Ecori + Hindiii: 2 Kb, 1 Kb, 5 Kb 2Kb

Total Page:16

File Type:pdf, Size:1020Kb

Ecori + Hindiii: 2 Kb, 1 Kb, 5 Kb 2Kb Announcements • Lab Exam 12/10 – 12/12 during discussion • ~20 multiple choice questions • Will require a calculator • Extra Room for Wed. Section: KCB 107 • All Chapter 6 Labs Due by 12 noon on Wed. 12/12 Discussion Dates Lab Dates Lab Due Dates Chapter 6ab 11/26 – 11/28 11/28 – 12/3 Chapter 6c 12/3 – 12/5 12/5 – 12/10 All Sections Noon, 12/12 Boxes outside SCI 162 Lab Exam 12/10 – 12/12 Chapter 6: Week 2 – Restriction Digest of Plasmid DNA Purpose: 1) Learn about restriction enzymes and plasmid maps 2) Perform restriction enzyme digest to identify your plasmids Restriction Enzymes ● Restriction Endonucleases ● Recognize and cleave DNA to make smaller fragments ● DNA fragments can be cloned into new molecule using DNA ligases ● Often protected from digestion in the cell by DNA methylation ● 3 Types of Restriction Enzymes: ● Type I: Cleave DNA at random sites, > 1000 bp from restriction sequence, requires ATP ● Type II: Cleave DNA within recognition sequence, does not require ATP ● Type III: Cleave DNA about 25 bp from recognition sequence, requires ATP Type II: Restriction Enzymes ● Only cut DNA at specific recognition sequences ● Recognition sequences typically 4-6 bp long ● Often palindromic – Dyad Symmetry EcoRI: Yields products with 5’ overhangs that can base pair EcoRV in complex with with each other DNA (1RVC) Phosphodiester -2 5’ – GAATTC– 3’ 5’ –G-OH O3PO-AATTC– 3’ 3’ –CTTAAG– 5’ Bond Cleavage 3’ –CTTAA-OPO 2- HO-G– 5’ 3 Type II: Restriction Enzymes ● Restriction Enzymes can give: 5’ –GAATTC– 3’ ● 5’ Overhangs: EcoRI 3’ –CTTAAG– 5’ Overhangs are often called “Sticky Ends” 5’ –CTGCAG– 3’ ● 3’ Overhangs: PstI 3’ –GACGTC– 5’ 5’ –CAGCTG– 3’ ● Blunt Ends: PvuII 3’ –GTCGAC– 5’ Type II: Restriction Enzymes ● Restriction Enzymes can give: 5’ –G-OH -2O PO-AATTC– 3’ ● 3 5’ Overhangs: EcoRI 2- 3’ –CTTAA-OPO3 HO-G– 5’ -2 5’ –CTGCA-OH O3PO-G– 3’ ● 3’ Overhangs: PstI 2- 3’ –G-OPO3 HO-ACGTC– 5’ -2 5’ –CAG-OH OPO3-CTG– 3’ ● Blunt Ends: PvuII 2- 3’ –GTC-OPO3 HO-GAC– 5’ What are the products of a restriction enzyme digest? ● Digest DNA with RE 1.0 ● Run gel 0.9 0.8 ● Observe fragmentation of DNA 0.7 ● Plot migration distance (mm) of 0.6 standards vs. Log fragment size 0.5 0.4 ● Use graph to find size of fragments, see p. 192 0.3 Log Fragment Size (kbp) Size Fragment Log 0.2 Fragments: 17.5 mm, 22.0 mm y = -0.0432x + 1.4906 0.1 R² = 0.997 5.42 kb, 3.47 kb 0.0 0 10 20 30 40 ● Find total size of plasmids by Migration Distance (mm) adding up the fragments Plasmid Maps ● Used to determine location of EcoRI + EcoRI restriction enzyme sites on HindIII HindIII Marker plasmid 8kb 7kb ● Perform restriction enzyme digest, run gel, measure 6kb fragments: 5kb ● EcoRI: 3 kb, 5 kb 4kb ● HindIII: 2 kb, 6 kb 3kb ● EcoRI + HindIII: 2 kb, 1 kb, 5 kb 2kb ● Total Size of Plasmid: 8 kb 1kb Plasmid Maps ● Used to determine location of restriction enzyme sites on plasmid HindIII, EcoRI 0 kb (8 kb) ● Perform restriction enzyme digest, run gel, measure fragments: ● EcoRI: 3 kb, 5 kb ● HindIII: 2 kb, 6 kb Plasmid X HindIII ● EcoRI + HindIII: 2 (8 kb) 2 kb 2kb, 1 kb, 5 kb ● Total Size of Plasmid: 8 kb EcoRI 3 kb Plasmid Maps: Pop Quiz HindIII Digestion Fragment Size (bp) 0 bp BamHI 2800 EcoRI 2800 HindIII 2800 BamHI + HindIII 1800, 1000 HindIII + EcoRI 1600, 1200 EcoRI + BamHI 2600, 200 Construct the restriction enzyme map for this plasmid Plasmid Maps: Pop Quiz HindIII Digestion Fragment Size (bp) 0 bp BamHI 2800 EcoRI 2800 HindIII 2800 BamHI + HindIII 1800, 1000 HindIII + EcoRI 1600, 1200 EcoRI + BamHI 2600, 200 Construct the restriction enzyme map for this plasmid BamHI No single cuts in plasmid 2800-1800 = 1000 bp 1000 bp Therefore, use 1st double cut 2800-1000 = 1800 bp Plasmid Maps: Pop Quiz HindIII Digestion Fragment Size (bp) 0 bp BamHI 2800 EcoRI 2800 HindIII 2800 BamHI + HindIII 1800, 1000 HindIII + EcoRI 1600, 1200 EcoRI + BamHI 2600, 200 Construct the restriction enzyme map for this plasmid Use EcoRI + BamHI: BamHI 2800-2600 = 200 bp Should be directly next to EcoRI 1000 bp 1200 bp 2800-200 = 2600 bp BamHI site Plasmid Maps: Pop Quiz HindIII Digestion Fragment Size (bp) 0 bp BamHI 2800 EcoRI 2800 HindIII 2800 BamHI + HindIII 1800, 1000 HindIII + EcoRI 1600, 1200 EcoRI + BamHI 2600, 200 Construct the restriction enzyme map for this plasmid Check math with last double digest: BamHI 2800-1600 = 1200 bp EcoRI 1000 bp 2800-1200 = 1600 bp Plasmid Map complete! 1200 bp Identifying Our Plasmids SP6 HindIII pGEM3 ● Using your restriction digest gel, REL identify fragments from by size AmpR ● PvuII AhdI PvuII ● AhdI ORI BamHI PvuII ● PvuII + AhdI SP6 BamHI PvuII ● How many fragments should you have in each lane? pGEM4 REL AmpR ● Identify which plasmid is which by differences in size of two PvuII AhdI sites HindIII ORI T7 PvuII Procedure: Chapter 6 – Week 2 ● Restriction Enzyme Digest ● Agarose Gel Electrophoresis If you are taking Biochemistry 2, make sure to label and save your plasmids for next semester! Procedure: Chapter 6 – Week 2 ● Restriction Enzyme Digest ● Prepare samples in 0.5 ml centrifuge tubes: Single Digestions (x4) Double Digestions (x2) 1 µl 10 X Buffer 4 (NEBL) 1 µl 10 X Buffer 4 (NEBL) 2 µl plasmid DNA (~0.5 µg) 2 µl plasmid DNA (~0.5 µg) 6.5 µl Water (change with DNA) 6 µl Water (change with DNA) 0.5 µl PvuII or AhdI 0.5 µl of PvuII and AhdI 10 µl Total Volume 10 µl Total Volume ● Estimate DNA mass from agarose gel from week 1 ● Vortex, Digest at 37°C for 1 hr Procedure: Chapter 6 – Week 2 ● Agarose Gel Electrophoresis ● Prepare Gel: – While digest is running, pour 1% agarose gel (1 gel/ group) ● Sample Preparation: Single Digestions X 4 Double Digestions X 2 2 µl 6X Sample Buffer 2 µl 6X Sample Buffer 10 µl of Single Digest 10 µl of Double Digest 12 µl Total Volume 12 µl Total Volume ● Load Gel: – 6 samples and 1 standard / gel – Standard: Linear DNA Minnesota Molecular (Table II, p. 184) Procedure: Chapter 6 – Week 2 ● Agarose Gel Electrophoresis ● Run Gel: – What is charge on DNA? Which direction will it run? – Run gel at 100-125 V until dyes separate and are near bottom of gel – Record volts, amps, running time, etc. in your lab notebook ● Staining and De-staining of Gel: ● Stain in ethidium bromide, 10 – 15 min ● De-stain in water, 1 min ● Image Gel: – Take picture of agarose gel on gel dock .
Recommended publications
  • Restriction-Modification Gene Complexes As Selfish Gene Entities: Roles of a Regulatory System in Their Establishment, Maintenan
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 6442–6447, May 1998 Microbiology Restriction-modification gene complexes as selfish gene entities: Roles of a regulatory system in their establishment, maintenance, and apoptotic mutual exclusion (programmed cell deathyepigeneticsyintragenomic conflictsyphage exclusionyplasmid) Y. NAKAYAMA AND I. KOBAYASHI* Department of Molecular Biology, Institute of Medical Science, University of Tokyo, Shirokanedai, Tokyo 108-8639, Japan Communicated by Allan Campbell, Stanford University, Stanford, CA, March 6, 1998 (received for review May 31, 1997) ABSTRACT We have reported some type II restriction- cell has lost its RM gene complex, its descendants will contain modification (RM) gene complexes on plasmids resist displace- fewer and fewer molecules of the modification enzyme. Eventu- ment by an incompatible plasmid through postsegregational host ally, their capacity to modify the many sites needed to protect the killing. Such selfish behavior may have contributed to the spread newly replicated chromosomes from the remaining pool of restric- and maintenance of RM systems. Here we analyze the role of tion enzyme may become inadequate. Chromosomal DNA will regulatory genes (C), often found linked to RM gene complexes, then be cleaved at the unmodified sites, and the cells will be killed in their interaction with the host and the other RM gene com- (refs. 2–4; N. Handa, A. Ichige, K. Kusano, and I.K., unpublished plexes. We identified the C gene of EcoRV as a positive regulator results). This result is similar to the postsegregational host killing of restriction. A C mutation eliminated postsegregational killing mechanisms for maintenance of several plasmids (5). These RM by EcoRV.
    [Show full text]
  • Restriction Endonucleases
    Molecular Biology Problem Solver: A Laboratory Guide. Edited by Alan S. Gerstein Copyright © 2001 by Wiley-Liss, Inc. ISBNs: 0-471-37972-7 (Paper); 0-471-22390-5 (Electronic) 9 Restriction Endonucleases Derek Robinson, Paul R. Walsh, and Joseph A. Bonventre Background Information . 226 Which Restriction Enzymes Are Commercially Available? . 226 Why Are Some Enzymes More Expensive Than Others? . 227 What Can You Do to Reduce the Cost of Working with Restriction Enzymes? . 228 If You Could Select among Several Restriction Enzymes for Your Application, What Criteria Should You Consider to Make the Most Appropriate Choice? . 229 What Are the General Properties of Restriction Endonucleases? . 232 What Insight Is Provided by a Restriction Enzyme’s Quality Control Data? . 233 How Stable Are Restriction Enzymes? . 236 How Stable Are Diluted Restriction Enzymes? . 236 Simple Digests . 236 How Should You Set up a Simple Restriction Digest? . 236 Is It Wise to Modify the Suggested Reaction Conditions? . 237 Complex Restriction Digestions . 239 How Can a Substrate Affect the Restriction Digest? . 239 Should You Alter the Reaction Volume and DNA Concentration? . 241 Double Digests: Simultaneous or Sequential? . 242 225 Genomic Digests . 244 When Preparing Genomic DNA for Southern Blotting, How Can You Determine If Complete Digestion Has Been Obtained? . 244 What Are Your Options If You Must Create Additional Rare or Unique Restriction Sites? . 247 Troubleshooting . 255 What Can Cause a Simple Restriction Digest to Fail? . 255 The Volume of Enzyme in the Vial Appears Very Low. Did Leakage Occur during Shipment? . 259 The Enzyme Shipment Sat on the Shipping Dock for Two Days.
    [Show full text]
  • Experiment 2 Plasmid DNA Isolation, Restriction Digestion and Gel Electrophoresis
    Experiment 2 Plasmid DNA Isolation, Restriction Digestion and Gel Electrophoresis Plasmid DNA isolation introduction: diatomaceous earth. After RNaseA treatment, The application of molecular biology techniques the DNA containing supernatant is bound to the to the analysis of complex genomes depends on diatomaceous earth in a chaotropic buffer, the ability to prepare pure plasmid DNA. Most often guanadine chloride or urea. The plasmid DNA isolation techniques come in two chaotropic buffer will force the silica flavors, simple - low quality DNA preparations (diatomaceous earth) to interact and more complex, time-consuming high quality DNA preparations. For many DNA manipulations such as restriction enzyme analysis, subcloning and agarose gel electrophoresis, the simple methods are sufficient. The high quality preparations are required for most DNA sequencing, PCR manipulations, transformation hydrophobically with the DNA. Purification using and other techniques. silica-technology is based on a simple bind- wash-elute procedure. Nucleic acids are The alkaline lysis preparation is the most adsorbed to the silica-gel membrane in the commonly used method for isolating small presence of high concentrations of amounts of plasmid DNA, often called minipreps. chaotropic salts, which remove water from This method uses SDS as a weak detergent to hydrated molecules in solution. Polysaccharides denature the cells in the presence of NaOH, and proteins do not adsorb and are removed. which acts to hydrolyze the cell wall and other After a wash step, pure nucleic acids are eluted cellular molecules. The high pH is neutralized by under low-salt conditions in small volumes, ready the addition of potassium acetate. The for immediate use without further concentration.
    [Show full text]
  • Gibson Assembly Cloning Guide, Second Edition
    Gibson Assembly® CLONING GUIDE 2ND EDITION RESTRICTION DIGESTFREE, SEAMLESS CLONING Applications, tools, and protocols for the Gibson Assembly® method: • Single Insert • Multiple Inserts • Site-Directed Mutagenesis #DNAMYWAY sgidna.com/gibson-assembly Foreword Contents Foreword The Gibson Assembly method has been an integral part of our work at Synthetic Genomics, Inc. and the J. Craig Venter Institute (JCVI) for nearly a decade, enabling us to synthesize a complete bacterial genome in 2008, create the first synthetic cell in 2010, and generate a minimal bacterial genome in 2016. These studies form the framework for basic research in understanding the fundamental principles of cellular function and the precise function of essential genes. Additionally, synthetic cells can potentially be harnessed for commercial applications which could offer great benefits to society through the renewable and sustainable production of therapeutics, biofuels, and biobased textiles. In 2004, JCVI had embarked on a quest to synthesize genome-sized DNA and needed to develop the tools to make this possible. When I first learned that JCVI was attempting to create a synthetic cell, I truly understood the significance and reached out to Hamilton (Ham) Smith, who leads the Synthetic Biology Group at JCVI. I joined Ham’s team as a postdoctoral fellow and the development of Gibson Assembly began as I started investigating methods that would allow overlapping DNA fragments to be assembled toward the goal of generating genome- sized DNA. Over time, we had multiple methods in place for assembling DNA molecules by in vitro recombination, including the method that would later come to be known as Gibson Assembly.
    [Show full text]
  • Datasheet for Ecorv-HF™ (R3195; Lot 0051211)
    Source: An E. coli strain that carries the cloned Diluent Compatibility: Diluent Buffer B Endonuclease Activity: Incubation of a 50 µl and modified (D19A, E27A) EcoRV gene from the 300 mM NaCl, 10 mM Tris-HCl, 0.1 mM EDTA, reaction containing 30 units of enzyme with 1 µg ™ plasmid J62 pLG74 (L.I. Glatman) 1 mM dithiothreitol, 500 µg/ml BSA and 50% glyc- of φX174 RF I DNA for 4 hours at 37°C resulted EcoRV-HF erol (pH 7.4 @ 25°C) in < 30% conversion to RFII as determined by Supplied in: 200 mM NaCl, 10 mM Tris-HCl agarose gel electrophoresis. 1-800-632-7799 (ph 7.4), 0.1 mM EDTA, 1 mM DTT, 200 µg/ml Quality Controls [email protected] BSA and 50% glycerol. Ligation: After 10-fold overdigestion with Blue/White Screening Assay: An appropriate www.neb.com α R3195S 005121114111 EcoRV- HF, > 95% of the DNA fragments can vector is digested at a unique site within the lacZ Reagents Supplied with Enzyme: be ligated with T4 DNA Ligase (at a 5´ termini gene with a 10-fold excess of enzyme. The vector 10X NEBuffer 4. concentration of 1–2 µM) at 16°C. Of these ligated DNA is then ligated, transformed, and plated onto R3195S fragments, > 95% can be recut with EcoRV-HF. Xgal/IPTG/Amp plates. Successful expression Reaction Conditions: 1X NEBuffer 4. of β-galactosidase is a function of how intact its 4,000 units 20,000 U/ml Lot: 0051211 Incubate at 37°C. 16-Hour Incubation: A 50 µl reaction containing gene remains after cloning, an intact gene gives 1 µg of DNA and 120 units of EcoRV-HF incubated rise to a blue colony, removal of even a single RECOMBINANT Store at –20°C Exp: 11/14 1X NEBuffer 4: for 16 hours at 37°C resulted in a DNA pattern free base gives rise to a white colony.
    [Show full text]
  • Digestion of DNA with Restriction Endonucleases 3.1.2
    RESTRICTION ENDONUCLEASES SECTION I Digestion of DNA with Restriction UNIT 3.1 Endonucleases Restriction endonucleases recognize short DNA sequences and cleave double-stranded DNA at specific sites within or adjacent to the recognition sequences. Restriction endonuclease cleavage of DNA into discrete fragments is one of the most basic procedures in molecular biology. The first method presented in this unit is the cleavage of a single DNA sample with a single restriction endonuclease (see Basic Protocol). A number of common applications of this technique are also described. These include digesting a given DNA sample with more than one endonuclease (see Alternate Protocol 1), digesting multiple DNA samples with the same endonuclease (see Alternate Protocol 2), and partially digesting DNA such that cleavage only occurs at a subset of the restriction sites (see Alternate Protocol 3). A protocol for methylating specific DNA sequences and protecting them from restriction endonuclease cleavage is also presented (see Support Protocol). A collection of tables describing restriction endonucleases and their properties (including information about recognition sequences, types of termini produced, buffer conditions, and conditions for thermal inactivation) is given at the end of this unit (see Table 3.1.1, Table 3.1.2, Table 3.1.3, and Table 3.1.4). DIGESTING A SINGLE DNA SAMPLE WITH A SINGLE RESTRICTION BASIC ENDONUCLEASE PROTOCOL Restriction endonuclease cleavage is accomplished simply by incubating the enzyme(s) with the DNA in appropriate reaction conditions. The amounts of enzyme and DNA, the buffer and ionic concentrations, and the temperature and duration of the reaction will vary depending upon the specific application.
    [Show full text]
  • Restriction Digest
    PROTOCOL 3: RESTRICTION DIGEST TEACHER VERSION THE GENOME TEACHING GENERATION PROTOCOL 3: RESTRICTION DIGEST PROTOCOL 3: RESTRICTION DIGEST TEACHER VERSION PRE-REQUISITES & GOALS STUDENT PRE-REQUISITES Prior to implementing this lab, students should understand: • The central dogma of how DNA bases code for mRNA and then for proteins • How DNA samples were collected and prepared for PCR • The steps that occur during the process of polymerase change reaction (PCR) • What restriction enzymes are and how they work • How the sequence variants in OXTR and CYP2C19 are affected by restriction enzyme digestion • The purpose of PROTOCOL 3 is to determine genotype STUDENT LEARNING GOALS 1. Perform restriction digestion of PCR products of CYP2C19 and/or OXTR. 2. Describe the possible genotypes for individuals with the CYP2C19 and/or OXTR genes. 3. Predict what each genotype will look like after gel electrophoresis and why. 2 TEACHING THE GENOME GENERATION | THE JACKSON LABORATORY PROTOCOL 3: RESTRICTION DIGEST TEACHER VERSION CURRICULUM INTEGRATION Use the planning notes space provided to reflect on how this protocol will be integrated into your classroom. You’ll find every course is different, and you may need to make changes in your preparation or set-up depending on which course you are teaching. Course name: 1. What prior knowledge do the students need? 2. How much time will this lesson take? 3. What materials do I need to prepare in advance? 4. Will the students work independently, in pairs, or in small groups? 5. What might be challenge points
    [Show full text]
  • SNP2RFLP: a Computational Tool to Facilitate Genetic Mapping Using Benchtop Analysis of Snps
    Mamm Genome (2008) 19:687–690 DOI 10.1007/s00335-008-9149-2 SNP2RFLP: a computational tool to facilitate genetic mapping using benchtop analysis of SNPs Wesley A. Beckstead Æ Bryan C. Bjork Æ Rolf W. Stottmann Æ Shamil Sunyaev Æ David R. Beier Received: 9 September 2008 / Accepted: 24 September 2008 / Published online: 29 October 2008 Ó Springer Science+Business Media, LLC 2008 Abstract Genome-wide analysis of single nucleotide Introduction polymorphism (SNP) markers is an extremely efficient means for genetic mapping of mutations or traits in mice. The positional cloning and characterization of mutations in However, this approach often defines a relatively large the mouse is a powerful means for functional annotation of recombinant interval. To facilitate the refinement of this the mammalian genome. Many mouse gene mutations interval, we developed the program SNP2RFLP. This cause phenotypes that serve as models of human genetic program can be used to identify region-specific SNPs in disorders. Mapping and positional cloning of these poten- which the polymorphic nucleotide creates a restriction tially accelerate our understanding of the mouse gene, its fragment length polymorphism (RFLP) that can be readily human ortholog, and the underlying etiology of the disor- assayed at the benchtop using restriction enzyme digestion der. The utilization of single nucleotide polymorphism of SNP-containing PCR products. The program permits (SNP) markers has markedly facilitated genetic mapping user-defined queries that maximize the informative mark- because they are abundant throughout the genome and can ers for a particular application. This facilitates fine- be analyzed in a high-throughput manner using automated mapping in a region containing a mutation of interest, technology (Wang et al.
    [Show full text]
  • Easy Subcloning Prot
    Easy Subcloning by Michael Koelle Subcloning should be easy and fast, and work every time. The following protocols minimize the number of manipulations required to prepare DNA fragments for ligations, thereby both saving time and increasing reliability. Preparation of DNA fragments for ligation. 1. Restriction digests: Always cut a lot of your starting plasmids in a small volume; this will help in the gel purification of your restriction fragments by giving you a high concentration of DNA compared to agarose in your gel slice.. About 1 µg in a 20 µl reaction is good. For double digests: you almost never have to digest with one enzyme, adjust the buffer, and digest with the second. Look in the Biolabs catalogue to find a compromise buffer, and save yourself some time. Don't use just 1 unit of enzyme and wait an hour: your time is worth too much, and the enzymes are cheap and pure. Use about a 10-fold enzyme excess and digest about 30 min. 2. Playing with the ends. Blunting 5' overhangs: Add 1 µl 2 mM all four dNTPs to your 20 µl restriction digest. Add 0.5-1 µl Klenow (2-5 units), and incubate at room temp for 30 min. Blunting 3' overhangs: Add 1 µl 2 mM all four dNTPs to your 20 µl restriction digest. Add 0.5-1 µl T4 DNA polymerase, and incubate at 37° for 5 min. T4 polymerase has a more active 3' to 5' exo activity than Klenow, and so is preferred for this reaction, but Klenow will work.
    [Show full text]
  • Isolating Microsatelline DNA Loci*
    Isolating Microsatelline DNA Loci* Travis C. Glenn1,2 and Nancy A. Schable1,2 1Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29802, USA 2Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA Contact: Travis Glenn: Phone 803-725-5746; Fax 803-725-3309; E-mail: [email protected] Abstract A series of techniques are presented to construct genomic DNA libraries highly enriched for microsatellite DNA loci. The individual techniques used here derive from several published protocols, but have been optimized and tested in our research labs as well as classroom settings at the University of South Carolina and University of Georgia, with students achieving nearly 100% success. Reducing the number of manipulations involved has been a key to success, decreasing both the failure rate and the time necessary to isolate loci of interest. These protocols have been successfully used in our lab to isolate microsatellite DNA loci from more than 125 species representing all eukaryotic kingdoms. Using these protocols, the total time to identify candidate loci for primer development from most eukaryotic species can be accomplished in as little as one week. *This information is based on (i.e., PLEASE CITE [using either style]): Glenn, T.C. and N.A. Schable. 2005. Isolating microsatellite DNA loci. Methods in Enzymology 395:202-222. or Glenn TC, Schable NA (2005) Isolating microsatellite DNA loci. Pp. 202-222 In: Methods in Enzymology 395, Molecular Evolution: Producing the Biochemical Data, Part B. (eds Zimmer EA, Roalson EH). Academic Press, San Diego, CA. Isolating Microsatellite DNA Loci p.2 Microsatellite DNA loci have become important sources of genetic information for a variety of purposes (Goldstein and Schlotterer, 1999; Webster and Reichart 2004).
    [Show full text]
  • Restriction Endonucleases
    Restriction Endonucleases TECHNICAL GUIDE UPDATE 2017/18 be INSPIRED drive DISCOVERY stay GENUINE RESTRICTION ENZYMES FROM NEB Cut Smarter with Restriction Enzymes from NEB® Looking to bring CONVENIENCE to your workflow? Simplify Reaction Setup and Double Activity of DNA Modifying Enzymes in CutSmart Buffer: Digestion with CutSmart® Buffer Clone Smarter! Activity Enzyme Required Supplements Over 210 restriction enzymes are 100% active in a single buffer, in CutSmart Phosphatases: CutSmart Buffer, making it significantly easier to set up your Alkaline Phosphatase (CIP) + + + double digest reactions. Since CutSmart Buffer includes BSA, there Antarctic Phosphatase + + + Requires Zn2+ Quick CIP + + + are fewer tubes and pipetting steps to worry about. Additionally, Shrimp Alkaline Phosphatase (rSAP) + + + many DNA modifying enzymes are 100% active in CutSmart Ligases: T4 DNA Ligase + + + Requires ATP Buffer, eliminating the need for subsequent purification. E. coli DNA Ligase + + + Requires NAD T3 DNA Ligase + + + Requires ATP + PEG For more information, visit www.NEBCutSmart.com T7 DNA Ligase + + + Requires ATP + PEG Polymerases: T4 DNA Polymerase + + + DNA Polymerase I, Large (Klenow) Frag. + + + DNA Polymerase I + + + DNA Polymerase Klenow Exo– + + + Bst DNA Polymerase + + + ™ phi29 DNA Polymerase + + + Speed up Digestions with Time-Saver T7 DNA Polymerase (unmodified) + + + Qualified Restriction Enzymes Transferases/Kinases: T4 Polynucleotide Kinase + + + Requires ATP + DTT T4 PNK (3´ phosphatase minus) + + + Requires ATP + DTT > 190 of our restriction enzymes are able to digest DNA in CpG Methyltransferase (M. SssI) + + + 5–15 minutes, and can safely be used overnight with no loss of GpC Methyltransferase (M. CviPI) + Requires DTT T4 Phage β-glucosyltransferase + + + sample. For added convenience and flexibility, most of these are Nucleases, other: supplied with CutSmart Buffer.
    [Show full text]
  • Site-Specific DNA Targeting: Genome Engineering Tools Andrew Kuznetsov Freiburg I.Br
    Site-specific DNA targeting: genome engineering tools Andrew Kuznetsov Freiburg i.Br. 17.09.2015 The Department of Biophysics at the University of Sevastopol Content • Nucleases type II, IIS, meganucleases (EcoRV, FokI, I-SceI), mechanism of DNA cleavage • Artificial nucleases Waclaw Szybalski‘s idea, monopod design, bipod design • Advanced approaches Zinc fingers, TALEN, CRISPR/Cas9 • Applications regulation of transcription, epigenetic modification, site-specific recombination, multiplexing Types of restriction endonucleases I. (EC 3.1.21.3) cleave at sites remote from recognition site; require ATP and S-adenosyl-L-methionine to function; multifunctional proteins with restriction and methylase (EC 2.1.1.72) activities II. (EC 3.1.21.4) cleave within or at short specific distances from recognition site; most require magnesium; single function (restriction) III. (EC 3.1.21.5) cleave at a short distance from recognition site; require ATP (but do not hydrolyse it); S-adenosyl-L-methionine stimulates reaction but is not required; exist as part of a complex with a modification methylase (EC 2.1.1.72) IV. target modified DNA, e.g. methylated, hydroxymethylated and glucosyl- hydroxymethylated DNA V. utilize guide RNAs to target specific non-palindromic sequences found on invading DNA (e.g., the cas9-gRNA complex from CRISPRs) Features of the type II endonucleases > 3000 (600) http://rebase.neb.com Type II endonucleases recognize shot, usually palindromic, sequences of 4-8 bp Structures of restriction enzymes show a common core comprising 4
    [Show full text]