Evaluating the Occurrence and Possible Roles for an Intermediate-Filament Homolog in the Dimorphic Prosthecate Bacteria Jake
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Accepted Manuscript
Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane Item Type Article Authors Jeong, Sanghyun; Cho, Kyungjin; Jeong, Dawoon; Lee, Seockheon; Leiknes, TorOve; Vigneswaran, Saravanamuthu; Bae, Hyokwan Citation Jeong S, Cho K, Jeong D, Lee S, Leiknes T, et al. (2017) Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane. Water Research. Available: http://dx.doi.org/10.1016/ j.watres.2017.07.064. Eprint version Post-print DOI 10.1016/j.watres.2017.07.064 Publisher Elsevier BV Journal Water Research Rights NOTICE: this is the author’s version of a work that was accepted for publication in Water Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Water Research, [, , (2017-07-25)] DOI: 10.1016/j.watres.2017.07.064 . © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Download date 03/10/2021 04:43:40 Link to Item http://hdl.handle.net/10754/625270 Accepted Manuscript Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane Sanghyun Jeong, Kyungjin Cho, Dawoon Jeong, Seockheon Lee, TorOve Leiknes, Saravanamuthu Vigneswaran, Hyokwan Bae PII: S0043-1354(17)30637-1 DOI: 10.1016/j.watres.2017.07.064 Reference: WR 13107 To appear in: Water Research Received Date: 19 January 2017 Revised Date: 11 May 2017 Accepted Date: 24 July 2017 Please cite this article as: Jeong, S., Cho, K., Jeong, D., Lee, S., Leiknes, T., Vigneswaran, S., Bae, H., Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane, Water Research (2017), doi: 10.1016/j.watres.2017.07.064. -
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
The Cytoskeleton in Cell-Autonomous Immunity: Structural Determinants of Host Defence
Mostowy & Shenoy, Nat Rev Immunol, doi:10.1038/nri3877 The cytoskeleton in cell-autonomous immunity: structural determinants of host defence Serge Mostowy and Avinash R. Shenoy Medical Research Council Centre of Molecular Bacteriology and Infection (CMBI), Imperial College London, Armstrong Road, London SW7 2AZ, UK. e‑mails: [email protected] ; [email protected] doi:10.1038/nri3877 Published online 21 August 2015 Abstract Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence. 1 Mostowy & Shenoy, Nat Rev Immunol, doi:10.1038/nri3877 Cell-autonomous immunity, which is defined as the ability of a host cell to eliminate an invasive infectious agent, is a first line of defence against microbial pathogens 1 . It relies on antimicrobial proteins, specialized degradative compartments and programmed host cell death 1–3 . Cell- autonomous immunity is mediated by tiered innate immune signalling networks that sense microbial pathogens and stimulate downstream pathogen elimination programmes. Recent studies on host– microorganism interactions show that components of the host cell cytoskeleton are integral to the detection of bacterial pathogens as well as to the mobilization of antibacterial responses (FIG. -
Soft Matter PAPER
View Article Online / Journal Homepage / Table of Contents for this issue Soft Matter Dynamic Article LinksC< Cite this: Soft Matter, 2012, 8, 7446 www.rsc.org/softmatter PAPER Growth of curved and helical bacterial cells Hongyuan Jiang and Sean X. Sun* Received 26th February 2012, Accepted 17th May 2012 DOI: 10.1039/c2sm25452b A combination of cell wall growth and cytoskeletal protein action gives rise to the observed bacterial cell shape. Aside from the common rod-like and spherical shapes, bacterial cells can also adopt curved or helical geometries. To understand how curvature in bacteria is developed or maintained, we examine how Caulobacter crescentus obtains its crescent-like shape. Caulobacter cells with or without the cytoskeletal bundle crescentin, an intermediate filament-like protein, exhibit two distinct growth modes, curvature maintenance that preserves the radius of curvature and curvature relaxation that straightens the cell (Fig. 1). Using a proposed mechanochemical model, we show that bending and twisting of the crescentin bundle can influence the stress distribution in the cell wall, and lead to the growth of curved cells. In contrast, after crescentin bundle is disrupted, originally curved cells will slowly relax towards a straight rod over time. The model is able to quantitatively capture experimentally observed curvature dynamics. Furthermore, we show that the shape anisotropy of the cross-section of a curved cell is never greater than 4%, even in the presence of crescentin. 1. Introduction forces applied by external constraints generate curved cells. Strikingly, the growth modes of the cell with or without cres- Bacterial cell walls are built through a complex biochemical centin are different17,18 as shown in Fig. -
A Metabolic Assembly Line in Bacteria
NEWS AND VIEWS A metabolic assembly line in bacteria Matthew T. Cabeen and Christine Jacobs-Wagner The bacterial cytoplasm is rich in filament-forming proteins, from homologues of eukaryotic cytoskeletal elements to other scaffolding and segregation proteins. We now learn that even the metabolic enzyme CTP synthase forms cytoplasmic filaments that affect bacterial cell shape. Bacteria keep surprising us. It was not so long in mediating cell curvature in Caulobacter cres- and analysing their function later. Using high- ago that they were thought to be mere bags of centus9; subsequent characterization revealed resolution electron cryotomography (ECT), an chemicals, possessing only the cell wall as a sort its intermediate filament-like properties9. But unbiased method which uses no labels, Jensen of exoskeleton to hold everything together. As what about proteins with functions that would and colleagues uncovered several filament-like it turns out, bacterial cells have a sophisticated never suggest any polymerizing property? structures in the cytoplasm of C. crescentus internal organization. They possess counter- Recent work has approached the discovery of that could not be identified by disrupting or parts of tubulin, actin and intermediate fila- subcellular structures from the opposite direc- eliminating known cytoskeletal structures10. ment proteins, suggesting that a cytoskeleton tion by searching for filamentous structures first Meanwhile, in another unbiased approach, first evolved in bacteria. Moreover, in recent years the known bacterial filament-forming proteins have expanded beyond the traditional cytoskeleton to include DNA segregators, structural scaffolds and proteins, the function of which are still unknown. On page 739 of this TubZ issue, Ingerson-Mahar et al. -
Microbial Production and Consumption of Hydrocarbons in the Global Ocean
ARTICLES https://doi.org/10.1038/s41564-020-00859-8 Microbial production and consumption of hydrocarbons in the global ocean Connor R. Love1,4, Eleanor C. Arrington1,4, Kelsey M. Gosselin1, Christopher M. Reddy2, Benjamin A. S. Van Mooy 2, Robert K. Nelson2 and David L. Valentine 3 ✉ Seeps, spills and other oil pollution introduce hydrocarbons into the ocean. Marine cyanobacteria also produce hydrocarbons from fatty acids, but little is known about the size and turnover of this cyanobacterial hydrocarbon cycle. We report that cyano- bacteria in an oligotrophic gyre mainly produce n-pentadecane and that microbial hydrocarbon production exhibits stratifica- tion and diel cycling in the sunlit surface ocean. Using chemical and isotopic tracing we find that pentadecane production mainly occurs in the lower euphotic zone. Using a multifaceted approach, we estimate that the global flux of cyanobacteria-produced pentadecane exceeds total oil input in the ocean by 100- to 500-fold. We show that rapid pentadecane consumption sustains a population of pentadecane-degrading bacteria, and possibly archaea. Our findings characterize a microbial hydrocarbon cycle in the open ocean that dwarfs oil input. We hypothesize that cyanobacterial hydrocarbon production selectively primes the ocean’s microbiome with long-chain alkanes whereas degradation of other petroleum hydrocarbons is controlled by factors including proximity to petroleum seepage. ydrocarbons are released into the ocean via natural oil seeps total, we quantified alkane concentration in 441 particulate samples and industrial spills associated with extraction, transpor- (≥0.2 μm), mainly in triplicate (Methods, Supplementary Table 4 and 1 Htation and consumption of oil, totalling ~1.3 Tg per year . -
Bacterial Avidins Are a Widely Distributed Protein Family in Actinobacteria, Proteobacteria and Bacteroidetes Olli H
Laitinen et al. BMC Ecol Evo (2021) 21:53 BMC Ecology and Evolution https://doi.org/10.1186/s12862-021-01784-y RESEARCH ARTICLE Open Access Bacterial avidins are a widely distributed protein family in Actinobacteria, Proteobacteria and Bacteroidetes Olli H. Laitinen1†, Tanja P. Kuusela1†, Sampo Kukkurainen1†, Anssi Nurminen1, Aki Sinkkonen2 and Vesa P. Hytönen1,3* Abstract Background: Avidins are biotin-binding proteins commonly found in the vertebrate eggs. In addition to streptavidin from Streptomyces avidinii, a growing number of avidins have been characterized from divergent bacterial species. However, a systematic research concerning their taxonomy and ecological role has never been done. We performed a search for avidin encoding genes among bacteria using available databases and classifed potential avidins according to taxonomy and the ecological niches utilized by host bacteria. Results: Numerous avidin-encoding genes were found in the phyla Actinobacteria and Proteobacteria. The diversity of protein sequences was high and several new variants of genes encoding biotin-binding avidins were found. The living strategies of bacteria hosting avidin encoding genes fall mainly into two categories. Human and animal patho- gens were overrepresented among the found bacteria carrying avidin genes. The other widespread category were bacteria that either fx nitrogen or live in root nodules/rhizospheres of plants hosting nitrogen-fxing bacteria. Conclusions: Bacterial avidins are a taxonomically and ecologically diverse group mainly found in Actinobacteria, Proteobacteria and Bacteroidetes, associated often with plant invasiveness. Avidin encoding genes in plasmids hint that avidins may be horizontally transferred. The current survey may be used as a basis in attempts to understand the ecological signifcance of biotin-binding capacity. -
The Bacterial Actin Mreb Rotates, and Rotation Depends on Cell-Wall Assembly
The bacterial actin MreB rotates, and rotation depends on cell-wall assembly Sven van Teeffelena,1, Siyuan Wanga,b, Leon Furchtgottc,d, Kerwyn Casey Huangd, Ned S. Wingreena,b, Joshua W. Shaevitzb,e,1, and Zemer Gitaia,1 aDepartment of Molecular Biology, Princeton University, Princeton, NJ 08544; bLewis–Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544; cBiophysics Program, Harvard University, Cambridge, MA 02138; dDepartment of Bioengineering, Stanford University, Stanford, CA 94305; and eDepartment of Physics, Princeton University, Princeton, NJ 08854 Edited by Lucy Shapiro, Stanford University School of Medicine, Palo Alto, CA, and approved July 27, 2011 (received for review June 3, 2011) Bacterial cells possess multiple cytoskeletal proteins involved in a tently in a nearly circumferential direction. Interestingly, this wide range of cellular processes. These cytoskeletal proteins are MreB rotation is not driven by its own polymerization, but rather dynamic, but the driving forces and cellular functions of these requires cell-wall synthesis. These findings indicate that a motor dynamics remain poorly understood. Eukaryotic cytoskeletal dy- whose activity depends on cell-wall assembly rotates MreB. namics are often driven by motor proteins, but in bacteria no mo- Furthermore, the coupling of MreB rotation to cell-wall synthesis tors that drive cytoskeletal motion have been identified to date. suggests that MreB may not merely act upstream of cell-wall Here, we quantitatively study the dynamics of the Escherichia coli assembly. Indeed, computational simulations suggest that cou- actin homolog MreB, which is essential for the maintenance of pling MreB rotation to cell-wall synthesis can help cells maintain rod-like cell shape in bacteria. -
Co-Option and Detoxification of a Phage Lysin for Housekeeping Function Amelia Randich, David Kysela, Cécile Morlot, Yves Brun
Co-option and Detoxification of a Phage Lysin for Housekeeping Function Amelia Randich, David Kysela, Cécile Morlot, Yves Brun To cite this version: Amelia Randich, David Kysela, Cécile Morlot, Yves Brun. Co-option and Detoxification of a Phage Lysin for Housekeeping Function. 2018. hal-01930210 HAL Id: hal-01930210 https://hal.archives-ouvertes.fr/hal-01930210 Preprint submitted on 21 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. bioRxiv preprint first posted online Sep. 16, 2018; doi: http://dx.doi.org/10.1101/418723. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license. 1 1 Title 2 Co-option and Detoxification of a Phage Lysin for Housekeeping Function 3 4 Authors 5 Amelia M. Randich, Indiana University, Bloomington, IN USA 6 David T. Kysela, Bloomington, IN USA 7 Cécile Morlot, Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 8 France 9 Yves V. Brun, Indiana University, Bloomington, IN USA 10 11 Correspondence: Y.V.B. -
Maricaulis Alexandrii Sp. Nov., a Novel Dimorphic Prosthecate and Active Bio Occulants-Bearing Bacterium Isolated from Phycosphe
Maricaulis alexandrii sp. nov., a novel dimorphic prosthecate and active bioocculants-bearing bacterium isolated from phycosphere microbiota of laboratory cultured highly-toxic Alexandrium catenella LZT09 Xiao-ling Zhang Zhejiang Ocean University Min Qi Zhejiang Ocean University Qiu-hong Li Zhejiang Ocean University Zhen-dong Cui Yantai University Qiao Yang ( [email protected] ) Zhejiang Ocean University https://orcid.org/0000-0002-7770-5389 Research Article Keywords: Maricaulis alexandrii sp. nov., Alexandrium catenella, Phycosphere microbiota, Algae-bacterial interactions, Exopolysaccharides, Maricaulaceae and prosthecate bacteria Posted Date: March 29th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-265494/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/17 Abstract An aerobic, Gram-stain-negative, straight or curved rods, prosthecate bacterium designated as LZ-16-1T was isolated from phycosphere microbiota of highly-toxic and laboratory cultured dinoagellate Alexandrium catenella LZT09. This new isolate produces active bioocculanting exopolysaccharides (EPS). Cells were dimorphic with non-motile prostheca, or non-stalked and motile by a single polar agellum. Growth occurred at 10-40 °C, pH 5–9 and 1–8 % (w/v) NaCl, with optimum growth at 25 °C, pH 7–8 and 2-4 % (w/v) NaCl, respectively. Phylogenetic analysis based on 16S rRNA indicated that strain LZ-16-1T was aliated to the genus Maricaulis, and closely related to Maricaulis parjimensis MCS 25T (99.48%) and M. virginensis VC-5T (99.04%),. However, based on genome sequencing and phylogenomic calculations, the average nucleotide identity (ANI) and digtal DNA-DNA genome hybridization (dDDH) values between the two strains were only 85.0 and 20.9%, respectively. -
Arxiv:1105.2423V1 [Physics.Bio-Ph] 12 May 2011 C
Cytoskeleton and Cell Motility Thomas Risler Institut Curie, Centre de Recherche, UMR 168 (UPMC Univ Paris 06, CNRS), 26 rue d'Ulm, F-75005 Paris, France Article Outline C. Macroscopic phenomenological approaches: The active gels Glossary D. Comparisons of the different approaches to de- scribing active polymer solutions I. Definition of the Subject and Its Importance VIII. Extensions and Future Directions II. Introduction Acknowledgments III. The Diversity of Cell Motility Bibliography A. Swimming B. Crawling C. Extensions of cell motility IV. The Cell Cytoskeleton A. Biopolymers B. Molecular motors C. Motor families D. Other cytoskeleton-associated proteins E. Cell anchoring and regulatory pathways F. The prokaryotic cytoskeleton V. Filament-Driven Motility A. Microtubule growth and catastrophes B. Actin gels C. Modeling polymerization forces D. A model system for studying actin-based motil- ity: The bacterium Listeria monocytogenes E. Another example of filament-driven amoeboid motility: The nematode sperm cell VI. Motor-Driven Motility A. Generic considerations B. Phenomenological description close to thermo- dynamic equilibrium arXiv:1105.2423v1 [physics.bio-ph] 12 May 2011 C. Hopping and transport models D. The two-state model E. Coupled motors and spontaneous oscillations F. Axonemal beating VII. Putting It Together: Active Polymer Solu- tions A. Mesoscopic approaches B. Microscopic approaches 2 Glossary I. DEFINITION OF THE SUBJECT AND ITS IMPORTANCE Cell Structural and functional elementary unit of all life forms. The cell is the smallest unit that can be We, as human beings, are made of a collection of cells, characterized as living. which are most commonly considered as the elementary building blocks of all living forms on earth [1]. -
Identification and Characterization of Novel Filament-Forming Proteins In
www.nature.com/scientificreports OPEN Identifcation and characterization of novel flament-forming proteins in cyanobacteria Benjamin L. Springstein 1,4*, Christian Woehle1,5, Julia Weissenbach1,6, Andreas O. Helbig2, Tal Dagan 1 & Karina Stucken3* Filament-forming proteins in bacteria function in stabilization and localization of proteinaceous complexes and replicons; hence they are instrumental for myriad cellular processes such as cell division and growth. Here we present two novel flament-forming proteins in cyanobacteria. Surveying cyanobacterial genomes for coiled-coil-rich proteins (CCRPs) that are predicted as putative flament-forming proteins, we observed a higher proportion of CCRPs in flamentous cyanobacteria in comparison to unicellular cyanobacteria. Using our predictions, we identifed nine protein families with putative intermediate flament (IF) properties. Polymerization assays revealed four proteins that formed polymers in vitro and three proteins that formed polymers in vivo. Fm7001 from Fischerella muscicola PCC 7414 polymerized in vitro and formed flaments in vivo in several organisms. Additionally, we identifed a tetratricopeptide repeat protein - All4981 - in Anabaena sp. PCC 7120 that polymerized into flaments in vitro and in vivo. All4981 interacts with known cytoskeletal proteins and is indispensable for Anabaena viability. Although it did not form flaments in vitro, Syc2039 from Synechococcus elongatus PCC 7942 assembled into flaments in vivo and a Δsyc2039 mutant was characterized by an impaired cytokinesis. Our results expand the repertoire of known prokaryotic flament-forming CCRPs and demonstrate that cyanobacterial CCRPs are involved in cell morphology, motility, cytokinesis and colony integrity. Species in the phylum Cyanobacteria present a wide morphological diversity, ranging from unicellular to mul- ticellular organisms.