What Determines the Aesthetic Appeal of Astronomical Images? Research & Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
M33 Tutorial Making Color Images
M33 Tutorial Making Color Images Travis A. Rector University of Alaska Anchorage and NOAO Department of Physics and Astronomy 3211 Providence Dr., Anchorage, AK USA email: [email protected] Introduction A Note from the Author The purpose of this tutorial is to demonstrate how color images of astronomical objects can be generated from the original FITS data files. The techniques described herein are used to create many of the astronomical images you see from profes- sional observatories such as the Hubble Space Telescope, Kitt Peak, Gemini and The WIYN 0.9-meter Telescope Spitzer. In this tutorial we will make an image of M33, the Triangulum Galaxy. M33 is a spectacular face-on spiral galaxy that is relatively nearby. It is assumed that you are familiar with the prerequisites listed below. If you have problems with the tutorial itself please feel free to contact the author at the email address above. Nomenclature: FITS stands for Flexible Image Prerequisites Transport System. It is the stan- dard format for storing astronomi- To participate in this tutorial, you will need a basic understanding of the follow- cal data. ing concepts and software: • FITS datafiles • Adobe Photoshop or Photoshop Elements • The layering metaphor Description of the Data The datasets of M33 used in this tutorial were obtained with the WIYN 0.9-meter Decoding file names telescope on Kitt Peak, which is located about 40 miles west of Tucson, Arizona. The FITS files are 2048 x 2048 pixels, and about 16 Mb in size each. Datasets in The FITS filenames consist of the name of the object, an underscore, the broadband UBVRI and narrowband Ha filters are available. -
50 Years of Existence of the European Southern Observatory (ESO) 30 Years of Swiss Membership with the ESO
Federal Department for Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI 50 years of existence of the European Southern Observatory (ESO) 30 years of Swiss membership with the ESO The European Southern Observatory (ESO) was founded in Paris on 5 October 1962. Exactly half a century later, on 5 October 2012, Switzerland organised a com- memoration ceremony at the University of Bern to mark ESO’s 50 years of existence and 30 years of Swiss membership with the ESO. This article provides a brief summary of the history and milestones of Swiss member- ship with the ESO as well as an overview of the most important achievements and challenges. Switzerland’s route to ESO membership Nearly twenty years after the ESO was founded, the time was ripe for Switzerland to apply for membership with the ESO. The driving forces on the academic side included the Universi- ty of Geneva and the University of Basel, which wanted to gain access to the most advanced astronomical research available. In 1980, the Federal Council submitted its Dispatch on Swiss membership with the ESO to the Federal Assembly. In 1981, the Federal Assembly adopted a federal decree endorsing Swiss membership with the ESO. In 1982, the Swiss Confederation filed the official documents for ESO membership in Paris. In 1982, Switzerland paid the initial membership fee and, in 1983, the first year’s member- ship contributions. High points of Swiss participation In 1987, the Federal Council issued a federal decree on Swiss participation in the ESO’s Very Large Telescope (VLT) to be built at the Paranal Observatory in the Chilean Atacama Desert. -
A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra
A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Diamond-Lowe, Hannah Zoe. 2020. A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365825 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A first reconnaissance of the atmospheres of terrestrial exoplanets using ground-based optical transits and space-based UV spectra A DISSERTATION PRESENTED BY HANNAH ZOE DIAMOND-LOWE TO THE DEPARTMENT OF ASTRONOMY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE SUBJECT OF ASTRONOMY HARVARD UNIVERSITY CAMBRIDGE,MASSACHUSETTS MAY 2020 c 2020 HANNAH ZOE DIAMOND-LOWE.ALL RIGHTS RESERVED. ii Dissertation Advisor: David Charbonneau Hannah Zoe Diamond-Lowe A first reconnaissance of the atmospheres of terrestrial exoplanets using ground-based optical transits and space-based UV spectra ABSTRACT Decades of ground-based, space-based, and in some cases in situ measurements of the Solar System terrestrial planets Mercury, Venus, Earth, and Mars have provided in- depth insight into their atmospheres, yet we know almost nothing about the atmospheres of terrestrial planets orbiting other stars. -
Outreach Products Integrated Under Virtual Observatories and IDIS
Europlanet N4 Outreach Products integrated under Virtual Observatories and IDIS Pedro Russo (Max Planck Institute for Solar System Research) [email protected] Virtual Observatories European Virtual Observatory The EURO-VO project is open to all European astronomical data centres. Partners include ESO, the European Space Agency, and six national funding agencies, with their respective VO nodes: INAF, Italy; INSU, France; INTA, Spain; NOVA, Netherlands; PPARC, UK; RDS, Germany. Data Centre Alliance Alliance of European data centres Physical storage Publish data, metadata and services Facility Centre Centralised registry for resources, standards and certification mechanisms Support for VO technology Dissemination and scientific program Technology Centre research and development projects on the advancement of VO technology, systems and tools in response to scientific and community requirements http://www.euro-vo.org/ Virtual Observatories International Virtual Observatory Alliance Facilitate the international coordination and collaboration necessary for the development and deployment of the tools, systems and organizational structures necessary to enable the international utilization of astronomical archives as an Virtual Repository 2 integrated and interoperating virtual observatory. ! Data Format Standards ! Metadata Standards Figure 1: The International Virtual Observatory Alliance partners. http://www.ivoa.net/ Astrophysical Virtual Observatory A major European component of the Virtual Observatory is the Astrophysical Virtual Observatory (http://www.euro-vo.org) that started in November 2001 as a three- year Phase A project, funded by the European Commission (FP5) and six organizations (ESO, ESA, AstroGrid, CNRS (CDS, TERAPIX), University Louis Pasteur and the Jodrell Bank Observatory) with a total of 5 M!. A Science Working Group was established in 2002 to provide scientific advice to the AVO Project and to promote the implementation of selected science cases through demonstrations. -