The Genetics of Alcohol Metabolism

Total Page:16

File Type:pdf, Size:1020Kb

The Genetics of Alcohol Metabolism The Genetics of Alcohol Metabolism Role of Alcohol Dehydrogenase and Aldehyde Dehydrogenase Variants Howard J. Edenberg, Ph.D. The primary enzymes involved in alcohol metabolism are alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Both enzymes occur in several forms that are encoded by different genes; moreover, there are variants (i.e., alleles) of some of these genes that encode enzymes with different characteristics and which have different ethnic distributions. Which ADH or ALDH alleles a person carries influence his or her level of alcohol consumption and risk of alcoholism. Researchers to date primarily have studied coding variants in the ADH1B, ADH1C, and ALDH2 genes that are associated with altered kinetic properties of the resulting enzymes. For example, certain ADH1B and ADH1C alleles encode particularly active ADH enzymes, resulting in more rapid conversion of alcohol (i.e., ethanol) to acetaldehyde; these alleles have a protective effect on the risk of alcoholism. A variant of the ALDH2 gene encodes an essentially inactive ALDH enzyme, resulting in acetaldehyde accumulation and a protective effect. It is becoming clear that noncoding variants in both ADH and ALDH genes also may influence alcohol metabolism and, consequently, alcoholism risk; the specific nature and effects of these variants still need further study. KEY WORDS: Alcohol and other drug (AOD) use (AODU), abuse and dependence; alcoholism; genetics and heredity; genetic theory of AODU; ethnic group; protective factors; ethanol metabolism; liver; alcohol dehydrogenase (ADH); aldehyde dehydrogenase (ALDH); risk factors; protective factors; alcohol flush reaction (ADHs). In a second reaction catalyzed duced. These variants have been he effects of ingested beverage by aldehyde dehydrogenase (ALDH) shown to influence a person’s drink- alcohol (i.e., ethanol) on differ- enzymes, acetaldehyde is oxidized ing levels and, consequently, the risk ent organs, including the brain, T to acetate. Other enzymes, such as of developing alcohol abuse or depen­ depend on the ethanol concentration cytochrome P450 (e.g., CYP2E1), dence (Hurley et al. 2002). Studies achieved and the duration of exposure. metabolize a small fraction of the have shown that people carrying cer- Both of these variables, in turn, are ingested ethanol. tain ADH and ALDH alleles are at affected by the absorption of ethanol There are multiple ADH and significantly reduced risk of becom­ into the blood stream and tissues as ALDH enzymes that are encoded by ing alcohol dependent. In fact, these well as by ethanol metabolism (Hurley different genes (Tables 1 and 3). Some associations are the strongest and most et al. 2002). The main site of ethanol of these genes occur in several vari- widely reproduced associations of any metabolism is the liver, although some ants (i.e., alleles1), and the enzymes gene with the risk of alcoholism. As metabolism also occurs in other tissues encoded by these alleles can differ and can cause local damage there. The in the rate at which they metabolize main pathway of ethanol metabolism HOWARD J. EDENBERG, PH.D., is a ethanol (Table 2) or acetaldehyde or involves its conversion (i.e., oxidation) chancellor’s professor in the Department in the levels at which they are pro- to acetaldehyde, a reaction that is of Biochemistry and Molecular Biology, mediated (i.e., catalyzed) by enzymes 1For a definition of this and other technical terms, see the Indiana University School of Medicine, known as alcohol dehydrogenases glossary, p. 32. Indianapolis, Indiana. Vol. 30, No. 1, 2007 5 will be discussed later in this article, the alleles encoding the different ADH Table 1 Alcohol Dehydrogenase (ADH) Genes and Proteins and ALDH variants are unevenly dis­ tributed among ethnic groups. Official Gene Old Name† Nonstandard Sequence§ Protein Class¶ The mechanism through which Name* Name‡ ADH and ALDH variants influence ADH1A ADH1 ADH1A NM_000667 α I alcoholism risk is thought to involve ADH1B ADH2 ADH1B NM_000668 β I at least local elevation of acetaldehyde ADH1C ADH3 ADH1C NM_000669 γ I levels, resulting either from a more ADH4 ADH4 ADH2 NM_000670 π II rapid ethanol oxidation (in cases of ADH5 ADH5 ADH3 NM_000671 χ III more active ADH variants) or from ADH6 ADH6 ADH5 NM_000672 ADH6 V ADH7 ADH7 ADH4 NM_000673 σ IV slower acetaldehyde oxidation (in cases of less active ALDH variants). *Gene symbol approved by the Human Genome Organization (HUGO) Gene Nomenclature Committee Acetaldehyde is a toxic substance (www.gene.ucl.ac.uk/nomenclature/), as used by the National Center for Biotechnology Information (NCBI). †Original nomenclature. ‡A set of nonstandard gene names proposed by Duester and colleagues (1999). whose accumulation leads to a highly §Reference sequence number as listed in the NCBI RefSeq database (www.ncbi.nlm.nih.gov/RefSeq/). aversive reaction that includes facial ¶ADH proteins have been divided into five classes based on sequence and structural similarities. flushing, nausea, and rapid heart beat SOURCE: Modified from Hurley et al. 2002. (i.e., tachycardia). This reaction is similar to that experienced by alco­ holics who consume alcohol after tak­ ing disulfiram (Antabuse®), a medica­ tion that discourages further drinking. Sources of Data on Genetic Variations Most of the numerous variants of There are several excellent sources of data on single-nucleotide polymor­ the ADH and ALDH genes involve phisms (SNPs) and other genetic variations in different populations, changes of single DNA building including the following: blocks (i.e., nucleotides) and therefore are known as single-nucleotide poly­ • dbSNP (www.ncbi.nlm.nih.gov/SNP) morphisms (SNPs). (For sources of • HapMap (www.hapmap.org) data on SNPs, see the Textbox.) Some SNPs occur in those parts of a gene • ALFRED (alfred.med.yale.edu/Alfred) that actually encode the correspond­ ing protein. These SNPs are called coding variations and in many cases result in the generation of enzymes with altered activity. Other SNPs, Table 2 Kinetic Properties of Alcohol Dehydrogenase (ADH) Proteins however, occur outside the coding Amino Acid regions of a gene (i.e., are noncoding Official Differences Protein Km(ethanol) Turnover variations). Several noncoding varia­ Gene Name* Between Alleles Name mM (min-1) tions have been demonstrated to affect ADH1A α 4.0 30 the expression of the genes (e.g., Chen ADH1B*1 Arg48, Arg370 β 0.05 4 et al. 2005; Edenberg et al. 1999), and 1 ADH1B*2 His48, Arg370 β2 0.9 350 it is likely that others have the same ADH1B*3 Arg48, Cys370 β3 40 300 effect. (For more information on the ADH1C*1 Arg272, Ile350 γ1 1.0 90 typical structure of genes and gene ADH1C*2 Gln272, Val350 γ2 0.6 40 expression in higher organisms, see the ADH1C*352Thr Thr 352† — — — Sidebar.) Comprehensive analyses of ADH4 π 30 20 the ADH genes recently demonstrated ADH5 χ >1,000 100 that both coding and noncoding vari­ ADH6 ADH6 ? ? ADH7 σ 30 1800 ations in those genes are associated with the risk for alcoholism in European- *The *1, *2, etc., designations represent particular alleles of the genes indicated. †ADH1C*352Thr has been American families (Edenberg et al. found in Native Americans as an additional variation on chromosomes with the Val350 characteristic of 2006). Therefore, earlier studies of ADH1C*2 (Osier et al. 2002a); the protein has not been isolated for study. ADH and ALDH genes and the asso­ NOTE: Km(ethanol) indicates the concentration of ethanol at which the enzyme works at 50 percent capacity. Turnover indicates how many molecules of ethanol the enzyme will convert to acetaldehyde in 1 minute at ciated risk of alcoholism should be saturating ethanol concentrations. reexamined in light of the many coding and noncoding variations that have SOURCE: Modified from Hurley et al. 2002. since been identified. 6 Alcohol Research & Health ADH and ALDH Variants in Alcohol Metabolism This article summarizes current oxidizing capacity in the liver (Hurley dinucleotide (NAD+), which is required knowledge regarding coding and et al. 2002; Lee et al. 2006). ADH4 for ethanol oxidation (Hurley et al. noncoding variations in the various encodes π-ADH, which contributes 2002). In both cases, the substitu­ ADH and ALDH genes and the pos­ significantly to ethanol oxidation at tions result in enzymes that have a sible association of these variations higher concentrations (Table 2). 70- to 80-fold higher turnover rate with risk for alcoholism. The article ADH5 encodes χ-ADH, a ubiqui­ than the β1 subunit because the also briefly touches on the differential tously expressed formaldehyde dehy­ coenzyme is released more rapidly ethnic distribution of some of these drogenase with very low affinity for at the end of the reaction. variants. (For more detailed informa­ ethanol. ADH6 mRNA is present in There also are three alleles of the tion, readers are referred to the fol­ fetal and adult liver, but the enzyme ADH1C gene (Table 2). ADH1C*1 lowing articles by Ehlers, Scott and has not been isolated from tissue and encodes the γ1 subunit that has Arg Taylor, Moore and colleagues, and little is known about it. ADH7 at position 272 and isoleucine (Ile) at Eng and colleagues, which focus on encodes σ-ADH, which contributes position 350. ADH1C*2 encodes the specific ethnic groups.) to both ethanol and retinol oxidation. γ2 subunit that shows two differences Researchers have identified SNPs compared with ADH1C*1—it codes in the ADH1B and ADH1C genes for a glutamine (Gln) at position 272 ADH Genes and Their that result in the production of and a valine (Val) at position 350. In Polymorphisms enzymes with different kinetic prop­ almost all cases, these two SNPs occur erties. These SNPs and their effects together (i.e., are in very high linkage Humans have seven different genes, have been widely studied in different disequilibrium [LD]). ADH consisting called ADH1A, ADH1B, ADH1C, populations (see other articles in this of two γ1 subunits (i.e., the γ1γ1 ADH4, ADH5, ADH6, and ADH7, issue).
Recommended publications
  • Dehydrogenase Gene of Entamoeba Histolytica
    Proc. Nad. Acad. Sci. USA Vol. 89, pp. 10188-10192, November 1992 Medical Sciences Cloning and expression of an NADP+-dependent alcohol dehydrogenase gene of Entamoeba histolytica (amebiasis/protozoan parasite/fermentation/inhibitors) AJIT KUMAR*, PEI-SHEN SHENtt, STEVEN DESCOTEAUX*, JAN POHL§, GORDON BAILEYt, AND JOHN SAMUELSON*1II *Department of Tropical Public Health, Harvard School of Public Health, Boston, MA 02115; tDepartment of Biochemistry, Morehouse School of Medicine, Atlanta, GA 30310; §Microchemical Facility, Emory University, Atlanta, GA 30322; and 'Department of Pathology, New England Deaconess Hospital, Boston, MA 02215 Communicated by Elkan Blout, June 29, 1992 (receivedfor review May 1, 1992) ABSTRACT Ethanol is the major metabolic product of NAD(P)+ so that the reducing equivalents are regenerated glucose fermentation by the protozoan parasite Entmoeba (4-7). Both NADP+-dependent and NAD+-dependent alco- histolytica under the anaerobic conditions found in the lumen hol dehydrogenase (ADH) activities have been identified in of the colon. Here an internal peptide sequence determined E. histolytica trophozoites (4-7). The NADP+-dependent from a major 39-kDa amoeba protein isolated by isoeLtric ADH (EhADHi; EC 1.1.1.2) was found to be composed of focusing followed by SDS/PAGE was used to clone the gene for four -30-kDa subunits, prefer secondary alcohols to primary the E. histolytica NADP+-dependent alcohol dehydrogenase alcohols, and be inhibited by the substrate analogue pyrazole (EhADH1; EC 1.1.1.2). The EhADHi clone had an open (7). The amoeba NAD+-dependent ADH (EC 1.1.1.1) is not reading frame that was 360 amino acids long and encoded a well-characterized (4).
    [Show full text]
  • Genome‐Wide Association Studies of Alcohol Dependence, DSM‐IV
    UC San Diego UC San Diego Previously Published Works Title Genome-wide association studies of alcohol dependence, DSM-IV criterion count and individual criteria. Permalink https://escholarship.org/uc/item/9rh210wx Journal Genes, brain, and behavior, 18(6) ISSN 1601-1848 Authors Lai, Dongbing Wetherill, Leah Bertelsen, Sarah et al. Publication Date 2019-07-01 DOI 10.1111/gbb.12579 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Received: 1 February 2019 Revised: 19 April 2019 Accepted: 11 May 2019 DOI: 10.1111/gbb.12579 ORIGINAL ARTICLE Genome-wide association studies of alcohol dependence, DSM-IV criterion count and individual criteria Dongbing Lai1 | Leah Wetherill1 | Sarah Bertelsen2 | Caitlin E. Carey3 | Chella Kamarajan4 | Manav Kapoor2 | Jacquelyn L. Meyers4 | Andrey P. Anokhin5 | David A. Bennett6 | Kathleen K. Bucholz5 | Katharine K. Chang3 | Philip L. De Jager7,8 | Danielle M. Dick9 | Victor Hesselbrock10 | John Kramer11 | Samuel Kuperman11 | John I. Nurnberger Jr1,12 | Towfique Raj2 | Marc Schuckit13 | Denise M. Scott14,15 | Robert E. Taylor16 | Jay Tischfield17 | Ahmad R. Hariri18 | Howard J. Edenberg1,19 | Arpana Agrawal5 | Ryan Bogdan3 | Bernice Porjesz4 | Alison M. Goate2 | Tatiana Foroud1 1Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana Abstract 2Department of Neuroscience, Icahn School of Genome-wide association studies (GWAS) of alcohol dependence (AD) have reliably Medicine at Mt. Sinai, New York, New York identified variation within alcohol metabolizing genes (eg, ADH1B) but have inconsis- 3 BRAIN Lab, Department of Psychological and tently located other signals, which may be partially attributable to symptom hetero- Brain Sciences, Washington University School of Medicine, St.
    [Show full text]
  • The Failure of Two Major Formaldehyde Catabolism Enzymes (ADH5 and ALDH2) Leads to Partial Synthetic Lethality in C57BL/ 6 Mice Jun Nakamura1,2*, Darcy W
    Nakamura et al. Genes and Environment (2020) 42:21 https://doi.org/10.1186/s41021-020-00160-4 SHORT REPORT Open Access The failure of two major formaldehyde catabolism enzymes (ADH5 and ALDH2) leads to partial synthetic lethality in C57BL/ 6 mice Jun Nakamura1,2*, Darcy W. Holley3, Toshihiro Kawamoto4 and Scott J. Bultman3 Abstract Background: Exogenous formaldehyde is classified by the IARC as a Category 1 known human carcinogen. Meanwhile, a significant amount of endogenous formaldehyde is produced in the human body; as such, formaldehyde-derived DNA and protein adducts have been detected in animals and humans in the absence of major exogenous formaldehyde exposure. However, the toxicological effects of endogenous formaldehyde on individuals with normal DNA damage repair functions are not well understood. In this study, we attempted to generate C57BL/6 mice deficient in both Adh5 and Aldh2, which encode two major enzymes that metabolize endogenous formaldehyde, in order to understand the effects of endogenous formaldehyde on mice with normal DNA repair function. Results: Due to deficiencies in both ADH5 and ALDH2, few mice survived past post-natal day 21. In fact, the survival of pups within the first few days after birth was significantly decreased. Remarkably, two Aldh2−/−/Adh5−/− mice survived for 25 days after birth, and we measured their total body weight and organ weights. The body weight of Aldh2−/−/Adh5−/− mice decreased significantly by almost 37% compared to the Aldh2−/−/Adh5+/− and Aldh2−/−/Adh5+/+ mice of the same litter. In addition, the absolute weight of each organ was also significantly reduced. Conclusion: Mice deficient in both formaldehyde-metabolizing enzymes ADH5 and ALDH2 were found to develop partial synthetic lethality and mortality shortly after birth.
    [Show full text]
  • HHS Public Access Author Manuscript
    HHS Public Access Author manuscript Author Manuscript Author ManuscriptAm J Med Author Manuscript Genet B Neuropsychiatr Author Manuscript Genet. Author manuscript; available in PMC 2015 December 01. Published in final edited form as: Am J Med Genet B Neuropsychiatr Genet. 2014 December ; 0(8): 673–683. doi:10.1002/ajmg.b.32272. Association and ancestry analysis of sequence variants in ADH and ALDH using alcohol-related phenotypes in a Native American community sample Qian Peng1,2,*, Ian R. Gizer3, Ondrej Libiger2, Chris Bizon4, Kirk C. Wilhelmsen4,5, Nicholas J. Schork1, and Cindy L. Ehlers6,* 1 Department of Human Biology, J. Craig Venter Institute, La Jolla, CA 92037 2 Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, CA 92037 3 Department of Psychological Sciences, University of Missouri-Columbia, Columbia, MO 65211 4 Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27517 5 Department of Genetics and Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 6 Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037 Abstract Higher rates of alcohol use and other drug-dependence have been observed in some Native American populations relative to other ethnic groups in the U.S. Previous studies have shown that alcohol dehydrogenase (ADH) genes and aldehyde dehydrogenase (ALDH) genes may affect the risk of development of alcohol dependence, and that polymorphisms within these genes may differentially affect risk for the disorder depending on the ethnic group evaluated. We evaluated variations in the ADH and ALDH genes in a large study investigating risk factors for substance use in a Native American population.
    [Show full text]
  • Age-Dependent Protein Abundance of Cytosolic Alcohol and Aldehyde Dehydrogenases in Human Liver S
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2017/08/21/dmd.117.076463.DC2 http://dmd.aspetjournals.org/content/suppl/2017/06/12/dmd.117.076463.DC1 1521-009X/45/9/1044–1048$25.00 https://doi.org/10.1124/dmd.117.076463 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 45:1044–1048, September 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics Age-dependent Protein Abundance of Cytosolic Alcohol and Aldehyde Dehydrogenases in Human Liver s Deepak Kumar Bhatt, Andrea Gaedigk, Robin E. Pearce, J. Steven Leeder, and Bhagwat Prasad Department of Pharmaceutics, University of Washington, Seattle, Washington (D.K.B., B.P.); Department of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy-Kansas City, Missouri and School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.) Received April 21, 2017; accepted June 5, 2017 ABSTRACT Hepatic cytosolic alcohol and aldehyde dehydrogenases (ADHs and the adult levels, respectively. For all proteins, the abundance steeply ALDHs) catalyze the biotransformation of xenobiotics (e.g., cyclo- increased during the first year of life, which mostly reached adult Downloaded from phosphamide and ethanol) and vitamin A. Because age-dependent levels during early childhood (age between 1 and 6 years). Only for hepatic abundance of these proteins is unknown, we quantified ADH1A protein abundance in adults (age > 18 year) was ∼40% lower protein expression of ADHs and ALDH1A1 in a large cohort of pediatric relative to the early childhood group. Abundances of ADHs and and adult human livers by liquid chromatography coupled with tandem ALDH1A1 were not associated with sex in samples with age > 1 year mass spectrometry proteomics.
    [Show full text]
  • Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’S Biological Network Based on Systematic Pharmacology
    ORIGINAL RESEARCH published: 25 June 2021 doi: 10.3389/fphar.2021.601846 Exploring the Regulatory Mechanism of Hedysarum Multijugum Maxim.-Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’s Biological Network Based on Systematic Pharmacology Kailin Yang 1†, Liuting Zeng 1†, Anqi Ge 2†, Yi Chen 1†, Shanshan Wang 1†, Xiaofei Zhu 1,3† and Jinwen Ge 1,4* Edited by: 1 Takashi Sato, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of 2 Tokyo University of Pharmacy and Life Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China, Galactophore Department, The First 3 Sciences, Japan Hospital of Hunan University of Chinese Medicine, Changsha, China, School of Graduate, Central South University, Changsha, China, 4Shaoyang University, Shaoyang, China Reviewed by: Hui Zhao, Capital Medical University, China Background: Clinical research found that Hedysarum Multijugum Maxim.-Chuanxiong Maria Luisa Del Moral, fi University of Jaén, Spain Rhizoma Compound (HCC) has de nite curative effect on cerebral ischemic diseases, *Correspondence: such as ischemic stroke and cerebral ischemia-reperfusion injury (CIR). However, its Jinwen Ge mechanism for treating cerebral ischemia is still not fully explained. [email protected] †These authors share first authorship Methods: The traditional Chinese medicine related database were utilized to obtain the components of HCC. The Pharmmapper were used to predict HCC’s potential targets. Specialty section: The CIR genes were obtained from Genecards and OMIM and the protein-protein This article was submitted to interaction (PPI) data of HCC’s targets and IS genes were obtained from String Ethnopharmacology, a section of the journal database.
    [Show full text]
  • The Evolution and Population Genetics of the ALDH2 Locus: Random Genetic Drift, Selection, and Low Levels of Recombination
    doi: 10.1046/j.1529-8817.2003.00060.x The evolution and population genetics of the ALDH2 locus: random genetic drift, selection, and low levels of recombination Hiroki Oota1, Andrew J. Pakstis1, Batsheva Bonne-Tamir2, David Goldman3, Elena Grigorenko4, Sylvester L. B. Kajuna5, Nganyirwa J. Karoma5, Selemani Kungulilo6, Ru-Band Lu7, Kunle Odunsi8, Friday Okonofua9, Olga V. Zhukova10, Judith R. Kidd1 and Kenneth K. Kidd1,∗ 1Department of Genetics, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208005, New Haven, CT 06520-8005, USA 2Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel 3Laboratory of Neurogenetics, National Institute of Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA 4Department of Psychology, Yale University, New Haven, CT 06520, USA 5The Hubert Kairuki Memorial University, Dar es Salaam, Tanzania 6Muhimbili University College of Health Sciences, Dar es Salaam, Tanzania 7Department of Psychiatry, Tri-Service General hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C. 8Department of Gynecological Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA 9Department of Obstetrics and Gynecology, Faculty of Medicine, University of Benin, Benin City, Nigeria 10N.I. Vavilov Institute of General Genetics RAS, Moscow, Russia Summary The catalytic deficiency of human aldehyde dehydrogenase 2 (ALDH2) is caused by a nucleotide substitution (G1510A; Glu487Lys) in exon 12 of the ALDH2 locus. This SNP,and four non-coding SNPs, including one in the promoter, span 40 kb of ALDH2; these and one downstream STRP have been tested in 37 worldwide populations. Only four major SNP-defined haplotypes account for almost all chromosomes in all populations.
    [Show full text]
  • Alcohol-Responsive Genes Identified in Human Ipsc-Derived Neural Cultures
    bioRxiv preprint doi: https://doi.org/10.1101/381673; this version posted July 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Alcohol-responsive genes identified in human iPSC-derived neural cultures Kevin P. Jensen1,2,#, Richard Lieberman3,#, Henry R. Kranzler4,5, Joel Gelernter1,2, and Jonathan Covault3,6* 1 Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511 2 VA Connecticut Healthcare System, West Haven, CT 06516 3 Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT 06030-1410 4 Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104 5 VISN4 MIRECC, Crescenz VAMC, Philadelphia, PA 19104 6 Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269 # These authors contributed equally to this work *Correspondence: Department of Psychiatry UCONN Health 263 Farmington Avenue Farmington, CT 06030-1410 Telephone: 860-679-7560 Fax: 860-679-1296 Email: [email protected] Running title: Transcriptional effects of alcohol in human neural cultures 1 bioRxiv preprint doi: https://doi.org/10.1101/381673; this version posted July 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • The Genetics of Alcohol Dependence: Advancing Towards Systems-Based Approaches
    Drug and Alcohol Dependence 125 (2012) 179–191 Contents lists available at SciVerse ScienceDirect Drug and Alcohol Dependence jo urnal homepage: www.elsevier.com/locate/drugalcdep Review The genetics of alcohol dependence: Advancing towards systems-based approaches a,b,c,∗ a,b,c a,d e f g a,b R.H.C. Palmer , J.E. McGeary , S. Francazio , B.J. Raphael , A.D. Lander , A.C. Heath , V.S. Knopik a Division of Behavioral Genetics, Department of Psychiatry at Rhode Island Hospital, United States b Department of Psychiatry and Human Behavior at the Warren Alpert Medical School of Brown University, United States c Department of Veterans Affairs, Providence, RI, United States d Providence College, Providence, United States e Department of Computer Science, and Center for Computational Molecular Biology, Brown University, United States f Department of Developmental and Cell Biology, University of California, Irvine, United States g Department of Psychiatry, Washington University School of Medicine, St. Louis, United States a r t i c l e i n f o a b s t r a c t Article history: Background: Personalized treatment for psychopathologies, in particular alcoholism, is highly dependent Received 7 February 2012 upon our ability to identify patterns of genetic and environmental effects that influence a person’s risk. Received in revised form 9 July 2012 Unfortunately, array-based whole genome investigations into heritable factors that explain why one Accepted 10 July 2012 person becomes dependent upon alcohol and another does not, have indicated that alcohol’s genetic Available online 31 July 2012 architecture is highly complex.
    [Show full text]
  • Confirmation of Pathogenic Mechanisms by SARS-Cov-2–Host
    Messina et al. Cell Death and Disease (2021) 12:788 https://doi.org/10.1038/s41419-021-03881-8 Cell Death & Disease ARTICLE Open Access Looking for pathways related to COVID-19: confirmation of pathogenic mechanisms by SARS-CoV-2–host interactome Francesco Messina 1, Emanuela Giombini1, Chiara Montaldo1, Ashish Arunkumar Sharma2, Antonio Zoccoli3, Rafick-Pierre Sekaly2, Franco Locatelli4, Alimuddin Zumla5, Markus Maeurer6,7, Maria R. Capobianchi1, Francesco Nicola Lauria1 and Giuseppe Ippolito 1 Abstract In the last months, many studies have clearly described several mechanisms of SARS-CoV-2 infection at cell and tissue level, but the mechanisms of interaction between host and SARS-CoV-2, determining the grade of COVID-19 severity, are still unknown. We provide a network analysis on protein–protein interactions (PPI) between viral and host proteins to better identify host biological responses, induced by both whole proteome of SARS-CoV-2 and specific viral proteins. A host-virus interactome was inferred, applying an explorative algorithm (Random Walk with Restart, RWR) triggered by 28 proteins of SARS-CoV-2. The analysis of PPI allowed to estimate the distribution of SARS-CoV-2 proteins in the host cell. Interactome built around one single viral protein allowed to define a different response, underlining as ORF8 and ORF3a modulated cardiovascular diseases and pro-inflammatory pathways, respectively. Finally, the network-based approach highlighted a possible direct action of ORF3a and NS7b to enhancing Bradykinin Storm. This network-based representation of SARS-CoV-2 infection could be a framework for pathogenic evaluation of specific 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; clinical outcomes.
    [Show full text]
  • A Yeast Phenomic Model for the Influence of Warburg Metabolism on Genetic Buffering of Doxorubicin Sean M
    Santos and Hartman Cancer & Metabolism (2019) 7:9 https://doi.org/10.1186/s40170-019-0201-3 RESEARCH Open Access A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin Sean M. Santos and John L. Hartman IV* Abstract Background: The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. Methods: Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. Results: Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context.
    [Show full text]
  • How Is Alcohol Metabolized by the Body?
    Overview: How Is Alcohol Metabolized by the Body? Samir Zakhari, Ph.D. Alcohol is eliminated from the body by various metabolic mechanisms. The primary enzymes involved are aldehyde dehydrogenase (ALDH), alcohol dehydrogenase (ADH), cytochrome P450 (CYP2E1), and catalase. Variations in the genes for these enzymes have been found to influence alcohol consumption, alcohol-related tissue damage, and alcohol dependence. The consequences of alcohol metabolism include oxygen deficits (i.e., hypoxia) in the liver; interaction between alcohol metabolism byproducts and other cell components, resulting in the formation of harmful compounds (i.e., adducts); formation of highly reactive oxygen-containing molecules (i.e., reactive oxygen species [ROS]) that can damage other cell components; changes in the ratio of NADH to NAD+ (i.e., the cell’s redox state); tissue damage; fetal damage; impairment of other metabolic processes; cancer; and medication interactions. Several issues related to alcohol metabolism require further research. KEY WORDS: Ethanol-to­ acetaldehyde metabolism; alcohol dehydrogenase (ADH); aldehyde dehydrogenase (ALDH); acetaldehyde; acetate; cytochrome P450 2E1 (CYP2E1); catalase; reactive oxygen species (ROS); blood alcohol concentration (BAC); liver; stomach; brain; fetal alcohol effects; genetics and heredity; ethnic group; hypoxia The alcohol elimination rate varies state of liver cells. Chronic alcohol con- he effects of alcohol (i.e., ethanol) widely (i.e., three-fold) among individ- sumption and alcohol metabolism are on various tissues depend on its uals and is influenced by factors such as strongly linked to several pathological concentration in the blood T chronic alcohol consumption, diet, age, consequences and tissue damage. (blood alcohol concentration [BAC]) smoking, and time of day (Bennion and Understanding the balance of alcohol’s over time.
    [Show full text]