Evaluating the Occurrence and Possible Roles for an Intermediate-Filament Homolog in the Dimorphic Prosthecate Bacteria Jake

Total Page:16

File Type:pdf, Size:1020Kb

Evaluating the Occurrence and Possible Roles for an Intermediate-Filament Homolog in the Dimorphic Prosthecate Bacteria Jake Evaluating the occurrence and possible roles for an intermediate-filament homolog in the dimorphic prosthecate bacteria Jake Bailey Department of Earth Sciences University of Southern California Abstract Isolates of eight prosthechate alpha-proteobacteria (Caulobacter halobacteroides CM13a, unnamed Hyphomicrobium sp., Caulobacter leidya, Hyphomonas MHS-1, Maricaulis washingtonensis, Maricaulis maris CM11, Woodsholea maritime CM243, and an unnamed marine Caulobacter, strain CM261) were screened for the presence of the bacterial intermediate-filament homolog, crescentin. The protein was not detectable by immunofluorescence techniques in any of the isolates, with the exception of Woodsholea maritime, where it exhibited a diffuse cytoplasmic occurrence in fully-extended prosthecate cells, a narrow mid-cell band localization in swarmer cells, and an extended helical localization in intermediate-sized prosthecate cells. These results suggest that crescentin is not widely utilized among the prosthecate bacteria, and in the single case outside the freshwater Caulobacters, in W. maritime, localization hints at an alternative role for this cytoskeletal protein. Preliminary results indicated that C. crescentus mutants lacking crescentin suffer no detectable fitness loss are further supported here by growth, motility and chemotaxis assays that show little difference between the laboratory performance of the C. crescentus wild type and creS- deficient mutant. The limited occurrence of crescentin amongst the prosthecate bacteria, and the absence of deleterious phenotypic effects of the creS mutant, add further to the mystery of crescentin’s ecophysiological role, and generally illustrates our poor-understanding of the selective advantage(s) that might be provided by a vibroidal cell morphology. Introduction In eukaryotic cells, the cytoskeleton serves as an active support structure for processes such as cell division, maintenance of cell shape, motility, and intracellular transport. The recent discovery of cytoskeletal protein homologs in bacteria, such as mreB, mbl (mreB- like), crescentin, and ftsZ, has greatly increased our understanding of cell structure and function in bacteria and archaea (Carballido-López, 2006; Jones et al., 2001; Kruse et al., 2005). Bacterial cytoskeletal proteins are now known to play a pivotal roll in cell shape, cell division, and cell polarity in bacteria (Klint et al., 2007; Møller-Jensen & Löwe, 2005). A bacterial homolog to the intermediate filaments, known as crescentin, was recently identified in the prosthecate bacterium Caulobacter crecsentus (Ausmees et al., 2003). Transposon insertions in the crescentin gene resulted in mutants that formed straight cells, rather than the vibroidal morphology characteristic of C. crescentus. Preliminary unpublished results indicate similar laboratory growth of the wild type and the mutant that lacks crescentin, prompting questions about the selective advantage of a protein that confers a vibroidal cell shape (Ausmees et al., 2003). Previous authors suggested that the selective advantage of crescentin may only be obvious under natural conditions (e.g., oligotrophic settings). Here I use immunofluorescence techniques to investigate the occurrence of crescentin among eight prosthecate bacteria that are closely-related to C. crescentus and that inhabit a wide range of environmental conditions, in hopes of gaining insight into crescentin’s phylogenetic and environmental occurrence, in the hopes that these data might offer clues about crescentin’s ecophysiological role. Additionally, I compare the growth, motility, and chemotactic response of the C. crescentus wild type with the crescentus CresC:Tn 5 mutant using various laboratory experiments. Methods Bacterial strains and growth conditions: Each of the bacterial strains used in this study are listed in Table 1. Caulobacter crescentus CB15N, CJW763, and C. leidyia were grown in PYE or minimal media at 30oC with shaking. All marine strains were grown on CPS complex media at 25oC with shaking. Marine strains were grown on Caulobacter complex media. Hyphomicrobium sp. was isolated using methanol as the carbon source under denitrifying conditions as described by (Sperl & Hoare, 1971). Biomass for immunofluorescence was collected 1) during mid-exponential phase; or 2) during stationary phase. Both conditions were examined to monitor crescentin expression in different morphotypes. Media compositions: PyE: 0.2% Peptone, 0.1% Yeast Extract, 0.02% MgSO4 • 7H2O. PyCM: 0.25% peptone, 0.05% yeast extract, 1mM CaCl2, 1 mM MgSO4, 1% Bacto agar, prepared in milli-Q water. CPS Complex Medium: 0.05% casamini acids, 0.05 % Bacto peptone, 80% seawater. MG2 Minimal media: 20X M2 Salts (17.4 g Na2HPO4, 10.6 g KH2PO4, 10.0 g NH4Cl) dissolved in 1L of Milli-Q water was autoclaved. 50 ml of salt solution, was added to 938ml of sterile water, followed by the sequential addition of 0.5 ml of 1M MgSO4, 10ml of 20% glucose, 1 ml of 10mM FeSO4/10mM EDTA, and 0.5 ml of CaCl2. Fe-deficient minimal media was made using the same recipe, but adding only 1 mM FeSO4/1mM EDTA. Similarly, P-deficient minimal media contained 1X phosphate salts. Immunofluorescence assays: Immunofluorescence detection using anti-crescentin polyclonal antibodies was performed using methods similar to those described by (Pogliano et al., 1995). Cells grown under the growth conditions provided in Table 1 were fixed using 12.5% formaldehyde. After 4x centrifuge washes with PBS, cells were re-suspended in 75 μl of GTE. 25 of 0.01 mg/ml lysozyme diluted in GTE was added to the cell suspension and ~20 μl was spotted on poly-l lysine-coated, 8-well glass slides. After a 10-minute incubation, the lysozyme/cell solution was aspirated. 2% filtered BSA in PBS was then used to block the cells for 15 minutes in a humid chamber. Anti- crescentin antibodies diluted 1:40 in 2% BSA were added and allowed to incubate for 1 hr. at 25oC. Following aspiration and 10X washing with 2%BSA in PBS, FITC-labeled goat anti-rabbit secondary antibodies (diluted 1:200) were applied and allowed to incubate in the dark for 1 hr. at 25oC. Following 10X washes with PBS, 5 μl of 2 μM FM 4-64 (Invitrogen) was added to Citfluor (Citifluor Ltd., London) anti-fade mounting solution and applied to each well before adding a cover slip and imaging. Images were acquired using a Hsm Axiocam attached to a Zeiss M1 Imager microscope. Image processing was performed using Axiovision Rel 4.6 and Photoshop CS2 software. All isolates were evaluated in triplicate. Each immunofluorescence 8-well slide included C. crescentus as a positive control and the CresC:Tn 5 mutant as a negative control. Motility assays: 0.3% agar swarm plates were inoculated with five microliters of saturated culture (either CB15 or the creS::Tn5 mutant) normalized to the same optical density (OD600) similar to the assay employed by (Pierrce et al., 2006). In cases where cultures were maintained on peptone yeast extract, and later transferred to experiments on minimal media, all cultures were transferred and grown overnight on minimal media before experiment inoculation. All plates were incubated and kept at room temperature in sealed humid containers for 4.5 days prior to swarm halo measurement. Chemotaxis assays: 10 μm glass capillary tubes containing PyE media were suspended in the wells of a 96-well culture plate. Each well contained freshwater base, and was inoculated with 5 μl of exponential phase culture (either CB15 or the creS::Tn5 mutant). Cell recruitment into the capillaries was compared after 12 hours of exposure, by expelling the capillary fluid onto a Hausser counting chamber slide and counting cells in nine randomly-selected 1 sq. mm. grids. Phylogenetic tree construction: 16s rDNA sequences for all organisms except for Hyphomicrobium sp. and Caulobacter strain CM261were downloaded from GenBank and the Ribosomal Database Project (RDP) and aligned using the alignment tools provided on the RDP II website (Cole, 2007). Organisms selected to fill out the tree were selected based on the groupings of prosthecate -Proteobacteria that resulted from the analyses of (Sly et al., 1999). A 16S rDNA phylogenetic tree was constructed using the RDP Weighbor-weighted, neighbor-joining tree building algorithm. Results Evaluating crescentin’s occurrence using immunofluorescence microscopy: In each slide examined, C. crescentus wild type was used as a positive control and the CresC:Tn 5 mutant as a negative control. Positive controls exhibited consistent localization of the anti-cres antibodies to the concave portion of the cell (Fig. 1 a-c). Negative controls consistently showed no, or very low, levels of background binding, and no localization of anti-cres antibodies (Fig. 1d). No consistent anti-crescentin antibody binding or localization was observed in Caulobacter halobacteroides CM13a, unnamed Hyphomicrobium sp., Caulobacter leidya, Hyphomonas MHS-1, Maricaulis washingtonensis, Maricaulis maris CM11, Woodsholea maritime CM243, and marine Caulobacter strain CM261 (Fig 1 e-h). Binding of anti-crescentin was observed in all morphological variants of Woodsholea maritime, but with a different localization observed in each cell morphotype (Fig.1 i-l). The phylogenetic distribution of organisms screened for crescentin in this study, along with the results, are presented in Figure 2. Chemotaxis assays: A similar chemotactic response, as measured by the relative numbers of bacteria in each of six replicate capillary tubes after 12 hours, was observed for both
Recommended publications
  • Accepted Manuscript
    Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane Item Type Article Authors Jeong, Sanghyun; Cho, Kyungjin; Jeong, Dawoon; Lee, Seockheon; Leiknes, TorOve; Vigneswaran, Saravanamuthu; Bae, Hyokwan Citation Jeong S, Cho K, Jeong D, Lee S, Leiknes T, et al. (2017) Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane. Water Research. Available: http://dx.doi.org/10.1016/ j.watres.2017.07.064. Eprint version Post-print DOI 10.1016/j.watres.2017.07.064 Publisher Elsevier BV Journal Water Research Rights NOTICE: this is the author’s version of a work that was accepted for publication in Water Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Water Research, [, , (2017-07-25)] DOI: 10.1016/j.watres.2017.07.064 . © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Download date 03/10/2021 04:43:40 Link to Item http://hdl.handle.net/10754/625270 Accepted Manuscript Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane Sanghyun Jeong, Kyungjin Cho, Dawoon Jeong, Seockheon Lee, TorOve Leiknes, Saravanamuthu Vigneswaran, Hyokwan Bae PII: S0043-1354(17)30637-1 DOI: 10.1016/j.watres.2017.07.064 Reference: WR 13107 To appear in: Water Research Received Date: 19 January 2017 Revised Date: 11 May 2017 Accepted Date: 24 July 2017 Please cite this article as: Jeong, S., Cho, K., Jeong, D., Lee, S., Leiknes, T., Vigneswaran, S., Bae, H., Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane, Water Research (2017), doi: 10.1016/j.watres.2017.07.064.
    [Show full text]
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • The Cytoskeleton in Cell-Autonomous Immunity: Structural Determinants of Host Defence
    Mostowy & Shenoy, Nat Rev Immunol, doi:10.1038/nri3877 The cytoskeleton in cell-autonomous immunity: structural determinants of host defence Serge Mostowy and Avinash R. Shenoy Medical Research Council Centre of Molecular Bacteriology and Infection (CMBI), Imperial College London, Armstrong Road, London SW7 2AZ, UK. e‑mails: [email protected] ; [email protected] doi:10.1038/nri3877 Published online 21 August 2015 Abstract Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence. 1 Mostowy & Shenoy, Nat Rev Immunol, doi:10.1038/nri3877 Cell-autonomous immunity, which is defined as the ability of a host cell to eliminate an invasive infectious agent, is a first line of defence against microbial pathogens 1 . It relies on antimicrobial proteins, specialized degradative compartments and programmed host cell death 1–3 . Cell- autonomous immunity is mediated by tiered innate immune signalling networks that sense microbial pathogens and stimulate downstream pathogen elimination programmes. Recent studies on host– microorganism interactions show that components of the host cell cytoskeleton are integral to the detection of bacterial pathogens as well as to the mobilization of antibacterial responses (FIG.
    [Show full text]
  • Soft Matter PAPER
    View Article Online / Journal Homepage / Table of Contents for this issue Soft Matter Dynamic Article LinksC< Cite this: Soft Matter, 2012, 8, 7446 www.rsc.org/softmatter PAPER Growth of curved and helical bacterial cells Hongyuan Jiang and Sean X. Sun* Received 26th February 2012, Accepted 17th May 2012 DOI: 10.1039/c2sm25452b A combination of cell wall growth and cytoskeletal protein action gives rise to the observed bacterial cell shape. Aside from the common rod-like and spherical shapes, bacterial cells can also adopt curved or helical geometries. To understand how curvature in bacteria is developed or maintained, we examine how Caulobacter crescentus obtains its crescent-like shape. Caulobacter cells with or without the cytoskeletal bundle crescentin, an intermediate filament-like protein, exhibit two distinct growth modes, curvature maintenance that preserves the radius of curvature and curvature relaxation that straightens the cell (Fig. 1). Using a proposed mechanochemical model, we show that bending and twisting of the crescentin bundle can influence the stress distribution in the cell wall, and lead to the growth of curved cells. In contrast, after crescentin bundle is disrupted, originally curved cells will slowly relax towards a straight rod over time. The model is able to quantitatively capture experimentally observed curvature dynamics. Furthermore, we show that the shape anisotropy of the cross-section of a curved cell is never greater than 4%, even in the presence of crescentin. 1. Introduction forces applied by external constraints generate curved cells. Strikingly, the growth modes of the cell with or without cres- Bacterial cell walls are built through a complex biochemical centin are different17,18 as shown in Fig.
    [Show full text]
  • A Metabolic Assembly Line in Bacteria
    NEWS AND VIEWS A metabolic assembly line in bacteria Matthew T. Cabeen and Christine Jacobs-Wagner The bacterial cytoplasm is rich in filament-forming proteins, from homologues of eukaryotic cytoskeletal elements to other scaffolding and segregation proteins. We now learn that even the metabolic enzyme CTP synthase forms cytoplasmic filaments that affect bacterial cell shape. Bacteria keep surprising us. It was not so long in mediating cell curvature in Caulobacter cres- and analysing their function later. Using high- ago that they were thought to be mere bags of centus9; subsequent characterization revealed resolution electron cryotomography (ECT), an chemicals, possessing only the cell wall as a sort its intermediate filament-like properties9. But unbiased method which uses no labels, Jensen of exoskeleton to hold everything together. As what about proteins with functions that would and colleagues uncovered several filament-like it turns out, bacterial cells have a sophisticated never suggest any polymerizing property? structures in the cytoplasm of C. crescentus internal organization. They possess counter- Recent work has approached the discovery of that could not be identified by disrupting or parts of tubulin, actin and intermediate fila- subcellular structures from the opposite direc- eliminating known cytoskeletal structures10. ment proteins, suggesting that a cytoskeleton tion by searching for filamentous structures first Meanwhile, in another unbiased approach, first evolved in bacteria. Moreover, in recent years the known bacterial filament-forming proteins have expanded beyond the traditional cytoskeleton to include DNA segregators, structural scaffolds and proteins, the function of which are still unknown. On page 739 of this TubZ issue, Ingerson-Mahar et al.
    [Show full text]
  • Microbial Production and Consumption of Hydrocarbons in the Global Ocean
    ARTICLES https://doi.org/10.1038/s41564-020-00859-8 Microbial production and consumption of hydrocarbons in the global ocean Connor R. Love1,4, Eleanor C. Arrington1,4, Kelsey M. Gosselin1, Christopher M. Reddy2, Benjamin A. S. Van Mooy 2, Robert K. Nelson2 and David L. Valentine 3 ✉ Seeps, spills and other oil pollution introduce hydrocarbons into the ocean. Marine cyanobacteria also produce hydrocarbons from fatty acids, but little is known about the size and turnover of this cyanobacterial hydrocarbon cycle. We report that cyano- bacteria in an oligotrophic gyre mainly produce n-pentadecane and that microbial hydrocarbon production exhibits stratifica- tion and diel cycling in the sunlit surface ocean. Using chemical and isotopic tracing we find that pentadecane production mainly occurs in the lower euphotic zone. Using a multifaceted approach, we estimate that the global flux of cyanobacteria-produced pentadecane exceeds total oil input in the ocean by 100- to 500-fold. We show that rapid pentadecane consumption sustains a population of pentadecane-degrading bacteria, and possibly archaea. Our findings characterize a microbial hydrocarbon cycle in the open ocean that dwarfs oil input. We hypothesize that cyanobacterial hydrocarbon production selectively primes the ocean’s microbiome with long-chain alkanes whereas degradation of other petroleum hydrocarbons is controlled by factors including proximity to petroleum seepage. ydrocarbons are released into the ocean via natural oil seeps total, we quantified alkane concentration in 441 particulate samples and industrial spills associated with extraction, transpor- (≥0.2 μm), mainly in triplicate (Methods, Supplementary Table 4 and 1 Htation and consumption of oil, totalling ~1.3 Tg per year .
    [Show full text]
  • Bacterial Avidins Are a Widely Distributed Protein Family in Actinobacteria, Proteobacteria and Bacteroidetes Olli H
    Laitinen et al. BMC Ecol Evo (2021) 21:53 BMC Ecology and Evolution https://doi.org/10.1186/s12862-021-01784-y RESEARCH ARTICLE Open Access Bacterial avidins are a widely distributed protein family in Actinobacteria, Proteobacteria and Bacteroidetes Olli H. Laitinen1†, Tanja P. Kuusela1†, Sampo Kukkurainen1†, Anssi Nurminen1, Aki Sinkkonen2 and Vesa P. Hytönen1,3* Abstract Background: Avidins are biotin-binding proteins commonly found in the vertebrate eggs. In addition to streptavidin from Streptomyces avidinii, a growing number of avidins have been characterized from divergent bacterial species. However, a systematic research concerning their taxonomy and ecological role has never been done. We performed a search for avidin encoding genes among bacteria using available databases and classifed potential avidins according to taxonomy and the ecological niches utilized by host bacteria. Results: Numerous avidin-encoding genes were found in the phyla Actinobacteria and Proteobacteria. The diversity of protein sequences was high and several new variants of genes encoding biotin-binding avidins were found. The living strategies of bacteria hosting avidin encoding genes fall mainly into two categories. Human and animal patho- gens were overrepresented among the found bacteria carrying avidin genes. The other widespread category were bacteria that either fx nitrogen or live in root nodules/rhizospheres of plants hosting nitrogen-fxing bacteria. Conclusions: Bacterial avidins are a taxonomically and ecologically diverse group mainly found in Actinobacteria, Proteobacteria and Bacteroidetes, associated often with plant invasiveness. Avidin encoding genes in plasmids hint that avidins may be horizontally transferred. The current survey may be used as a basis in attempts to understand the ecological signifcance of biotin-binding capacity.
    [Show full text]
  • The Bacterial Actin Mreb Rotates, and Rotation Depends on Cell-Wall Assembly
    The bacterial actin MreB rotates, and rotation depends on cell-wall assembly Sven van Teeffelena,1, Siyuan Wanga,b, Leon Furchtgottc,d, Kerwyn Casey Huangd, Ned S. Wingreena,b, Joshua W. Shaevitzb,e,1, and Zemer Gitaia,1 aDepartment of Molecular Biology, Princeton University, Princeton, NJ 08544; bLewis–Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544; cBiophysics Program, Harvard University, Cambridge, MA 02138; dDepartment of Bioengineering, Stanford University, Stanford, CA 94305; and eDepartment of Physics, Princeton University, Princeton, NJ 08854 Edited by Lucy Shapiro, Stanford University School of Medicine, Palo Alto, CA, and approved July 27, 2011 (received for review June 3, 2011) Bacterial cells possess multiple cytoskeletal proteins involved in a tently in a nearly circumferential direction. Interestingly, this wide range of cellular processes. These cytoskeletal proteins are MreB rotation is not driven by its own polymerization, but rather dynamic, but the driving forces and cellular functions of these requires cell-wall synthesis. These findings indicate that a motor dynamics remain poorly understood. Eukaryotic cytoskeletal dy- whose activity depends on cell-wall assembly rotates MreB. namics are often driven by motor proteins, but in bacteria no mo- Furthermore, the coupling of MreB rotation to cell-wall synthesis tors that drive cytoskeletal motion have been identified to date. suggests that MreB may not merely act upstream of cell-wall Here, we quantitatively study the dynamics of the Escherichia coli assembly. Indeed, computational simulations suggest that cou- actin homolog MreB, which is essential for the maintenance of pling MreB rotation to cell-wall synthesis can help cells maintain rod-like cell shape in bacteria.
    [Show full text]
  • Co-Option and Detoxification of a Phage Lysin for Housekeeping Function Amelia Randich, David Kysela, Cécile Morlot, Yves Brun
    Co-option and Detoxification of a Phage Lysin for Housekeeping Function Amelia Randich, David Kysela, Cécile Morlot, Yves Brun To cite this version: Amelia Randich, David Kysela, Cécile Morlot, Yves Brun. Co-option and Detoxification of a Phage Lysin for Housekeeping Function. 2018. hal-01930210 HAL Id: hal-01930210 https://hal.archives-ouvertes.fr/hal-01930210 Preprint submitted on 21 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. bioRxiv preprint first posted online Sep. 16, 2018; doi: http://dx.doi.org/10.1101/418723. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license. 1 1 Title 2 Co-option and Detoxification of a Phage Lysin for Housekeeping Function 3 4 Authors 5 Amelia M. Randich, Indiana University, Bloomington, IN USA 6 David T. Kysela, Bloomington, IN USA 7 Cécile Morlot, Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 8 France 9 Yves V. Brun, Indiana University, Bloomington, IN USA 10 11 Correspondence: Y.V.B.
    [Show full text]
  • Maricaulis Alexandrii Sp. Nov., a Novel Dimorphic Prosthecate and Active Bio Occulants-Bearing Bacterium Isolated from Phycosphe
    Maricaulis alexandrii sp. nov., a novel dimorphic prosthecate and active bioocculants-bearing bacterium isolated from phycosphere microbiota of laboratory cultured highly-toxic Alexandrium catenella LZT09 Xiao-ling Zhang Zhejiang Ocean University Min Qi Zhejiang Ocean University Qiu-hong Li Zhejiang Ocean University Zhen-dong Cui Yantai University Qiao Yang ( [email protected] ) Zhejiang Ocean University https://orcid.org/0000-0002-7770-5389 Research Article Keywords: Maricaulis alexandrii sp. nov., Alexandrium catenella, Phycosphere microbiota, Algae-bacterial interactions, Exopolysaccharides, Maricaulaceae and prosthecate bacteria Posted Date: March 29th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-265494/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/17 Abstract An aerobic, Gram-stain-negative, straight or curved rods, prosthecate bacterium designated as LZ-16-1T was isolated from phycosphere microbiota of highly-toxic and laboratory cultured dinoagellate Alexandrium catenella LZT09. This new isolate produces active bioocculanting exopolysaccharides (EPS). Cells were dimorphic with non-motile prostheca, or non-stalked and motile by a single polar agellum. Growth occurred at 10-40 °C, pH 5–9 and 1–8 % (w/v) NaCl, with optimum growth at 25 °C, pH 7–8 and 2-4 % (w/v) NaCl, respectively. Phylogenetic analysis based on 16S rRNA indicated that strain LZ-16-1T was aliated to the genus Maricaulis, and closely related to Maricaulis parjimensis MCS 25T (99.48%) and M. virginensis VC-5T (99.04%),. However, based on genome sequencing and phylogenomic calculations, the average nucleotide identity (ANI) and digtal DNA-DNA genome hybridization (dDDH) values between the two strains were only 85.0 and 20.9%, respectively.
    [Show full text]
  • Arxiv:1105.2423V1 [Physics.Bio-Ph] 12 May 2011 C
    Cytoskeleton and Cell Motility Thomas Risler Institut Curie, Centre de Recherche, UMR 168 (UPMC Univ Paris 06, CNRS), 26 rue d'Ulm, F-75005 Paris, France Article Outline C. Macroscopic phenomenological approaches: The active gels Glossary D. Comparisons of the different approaches to de- scribing active polymer solutions I. Definition of the Subject and Its Importance VIII. Extensions and Future Directions II. Introduction Acknowledgments III. The Diversity of Cell Motility Bibliography A. Swimming B. Crawling C. Extensions of cell motility IV. The Cell Cytoskeleton A. Biopolymers B. Molecular motors C. Motor families D. Other cytoskeleton-associated proteins E. Cell anchoring and regulatory pathways F. The prokaryotic cytoskeleton V. Filament-Driven Motility A. Microtubule growth and catastrophes B. Actin gels C. Modeling polymerization forces D. A model system for studying actin-based motil- ity: The bacterium Listeria monocytogenes E. Another example of filament-driven amoeboid motility: The nematode sperm cell VI. Motor-Driven Motility A. Generic considerations B. Phenomenological description close to thermo- dynamic equilibrium arXiv:1105.2423v1 [physics.bio-ph] 12 May 2011 C. Hopping and transport models D. The two-state model E. Coupled motors and spontaneous oscillations F. Axonemal beating VII. Putting It Together: Active Polymer Solu- tions A. Mesoscopic approaches B. Microscopic approaches 2 Glossary I. DEFINITION OF THE SUBJECT AND ITS IMPORTANCE Cell Structural and functional elementary unit of all life forms. The cell is the smallest unit that can be We, as human beings, are made of a collection of cells, characterized as living. which are most commonly considered as the elementary building blocks of all living forms on earth [1].
    [Show full text]
  • Identification and Characterization of Novel Filament-Forming Proteins In
    www.nature.com/scientificreports OPEN Identifcation and characterization of novel flament-forming proteins in cyanobacteria Benjamin L. Springstein 1,4*, Christian Woehle1,5, Julia Weissenbach1,6, Andreas O. Helbig2, Tal Dagan 1 & Karina Stucken3* Filament-forming proteins in bacteria function in stabilization and localization of proteinaceous complexes and replicons; hence they are instrumental for myriad cellular processes such as cell division and growth. Here we present two novel flament-forming proteins in cyanobacteria. Surveying cyanobacterial genomes for coiled-coil-rich proteins (CCRPs) that are predicted as putative flament-forming proteins, we observed a higher proportion of CCRPs in flamentous cyanobacteria in comparison to unicellular cyanobacteria. Using our predictions, we identifed nine protein families with putative intermediate flament (IF) properties. Polymerization assays revealed four proteins that formed polymers in vitro and three proteins that formed polymers in vivo. Fm7001 from Fischerella muscicola PCC 7414 polymerized in vitro and formed flaments in vivo in several organisms. Additionally, we identifed a tetratricopeptide repeat protein - All4981 - in Anabaena sp. PCC 7120 that polymerized into flaments in vitro and in vivo. All4981 interacts with known cytoskeletal proteins and is indispensable for Anabaena viability. Although it did not form flaments in vitro, Syc2039 from Synechococcus elongatus PCC 7942 assembled into flaments in vivo and a Δsyc2039 mutant was characterized by an impaired cytokinesis. Our results expand the repertoire of known prokaryotic flament-forming CCRPs and demonstrate that cyanobacterial CCRPs are involved in cell morphology, motility, cytokinesis and colony integrity. Species in the phylum Cyanobacteria present a wide morphological diversity, ranging from unicellular to mul- ticellular organisms.
    [Show full text]