Review of Basic Fluid Mechanics Hydrostatics ( ) P P Z Z H − = −Γ

Total Page:16

File Type:pdf, Size:1020Kb

Review of Basic Fluid Mechanics Hydrostatics ( ) P P Z Z H − = −Γ Review Of Basic Fluid Mechanics Hydromechanics VVR090 Hydrostatics Fluids at rest: • the pressure at any point in a fluid is the same in every direction • in a continuous fluid with constant density the pressure increases linearly with depth and the pressure is the same along horizontal planes dp = −γ = −ρg dz Constant density: p − pzzh11=−γ() − =γ 1 Pressure Definitions p Pressure head: h = γ (pressure may be expressed in height of a fluid column; e.g., mm Hg, m H2O) p Static head (piezometric head): + z γ p Hydrostatic pressure distribution: +=z const. γ Force on a plane area Total force: FhA= γ c Ic Center of pressure: yypc=+ yc A 2 Force on Curved Surfaces Look at horizontal (Fx) and vertical components (Fz) separately. Total force: 22 Ftot=+FF x z Flowing Fluid Basic equations for conservation of: • mass (continuity equation) • energy (involves potential and kinetic energy + work) • momentum (involves momentum fluxes + forces) Analysis through control volumes 3 Classification of flow types • 1-D, 2-D, and 3-D • real and ideal fluid • incompressible - compressible • steady – unsteady • laminar – turbulent • established – unestablished • uniform – non-uniform • subcritical – supercritical • subsonic - supersonic Continuity Equation 1-D, steady, compressible: ρ111AVAV=ρ 2 22 1-D, steady, incompressible: A11VAV= 2 2 stream tube 4 Energy Equation With energy losses (hL) and energy input (hM): ⎛⎞⎛⎞pV11 p 2 V 2 ⎜⎟⎜⎟++zh12 +M = ++ z ++ hL ⎝⎠⎝⎠γγ1222gg No losses: ⎛⎞pV ⎜⎟++z = const. Bernoulli’s equation ⎝⎠γ 2g Definitions in Fluid Flow • Pressure head (p/g) • Elevation head (z) • Static head (piezometric head) (p/g + z) • Velocity head (V2/2g) • Total (energy) head (p/g + z + V2/2g) • Hydraulic grade line Plane and parallell • Energy line streamlines p +=z const. γ 5 Energy and Hydraulic Grade Lines exit loss flow between reservoirs Momentum Equations Newton’s second law (vector relationship) ∑ FQVVx =ρ()21xx − ∑ FQVVyyy=ρ()21 − ∑ FQVVzzz=ρ()21 − 6 Pipe Flow Laminar – turbulent flow Characterized by Reynolds number: DVρ DV Re == μν Critical Re-value for transition to turbulence: 2000 (pipe flow) Head Loss in Pipes Wall shear stress L ULU22 hf== f L Dg242 Rg A R = (hydraulic P radius) Moody’s diagram 7 Minor Losses in Pipelines • expansion (e.g., exit) • contraction (e.g., entrance) • bends • fittings (e.g., valves) V 2 General expression: hK= LL2g Pipe Configurations Pipes in parallell: QQQ=+++123 Q ... hhLL====123 h L h L... Pipes in series: QQ===12 Q ... hhhLL=+++123 L h L... 8 Pumps and Turbines in the System Pumps supply the system with energy Turbines extract energy from the system Pumping Between Two Reservoirs Pump and system curve System curve: 2 HzCQP =Δ + PP 9.
Recommended publications
  • Fluid Mechanics
    FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 1. INTRODUCTION Mechanics is the oldest physical science that deals with both stationary and moving bodies under the influence of forces. Mechanics is divided into three groups: a) Mechanics of rigid bodies, b) Mechanics of deformable bodies, c) Fluid mechanics Fluid mechanics deals with the behavior of fluids at rest (fluid statics) or in motion (fluid dynamics), and the interaction of fluids with solids or other fluids at the boundaries (Fig.1.1.). Fluid mechanics is the branch of physics which involves the study of fluids (liquids, gases, and plasmas) and the forces on them. Fluid mechanics can be divided into two. a)Fluid Statics b)Fluid Dynamics Fluid statics or hydrostatics is the branch of fluid mechanics that studies fluids at rest. It embraces the study of the conditions under which fluids are at rest in stable equilibrium Hydrostatics is fundamental to hydraulics, the engineering of equipment for storing, transporting and using fluids. Hydrostatics offers physical explanations for many phenomena of everyday life, such as why atmospheric pressure changes with altitude, why wood and oil float on water, and why the surface of water is always flat and horizontal whatever the shape of its container. Fluid dynamics is a subdiscipline of fluid mechanics that deals with fluid flow— the natural science of fluids (liquids and gases) in motion. It has several subdisciplines itself, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of liquids in motion).
    [Show full text]
  • Fluid Mechanics
    cen72367_fm.qxd 11/23/04 11:22 AM Page i FLUID MECHANICS FUNDAMENTALS AND APPLICATIONS cen72367_fm.qxd 11/23/04 11:22 AM Page ii McGRAW-HILL SERIES IN MECHANICAL ENGINEERING Alciatore and Histand: Introduction to Mechatronics and Measurement Systems Anderson: Computational Fluid Dynamics: The Basics with Applications Anderson: Fundamentals of Aerodynamics Anderson: Introduction to Flight Anderson: Modern Compressible Flow Barber: Intermediate Mechanics of Materials Beer/Johnston: Vector Mechanics for Engineers Beer/Johnston/DeWolf: Mechanics of Materials Borman and Ragland: Combustion Engineering Budynas: Advanced Strength and Applied Stress Analysis Çengel and Boles: Thermodynamics: An Engineering Approach Çengel and Cimbala: Fluid Mechanics: Fundamentals and Applications Çengel and Turner: Fundamentals of Thermal-Fluid Sciences Çengel: Heat Transfer: A Practical Approach Crespo da Silva: Intermediate Dynamics Dieter: Engineering Design: A Materials & Processing Approach Dieter: Mechanical Metallurgy Doebelin: Measurement Systems: Application & Design Dunn: Measurement & Data Analysis for Engineering & Science EDS, Inc.: I-DEAS Student Guide Hamrock/Jacobson/Schmid: Fundamentals of Machine Elements Henkel and Pense: Structure and Properties of Engineering Material Heywood: Internal Combustion Engine Fundamentals Holman: Experimental Methods for Engineers Holman: Heat Transfer Hsu: MEMS & Microsystems: Manufacture & Design Hutton: Fundamentals of Finite Element Analysis Kays/Crawford/Weigand: Convective Heat and Mass Transfer Kelly: Fundamentals
    [Show full text]
  • Thermodynamics Notes
    Thermodynamics Notes Steven K. Krueger Department of Atmospheric Sciences, University of Utah August 2020 Contents 1 Introduction 1 1.1 What is thermodynamics? . .1 1.2 The atmosphere . .1 2 The Equation of State 1 2.1 State variables . .1 2.2 Charles' Law and absolute temperature . .2 2.3 Boyle's Law . .3 2.4 Equation of state of an ideal gas . .3 2.5 Mixtures of gases . .4 2.6 Ideal gas law: molecular viewpoint . .6 3 Conservation of Energy 8 3.1 Conservation of energy in mechanics . .8 3.2 Conservation of energy: A system of point masses . .8 3.3 Kinetic energy exchange in molecular collisions . .9 3.4 Working and Heating . .9 4 The Principles of Thermodynamics 11 4.1 Conservation of energy and the first law of thermodynamics . 11 4.1.1 Conservation of energy . 11 4.1.2 The first law of thermodynamics . 11 4.1.3 Work . 12 4.1.4 Energy transferred by heating . 13 4.2 Quantity of energy transferred by heating . 14 4.3 The first law of thermodynamics for an ideal gas . 15 4.4 Applications of the first law . 16 4.4.1 Isothermal process . 16 4.4.2 Isobaric process . 17 4.4.3 Isosteric process . 18 4.5 Adiabatic processes . 18 5 The Thermodynamics of Water Vapor and Moist Air 21 5.1 Thermal properties of water substance . 21 5.2 Equation of state of moist air . 21 5.3 Mixing ratio . 22 5.4 Moisture variables . 22 5.5 Changes of phase and latent heats .
    [Show full text]
  • Introduction to Hydrostatics
    Introduction to Hydrostatics Hydrostatics Equation The simplified Navier Stokes equation for hydrostatics is a vector equation, which can be split into three components. The convention will be adopted that gravity always acts in the negative z direction. Thus, and the three components of the hydrostatics equation reduce to Since pressure is now only a function of z, total derivatives can be used for the z-component instead of partial derivatives. In fact, this equation can be integrated directly from some point 1 to some point 2. Assuming both density and gravity remain nearly constant from 1 to 2 (a reasonable approximation unless there is a huge elevation difference between points 1 and 2), the z- component becomes Another form of this equation, which is much easier to remember is This is the only hydrostatics equation needed. It is easily remembered by thinking about scuba diving. As a diver goes down, the pressure on his ears increases. So, the pressure "below" is greater than the pressure "above." Some "rules" to remember about hydrostatics Recall, for hydrostatics, pressure can be found from the simple equation, There are several "rules" or comments which directly result from the above equation: If you can draw a continuous line through the same fluid from point 1 to point 2, then p1 = p2 if z1 = z2. For example, consider the oddly shaped container below: By this rule, p1 = p2 and p4 = p5 since these points are at the same elevation in the same fluid. However, p2 does not equal p3 even though they are at the same elevation, because one cannot draw a line connecting these points through the same fluid.
    [Show full text]
  • Equation of State for the Lennard-Jones Fluid
    Equation of State for the Lennard-Jones Fluid Monika Thol1*, Gabor Rutkai2, Andreas Köster2, Rolf Lustig3, Roland Span1, Jadran Vrabec2 1Lehrstuhl für Thermodynamik, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany 2Lehrstuhl für Thermodynamik und Energietechnik, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany 3Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio 44115, USA Abstract An empirical equation of state correlation is proposed for the Lennard-Jones model fluid. The equation in terms of the Helmholtz energy is based on a large molecular simulation data set and thermal virial coefficients. The underlying data set consists of directly simulated residual Helmholtz energy derivatives with respect to temperature and density in the canonical ensemble. Using these data introduces a new methodology for developing equations of state from molecular simulation data. The correlation is valid for temperatures 0.5 < T/Tc < 7 and pressures up to p/pc = 500. Extensive comparisons to simulation data from the literature are made. The accuracy and extrapolation behavior is better than for existing equations of state. Key words: equation of state, Helmholtz energy, Lennard-Jones model fluid, molecular simulation, thermodynamic properties _____________ *E-mail: [email protected] Content Content ....................................................................................................................................... 2 List of Tables .............................................................................................................................
    [Show full text]
  • 1 Fluid Flow Outline Fundamentals of Rheology
    Fluid Flow Outline • Fundamentals and applications of rheology • Shear stress and shear rate • Viscosity and types of viscometers • Rheological classification of fluids • Apparent viscosity • Effect of temperature on viscosity • Reynolds number and types of flow • Flow in a pipe • Volumetric and mass flow rate • Friction factor (in straight pipe), friction coefficient (for fittings, expansion, contraction), pressure drop, energy loss • Pumping requirements (overcoming friction, potential energy, kinetic energy, pressure energy differences) 2 Fundamentals of Rheology • Rheology is the science of deformation and flow – The forces involved could be tensile, compressive, shear or bulk (uniform external pressure) • Food rheology is the material science of food – This can involve fluid or semi-solid foods • A rheometer is used to determine rheological properties (how a material flows under different conditions) – Viscometers are a sub-set of rheometers 3 1 Applications of Rheology • Process engineering calculations – Pumping requirements, extrusion, mixing, heat transfer, homogenization, spray coating • Determination of ingredient functionality – Consistency, stickiness etc. • Quality control of ingredients or final product – By measurement of viscosity, compressive strength etc. • Determination of shelf life – By determining changes in texture • Correlations to sensory tests – Mouthfeel 4 Stress and Strain • Stress: Force per unit area (Units: N/m2 or Pa) • Strain: (Change in dimension)/(Original dimension) (Units: None) • Strain rate: Rate
    [Show full text]
  • Chapter 3 Equations of State
    Chapter 3 Equations of State The simplest way to derive the Helmholtz function of a fluid is to directly integrate the equation of state with respect to volume (Sadus, 1992a, 1994). An equation of state can be applied to either vapour-liquid or supercritical phenomena without any conceptual difficulties. Therefore, in addition to liquid-liquid and vapour -liquid properties, it is also possible to determine transitions between these phenomena from the same inputs. All of the physical properties of the fluid except ideal gas are also simultaneously calculated. Many equations of state have been proposed in the literature with either an empirical, semi- empirical or theoretical basis. Comprehensive reviews can be found in the works of Martin (1979), Gubbins (1983), Anderko (1990), Sandler (1994), Economou and Donohue (1996), Wei and Sadus (2000) and Sengers et al. (2000). The van der Waals equation of state (1873) was the first equation to predict vapour-liquid coexistence. Later, the Redlich-Kwong equation of state (Redlich and Kwong, 1949) improved the accuracy of the van der Waals equation by proposing a temperature dependence for the attractive term. Soave (1972) and Peng and Robinson (1976) proposed additional modifications of the Redlich-Kwong equation to more accurately predict the vapour pressure, liquid density, and equilibria ratios. Guggenheim (1965) and Carnahan and Starling (1969) modified the repulsive term of van der Waals equation of state and obtained more accurate expressions for hard sphere systems. Christoforakos and Franck (1986) modified both the attractive and repulsive terms of van der Waals equation of state. Boublik (1981) extended the Carnahan-Starling hard sphere term to obtain an accurate equation for hard convex geometries.
    [Show full text]
  • Manual for Lab #2
    CE 321 INTRODUCTION TO FLUID MECHANICS Fall 2009 LABORATORY 3: THE BERNOULLI EQUATION OBJECTIVES To investigate the validity of Bernoulli's Equation as applied to the flow of water in a tapering horizontal tube to determine if the total pressure head remains constant along the length of the tube as the equation predicts. To determine if the variations in static pressure head along the length of the tube can be predicted with Bernoulli’s equation APPROACH Establish a constant flow rate (Q) through the tube and measure it. Use a pitot probe and static probe to measure the total pressure head h Tm and static pressure head h Sm at six locations along the length of the tube. The values of h Tm will show if total pressure head remains constant along the length of the tube as required by the Bernoulli Equation. Using the flow rate and cross sectional area of the tube, calculate the velocity head h Vc at each location. Use Bernoulli’s Equation, h Tm and h Vc to predict the variations in static pressure head h St expected along the tube. Compare the calculated and measured values of static pressure head to determine if the variations in fluid pressure along the length of the tube can be predicted with Bernoulli’s Equation. EQUIPMENT Hydraulic bench with Bernoulli apparatus, stop watch THEORY Considering flow at any two positions on the central streamline of the tube (Fig. 1), Bernoulli's equation may be written as V 2 p V 2 p 1 + 1 + z = 2 + 2 + z (1) 2g γ 1 2g γ 2 1 Bernoulli’s equation indicates that the sum of the velocity head (V 2/2g), pressure head (p/ γ), and elevation (z) are constant along the central streamline.
    [Show full text]
  • Chapter 1 PROPERTIES of FLUID & PRESSURE MEASUREMENT
    Fluid Mechanics & Machinery Chapter 1 PROPERTIES OF FLUID & PRESSURE MEASUREMENT Course Contents 1. Introduction 2. Properties of Fluid 2.1 Density 2.2 Specific gravity 2.3 Specific volume 2.4 Specific Weight 2.5 Dynamic viscosity 2.6 Kinematic viscosity 2.7 Surface tension 2.8 Capillarity 2.9 Vapor Pressure 2.10 Compressibility 3. Fluid Pressure & Pressure Measurement 3.1 Fluid pressure, Pressure head, Pascal‟s law 3.2 Concept of absolute vacuum, gauge pressure, atmospheric pressure, absolute pressure. 3.3 Pressure measuring Devices 3.4 Simple and differential manometers, 3.5 Bourdon pressure gauge. 4. Total pressure, center of pressure 4.1 Total pressure, center of pressure 4.2 Horizontal Plane Surface Submerged in Liquid 4.3 Vertical Plane Surface Submerged in Liquid 4.4 Inclined Plane Surface Submerged in Liquid MR. R. R. DHOTRE (8888944788) Page 1 Fluid Mechanics & Machinery 1. Introduction Fluid mechanics is a branch of engineering science which deals with the behavior of fluids (liquid or gases) at rest as well as in motion. 2. Properties of Fluids 2.1 Density or Mass Density -Density or mass density of fluid is defined as the ratio of the mass of the fluid to its volume. Mass per unit volume of a fluid is called density. -It is denoted by the symbol „ρ‟ (rho). -The unit of mass density is kg per cubic meter i.e. kg/m3. -Mathematically, ρ = -The value of density of water is 1000 kg/m3, density of Mercury is 13600 kg/m3. 2.2 Specific Weight or Weight Density -Specific weight or weight density of a fluid is defined as the ratio of weight of a fluid to its volume.
    [Show full text]
  • Two-Way Fluid–Solid Interaction Analysis for a Horizontal Axis Marine Current Turbine with LES
    water Article Two-Way Fluid–Solid Interaction Analysis for a Horizontal Axis Marine Current Turbine with LES Jintong Gu 1,2, Fulin Cai 1,*, Norbert Müller 2, Yuquan Zhang 3 and Huixiang Chen 2,4 1 College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China; [email protected] 2 Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA; [email protected] (N.M.); [email protected] (H.C.) 3 College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China; [email protected] 4 College of Agricultural Engineering, Hohai University, Nanjing 210098, China * Correspondence: fl[email protected]; Tel.: +86-139-5195-1792 Received: 2 September 2019; Accepted: 23 December 2019; Published: 27 December 2019 Abstract: Operating in the harsh marine environment, fluctuating loads due to the surrounding turbulence are important for fatigue analysis of marine current turbines (MCTs). The large eddy simulation (LES) method was implemented to analyze the two-way fluid–solid interaction (FSI) for an MCT. The objective was to afford insights into the hydrodynamics near the rotor and in the wake, the deformation of rotor blades, and the interaction between the solid and fluid field. The numerical fluid simulation results showed good agreement with the experimental data and the influence of the support on the power coefficient and blade vibration. The impact of the blade displacement on the MCT performance was quantitatively analyzed. Besides the root, the highest stress was located near the middle of the blade. The findings can inform the design of MCTs for enhancing robustness and survivability.
    [Show full text]
  • Lecture 1: Introduction
    Lecture 1: Introduction E. J. Hinch Non-Newtonian fluids occur commonly in our world. These fluids, such as toothpaste, saliva, oils, mud and lava, exhibit a number of behaviors that are different from Newtonian fluids and have a number of additional material properties. In general, these differences arise because the fluid has a microstructure that influences the flow. In section 2, we will present a collection of some of the interesting phenomena arising from flow nonlinearities, the inhibition of stretching, elastic effects and normal stresses. In section 3 we will discuss a variety of devices for measuring material properties, a process known as rheometry. 1 Fluid Mechanical Preliminaries The equations of motion for an incompressible fluid of unit density are (for details and derivation see any text on fluid mechanics, e.g. [1]) @u + (u · r) u = r · S + F (1) @t r · u = 0 (2) where u is the velocity, S is the total stress tensor and F are the body forces. It is customary to divide the total stress into an isotropic part and a deviatoric part as in S = −pI + σ (3) where tr σ = 0. These equations are closed only if we can relate the deviatoric stress to the velocity field (the pressure field satisfies the incompressibility condition). It is common to look for local models where the stress depends only on the local gradients of the flow: σ = σ (E) where E is the rate of strain tensor 1 E = ru + ruT ; (4) 2 the symmetric part of the the velocity gradient tensor. The trace-free requirement on σ and the physical requirement of symmetry σ = σT means that there are only 5 independent components of the deviatoric stress: 3 shear stresses (the off-diagonal elements) and 2 normal stress differences (the diagonal elements constrained to sum to 0).
    [Show full text]
  • Navier-Stokes Equations Some Background
    Navier-Stokes Equations Some background: Claude-Louis Navier was a French engineer and physicist who specialized in mechanics Navier formulated the general theory of elasticity in a mathematically usable form (1821), making it available to the field of construction with sufficient accuracy for the first time. In 1819 he succeeded in determining the zero line of mechanical stress, finally correcting Galileo Galilei's incorrect results, and in 1826 he established the elastic modulus as a property of materials independent of the second moment of area. Navier is therefore often considered to be the founder of modern structural analysis. His major contribution however remains the Navier–Stokes equations (1822), central to fluid mechanics. His name is one of the 72 names inscribed on the Eiffel Tower Sir George Gabriel Stokes was an Irish physicist and mathematician. Born in Ireland, Stokes spent all of his career at the University of Cambridge, where he served as Lucasian Professor of Mathematics from 1849 until his death in 1903. In physics, Stokes made seminal contributions to fluid dynamics (including the Navier–Stokes equations) and to physical optics. In mathematics he formulated the first version of what is now known as Stokes's theorem and contributed to the theory of asymptotic expansions. He served as secretary, then president, of the Royal Society of London The stokes, a unit of kinematic viscosity, is named after him. Navier Stokes Equation: the simplest form, where is the fluid velocity vector, is the fluid pressure, and is the fluid density, is the kinematic viscosity, and ∇2 is the Laplacian operator.
    [Show full text]