pro- Germany, supported by databases that duplicate in- cess that starts when astronomers submit descrip- formation across the ocean, and other sophisticated tions of proposed observing projects intended to tools. address specific scientific objectives. After a competi- tive selection process in which the proposals are All the scientific data that are gathered and their as- peer-reviewed by experts from the community, the sociated calibrations are stored in the ESO Science approved projects are translated into a detailed de- Archive Facility.
    [Show full text]
  • The VLT Survey Telescope Opens to the Sky: History of a Commissioning
    Telescopes and Instrumentation The VLT Survey Telescope Opens to the Sky: History of a Commissioning Massimo Capaccioli1,2 mirror, and an alt-azimuthal mounting. Its Pietro Schipani2 single focal plane instrument, OmegaCAM, is a large format (16k × 16k pixels) CCD camera contributed by the OmegaCAM ESO/G. Lombardi 1 Department of Physical Sciences, consortium (see Kuijken, p. 8). University Federico II, Naples, Italy 2 INAF–Capodimonte Astronomical The VST is the result of a joint venture Observatory, Naples, Italy between ESO and the Capodimonte Astronomical Observatory (OAC) in Naples, formerly an independent institu- Commissioning team members: tion, and, since 2002, part of the Italian 1 1 1 Massimo Dall’Ora , Sergio D’Orsi , Laurent Marty , National Institute for Astrophysics (INAF). Carmelo Arcidiacono2,3,5, Javier Argomedo3,4, Jacopo Farinato5, Demetrio Magrin5, Roberto It is the largest instrumental project Ragazzoni5, Gabriele Umbriaco6 carried out by Italian astronomy for ESO and the first active optics telescope completely designed in Italy, from 1 INAF–Capodimonte Astronomical Observatory, Italy, 2 INAF–Bologna Astronomical Observatory, scratch, and by a fistful of engineers. Italy, 3 INAF–Arcetri Astronomical Observatory, Italy, 4 ESO, 5 INAF–Padua Astronomical Observatory, Here we briefly describe the final stages 6 Italy, University of Padua, Italy of the project before its completion and report on the scientific programmes devised by the INAF community for the The VLT Survey Telescope (VST) is now guaranteed time observing (GTO). For the ready to undertake its mission. After a earlier history see Capaccioli et al. (2003, long gestation, the telescope has re­­ 2005). Figure 1. A view of the VST inside its enclosure, sur- vealed its power, providing image qual- rounded by the electrical control cabinets.
    [Show full text]
  • Esoshop Catalogue
    ESOshop Catalogue www.eso.org/esoshop Annual Report 2 Annual Report Annual Report Content 4 Annual Report 33 Mounted Images 6 Apparel 84 Postcards 11 Books 91 Posters 18 Brochures 96 Stickers 20 Calendar 99 Hubbleshop Catalogue 22 Media 27 Merchandise 31 Messenger Annual Report 3 Annual Report Annual Report 4 Annual Report Annual Report ESO Annual Report 2018 This report documents the many activities of the European Southern Observatory during 2018. Product ID ar_2018 Price 4 260576 727305 € 5.00 Annual Report 5 Apparel Apparel 6 Apparel Apparel Running Tank Women Running Tank Men ESO Cap If you love running outdoors or indoors, this run- If you love running outdoors or indoors, this run- The official ESO cap is available in navy blue and ning tank is a comfortable and affordable option. ning tank is a comfortable and affordable option. features an embroidered ESO logo on the front. On top, it is branded with a large, easy-to-see On top, it is branded with a large, easy-to-see It has an adjustable strap, measuring 46-60 cm ESO logo and website on the back and a smaller ESO logo and website on the back and a smaller (approx) in circumference, with a diameter of ESO 50th anniversary logo on the front, likely to ESO 50th anniversary logo on the front, likely to 20 cm (approx). raise the appreciation or the curiosity of fellow raise the appreciation or the curiosity of fellow runners. runners. Product ID apparel_0045 Product ID apparel_0015 (M) Product ID apparel_0020 (M) Price Price Price € 8.00 4 260576 720306 € 14.00 4 260576 720047 € 14.00 4 260576 720092 Product ID apparel_0014 (L) Product ID apparel_0019 (L) Price Price € 14.00 4 260576 720030 € 14.00 4 260576 720085 Product ID apparel_0013 (XL) Price € 14.00 4 260576 720023 Apparel 7 Apparel ESO Slim Fit Fleece Jacket ESO Slim Fit Fleece Jacket Men ESO Astronomical T-shirt Women This warm long-sleeve ESO fleece jacket is perfect This warm long-sleeve ESO fleece jacket is perfect This eye-catching nebular T-shirt features stunning for the winter.
    [Show full text]
  • Very Large Telescope Paranal Science Operations VIRCAM/VISTA User Manual
    EUROPEAN SOUTHERN OBSERVATORY Organization Europeene´ pour des Recherches Astronomiques dans l’Hemisph´ ere` Austral Europaische¨ Organization f¨ur astronomische Forschung in der s¨udlichen Hemisphare¨ ESO - European Southern Observatory Karl-Schwarzschild Str. 2, D-85748 Garching bei M¨unchen Very Large Telescope Paranal Science Operations VIRCAM/VISTA User Manual Doc. No. VIS-MAN-ESO-06000-0002 Issue 85.0, Date 18/12/2009 V. D. Ivanov, T. Szeifert Prepared ................................................ Date Signature A. Kaufer Approved ................................................ Date Signature C. Dumas Released ................................................ Date Signature ii VIRCAM/VISTAUserManual VIS-MAN-ESO-06000-0002 This page was intentionally left blank VIRCAM/VISTAUserManual VIS-MAN-ESO-06000-0002 iii Change Record Issue Date Section affected Reason/Initiation/Documents/Remarks 0.10 09/09/2008 All Creation 1.00 18/12/2009 All First public release for P85. 1.01 01/07/2010 All Update for P86 Phase II and P87 Phase I. 1.02 01/12/2010 Twilight, overheads. Update P87 Phase II. 1.03 11/03/2011 Minor updates. Update P88 Phase I. 1.04 04/08/2011 Web links updated. 1.05 13/06/2013 Template tile6sky info. Update P92 Phase I. iv VIRCAM/VISTAUserManual VIS-MAN-ESO-06000-0002 This page was intentionally left blank VIRCAM/VISTAUserManual VIS-MAN-ESO-06000-0002 v Contents 1 Introduction 1 2 Applicabledocumentsandothersourcesofinformation 3 3 Abbreviations and Acronyms 5 4 VISTA and VIRCAM in a nut-shell 6 5 The VISTA Telescope – Technical Description 7 6 The VIRCAM - VISTA Infra-Red Camera 9 6.1 Generalfeatures ................................. ...... 9 6.2 Detectors ....................................... .... 11 6.3 Filters ......................................... .... 15 6.4 Sensitivity....................................
    [Show full text]
  • The ESO Survey Telescopes — Mapping the Sky in the Finest Detail
    The ESO Survey Telescopes — Mapping the Sky in the Finest Detail European Southern Observatory The Milky Way arches over the VISTA telescope. Credit: ESO/Y. Beletsky The ESO Survey Telescopes — Mapping the Sky in the Finest Detail Two powerful survey telescopes — the sky at near-infrared wavelengths. VISTA National Institute for Astrophysics (INAF). Visible and Infrared Survey Telescope was conceived and developed by a The VST became operational at Paranal for Astronomy (VISTA) and the VLT Survey consortium of 18 UK universities led by early in 2011. Telescope (VST) — are sited at ESO’s Queen Mary, University of London, and its Paranal Observatory in northern Chile. construction was managed by the UK The scientific goals of the surveys include They are arguably the most powerful Science and Technology Facilities Coun- many of the most exciting problems in dedicated imaging survey telescopes in cil’s UK Astronomy Technology Centre in astrophysics today, ranging from the nature the world and greatly increase the scien- Edinburgh. VISTA was given to ESO as of dark energy to the threat of near-Earth tific discovery potential of the Paranal an in-kind contribution as part of the UK’s asteroids. Large teams of astronomers Observatory. accession agreement. throughout Europe are conducting the surveys. Some cover most of the southern Many of the most interesting astronomical VISTA’s main mirror is the most highly sky while others focus on smaller areas. objects — from tiny, but potentially dan- curved mirror of its size ever made and its gerous, near-Earth asteroids to the most construction is a formidable accomplish- Both VISTA and the VST are producing remote quasars — are rare.
    [Show full text]
  • Vlt Survey Telescope P
    THE VST - VLT SURVEY TELESCOPE P. SCHIPANI ON BEHALF OF THE TEAM AUDIZIONI INFRASTRUTTURE 31.05.2021 1 THE VST - VLT SURVEY TELESCOPE AN INAF INFRASTRUCTURE IN THE BEST SITE AND MOST PRODUCTIVE OBSERVATORY ESO, Chile, Cerro Paranal (2635 m) 2.6-m Ø , visible band 1° x 1° wide-field imager (OmegaCAM) Active Optics (WFS,M1,M2) Designed and realized by INAF Same tech performance of ESO UTs (tracking, AO) Same reliability of ESO UTs ESO Dataflow System No stop work since end 2011 ESO-INAF Agreement till 03/2022 Phase 1 - Realization . HW relatively cheap (INAF did most of the work) . Cost: ~15 M€ (ext. + INAF) + Instr. + Dome . Huge INAF human investment for the realization and . FTE (INAF only): ~200 operations (Nx100 FTEs) Phase 2 - Operations under ESO control . Cost: <200k€/yr (INAF) Big INAF heritage for optical surveys (e.g. VRO) . FTE (INAF only): ~25 Audizioni Infrastrutture INAF – 2021.05.31 2 THE VST - VLT SURVEY TELESCOPE INAF Property LEADERSHIP ESO PARANAL Telescopes . ALL ESO projects but VST & VISTA Instruments Future: . Consortia with MOONS many INAF participations Decommissioned: FORS1 ISAAC VIMOS So far the only INAF-led telescope or instrument delivered to ESO Audizioni Infrastrutture INAF – 2021.05.31 3 THE VST - VLT SURVEY TELESCOPE Audizioni Infrastrutture INAF – 2021.05.31 4 THE VST - VLT SURVEY TELESCOPE SCIENCE WITH THE VST Summary from: VST Beyond 2021 report VST in the Era of the Large Sky Surveys http://www.inaf.it/it/sedi/sede-centrale- https://indico.ict.inaf.it/e/VST2018 nuova/direzione-scientifica/report-vst-beyond-2021 ESO TIME KiDS Kilo-Degree Survey.
    [Show full text]
  • VST Beyond 2021
    VST Beyond 2021 Revision: 1.0 Date: 2020-11-25 Prepared by: Maria Teresa Botticella Paolo D’Avanzo Marco Gullieuszik Alessandro Papitto Pietro Schipani Report VST2021 Issue: 01 Date: 25 November 2020 Revision Record Revision Description Date 1.0 Initial version 2020-11-25 List of Acronyms ADC Atmospheric Dispersion Corrector CTA Cherenkov Telescope Array GTO Guaranteed Time Observations KiDS Kilo-Degree Survey LSST Legacy Survey of Space and Time RRM Rapid Response Mode SOXS Son of X-SHOOTER SKA Square Kilometre Array SM Service Mode ToO Target of Opportunity VLT Very Large Telescope VPHAS VST Photometric Hα Survey VST VLT Survey Telescope VM Visitor Mode 2 Report VST2021 Issue: 01 Date: 25 November 2020 Table of contents 1 Scope of this document 5 1.1 VST beyond 2021 5 1.2 The VST beyond 2021 Working Group 5 2 VST: the present 7 2.1 The telescope 7 2.1.1 Optical Design and Active Optics 8 2.1.2 Pointing and Tracking System 9 2.1.3 The Engineering Plant 9 2.1.4 Telescope Image Quality 10 2.1.5 Unused subsystems 10 2.2 OmegaCAM 11 2.3 Enclosure 12 2.4 Operations & Data Flow 13 2.4.1 Program handling 15 2.4.2 Observation handling 15 2.5 VST Data Center 17 3 Science with the VST in the years 2011 - 2020 18 3.1 Scientific Programs 18 3.2 Scientific Results 21 4 VST in the post-2021 scientific panorama 25 4.1 The Vera C. Rubin Observatory and Legacy Survey of Space and Time 25 4.2 The Cherenkov Telescope Array 26 5 Call for ideas 27 5.1 Scientific projects 29 5.1.1 Science cases 29 5.1.2 Scientific project’s timelines 38 5.1.3 Requested number
    [Show full text]
  • Top-100-Images-From-ESO.Pdf
    To his Majesty Albert II of Belgium. Sharing our admiration of the wonders of the Universe. Top 100 Images from ESO VISTA’s infrared view of the Orion Nebula This wide-ield view of the Orion Nebula (Messier 42), lying about 1350 light-years from Earth, was taken with the VISTA infrared survey telescope at ESO’s Paranal Observatory in Chile. The new telescope’s huge ield of view allows the whole nebula and its surroundings to be imaged in a single picture and its infrared vision also means that it can peer deep into the normally hidden dusty regions and reveal the curious antics of the very active young stars buried there. This image was created from images taken through Z, J and Ks ilters in the near-infrared part of the spectrum. The exposure times were ten minutes per ilter. The image covers a region of sky about one degree by 1.5 degrees. Credit: ESO/J. Emerson/VISTA. Acknowledgment: Cambridge Astronomical Survey Unit 6 | Top 100 Images from ESO Top 100 Images from ESO | 7 The Helix Nebula This colour-composite image of the Helix Nebula (NGC 7293) was created from images obtained using the the Wide Field Imager (WFI), an astronomical camera attached to the 2.2-metre Max-Planck Society/ESO telescope at the La Silla observatory in Chile. The blue-green glow in the centre of the Helix comes from oxygen atoms shining under effects of the intense ultraviolet radiation of the 120 000 degree Celsius central star and the hot gas. Further out from the star and beyond the ring of knots, the red colour from hydrogen and nitrogen is more prominent.
    [Show full text]
  • The Visible & Infrared Survey Telescope for Astronomy
    TTHEHE VVISIBLEISIBLE && IINFRAREDNFRARED SSURURVEYVEY TTELESCOPEELESCOPE FORFOR AASTRONOMYSTRONOMY www.vista.ac.uk.vista.ac.uk VISTA’S 4-METRE PRIMARY MIRROR AND 1.65-DEGREE DIAMETER INFRARED FIELD OF VIEW FEEDS A 64 MEGAPIXEL (0.34Ș PIXEL) CAMERA. RAPID DEEP IR (0.85–2.3µm) IMAGING SURVEYS WILL BOTH SELECT OBJECTS FOR FOLLOW-UP WITH VLT, AND DIRECTLY STUDY A WIDE VARIETY OF ASTRONOMICAL TOPICS. J.P. EMERSON1, W.J. SUTHERLAND2, A.M. MCPHERSON3, S.C. CRAIG3, G.B. DALTON4 & A.K. WARD4 1ASTRONOMY UNIT, QUEEN MARY UNIVERSITY OF LONDON, UK 2INSTITUTE OF ASTRONOMY, CAMBRIDGE, UK 3UK ASTRONOMY TECHNOLOGY CENTRE, EDINBURGH, UK 4RUTHERFORD APPLETON LABORATORY, CCLRC, DIDCOT, UK ISTA (Visible and Infrared Survey Telescope for Astronomy) is the result of a 1998 application, to the UK’s Joint Infrastructure Fund, by the VISTA Consortium of 18 UK Universities (see acknowl- edgments) for funding for a 4-m wide field survey Vtelescope,V which was approved in summer 1999. The purpose of the wide field (1.65o diameter in the IR) survey telescope and cam- era facility is to perform extensive surveys of the southern skies whose sensitivity is matched to the needs of today’s 8-m class tel- escopes. Imaging surveys not only generate much science directly but also are needed to efficiently choose objects for further study by the VLT. IR surveys particularly target the cold universe, the obscured universe, and the high redshift universe. The VISTA Consortium used competitive tendering to choose the UK Astronomy Technology Centre (UKATC) in Edinburgh to take on the technical responsibility for design and construction and a VISTA Project Office was accordingly set up.
    [Show full text]