Supersymmetric Dark Matter – Aspects of Sfermion Coannihilations

Total Page:16

File Type:pdf, Size:1020Kb

Supersymmetric Dark Matter – Aspects of Sfermion Coannihilations Supersymmetric Dark Matter – aspects of sfermion coannihilations Mia Schelke Stockholm University Department of Physics 2004 Thesis for the degree of doctor in philosophy in theoretical physics Department of Physics Stockholm University Sweden c Mia Schelke 2004 ISBN 91-7265-909-2 pp i–viii,1–157 Printed by Universitetsservice US-AB, Stockholm, 2004 Abstract There is very strong evidence that ordinary matter in the Universe is outweighed by almost ten times as much so-called dark matter. Dark matter does neither emit nor absorb light and we do not know what it is. One of the theoretically favoured candidates is a so-called neutralino from the supersymmetric extension of the Standard Model of particle physics. A theoretical calculation of the expected cosmic neutralino density must include the so-called coannihilations. Coannihilations are particle processes in the early Universe with any two supersymmetric particles in the initial state and any two Standard Model particles in the final state. In this thesis we discuss the importance of these processes for the calculation of the relic density. We will go through some details in the calculation of coannihilations with one or two so-called sfermions in the initial state. This includes a discussion of Feynman diagrams with clashing arrows, a calculation of colour factors and a discussion of ghosts in non-Abelian field theory. Supersymmetric models contain a large number of free parameters on which the masses and couplings depend. The requirement, that the pre- dicted density of cosmic neutralinos must agree with the density observed for the unknown dark matter, will constrain the parameters. Other con- straints come from experiments which are not related to cosmology. For instance, the supersymmetric loop contribution to the rare b sγ decay → should agree with the measured branching fraction. The principles of the calculation of the rare decay are discussed in this thesis. Also on-going and planned searches for cosmic neutralinos can constrain the parame- ters. In one of the accompanying papers in the thesis we compare the detection prospects for several current and future searches for neutralino dark matter. i Accompanying papers I J. Edsj¨o, M. Schelke, P. Ullio and P. Gondolo, JCAP 0304 (2003) 001. Accurate relic densities with neutralino, chargino and sfermion coannihilations in mSUGRA. [hep-ph/0301106]. II J. Edsj¨o, M. Schelke and P. Ullio, Draft, May 6, 2004. Direct versus indirect detection in mSUGRA with self-consistent halo models. III P. Gondolo, J. Edsj¨o, P. Ullio, L. Bergstr¨om, M. Schelke and E.A. Baltz, Draft, May 10, 2004. DarkSUSY – A numerical package for supersymmetric dark matter calculations. Paper I is reproduced with permission from JCAP [http://jcap.sissa.it], IOP Publishing Ltd. iii Acknowledgements First of all I want to thank my two supervisors, Lars Bergstr¨om and Joakim Edsj¨o. Lars Bergstr¨om for welcoming me at Fysikum already when I was an undergraduate at the Niels Bohr Institute. Thanks for encouraging me to present my work at conferences and to help finding means for travel expenses. Joakim Edsj¨o, thanks for support in the last busy months. I also appreciate the conversations we had at many different occasions. I would like to thank the whole DarkSUSY group, Ted Baltz, Lars Bergstr¨om, Joakim Edsj¨o, Paolo Gondolo and Piero Ullio for sharing the dedicated interest in supersymmetric dark matter and always aiming at the highest possible accuracy in the calculations. Piero Ullio, thanks for instructive visits at SISSA, Trieste. Thanks to you and Paola for hospitality and delicious italian dinners. Thanks Martin Eriksson, Christofer Gunnarsson and Michael Gustafs- son for many pleasant hours in our study group. Many other colleagues also deserve a special thanks. Among others Rahman Amanullah, Johan Br¨annlund, Gast´on Folatelli, Gabriele Garavini, Martin Goliath, Boris Gudiksen, Stefan Hofmann, S¨oren Holst, Edvard M¨ortsell and Serena Nobili. Thanks to the secretariat for readiness to help. Special thanks to Britta Schmidt. Thanks also to my friends and family in Stockholm, Denmark and elsewhere. A warm thanks to my parents. v Contents Abstract i Accompanying papers iii Acknowledgements v 1 Overview 1 1.1 Dark matter density from cosmology . 2 1.2 Supersymmetry........................ 4 1.2.1 Supersymmetric particles . 5 1.2.2 Softbreaking ..................... 8 1.2.3 R-parityandtheLSP . .. .. .. .. 9 1.2.4 mSUGRA....................... 10 1.3 Paper III and the DarkSUSY computer package . 12 1.3.1 My contributions to DarkSUSY and Paper III . 13 1.4 Paper I on coannihilations and density . 14 1.4.1 My contributions to Paper I ............ 17 1.5 Paper II on detection rates . 18 1.5.1 My contributions to Paper II ........... 20 2 Relic neutralino density and coannihilations 23 2.1 The Boltzmann equation . 24 2.2 Thermalaveraging . .. .. .. .. .. .. 34 2.3 Solving the Boltzmann equation . 44 2.4 Putting together the numerical solution . 46 0 3 Sfermion–χ /χ± coannihilations 51 3.1 Modifiedcrossing....................... 51 3.2 The gauge boson plus fermion final state . 57 vii 3.2.1 The s process..................... 57 3.2.2 The modified t process – including discussion about clashing arrows . 78 3.3 The Higgs boson plus fermion final state . 92 3.3.1 The s process..................... 92 3.3.2 The modified t process................ 103 4 Sfermions coannihilating into two bosons 111 4.1 The two gauge boson final state . 111 4.2 Colourfactors......................... 115 4.3 Thetwogluonfinalstate . 122 4.3.1 The optical theorem . 124 4.3.2 Calculation with ghosts . 128 4.3.3 Sum of physical polarization vectors . 129 4.3.4 Explicit polarization vectors . 131 5 The rare b sγ decay 135 → 5.1 The Standard Model contribution . 136 5.1.1 The operator product expansion . 137 5.1.2 The RGE of the Wilson coefficients . 139 5.1.3 Thebranchingratio . 144 5.1.4 Thenumericalresult . 146 5.2 Supersymmetric corrections . 147 5.2.1 Implementation and results for the full model . 150 6 Summary 153 Bibliography 155 Chapter 1 Overview The subject of this thesis falls within the framework of astroparticle physics. Astroparticle physics considers particle physics phenomena of importance for cosmology. It combines the very small with the very large by considering the interplay between elementary particles and the gen- eral history and large scale structure and kinematics of the Universe. This thesis deals with the so-called supersymmetric dark matter. Super- symmetric particles are elementary particles predicted by the theory of supersymmetry for which we still do not have any experimental evidence. Dark matter is one of the biggest puzzles of modern cosmology. Dark matter does neither emit nor absorb light, but there are other strong in- dications of its existence. It is unknown what this dark matter is, but one of the theoretically favoured candidates is a population of a super- symmetric particle. Our interest here will be the theoretical aspects of the phenomenology of supersymmetric dark matter. If supersymmetric dark matter exists, it must be a relic from the big bang. We have to understand the particle processes in the early Universe in order to make a theoretical prediction of the present amount of the supersymmetric par- ticles. These cosmic relics will still today occasionally interact with each other or with ordinary matter. It is possible to make theoretical predic- tions of how sensitive astroparticle detectors should be to find evidence for these interactions. We will mention some of the cosmological evidence for dark matter in section 1.1 and we will give an introduction to supersymmetry in section 1.2. In the remaining part of the chapter we give a summary of some of the aspects of supersymmetric dark matter which are covered by the the- 1 2 Chapter 1. Overview sis and the accompanying papers. In section 1.3 we briefly discuss Paper III which describes the DarkSUSY computer package, that we have devel- oped for the numerical calculations of theoretical predictions. In sections 1.4 we review Paper I on the relic density of supersymmetric dark mat- ter. It is here calculated within the supersymmetric model called minimal supergravity and the calculation includes all so-called coannihilation pro- cesses in the early Universe. In section 1.5 we discuss the work done in Paper II. This paper compare the possibilities for different astroparticle detectors to detect the cosmic relics of a minimal supergravity model. The discussion of the three papers will also contain references to the rest of the thesis. In this thesis we will go through some of the aspects of the papers in more detail. 1.1 Dark matter density from cosmology For many years there has been compelling evidence that luminous mat- ter only makes up a small fraction of all matter in the Universe. The observed rotation curves of galaxies were compared with the rotation in- ferred from Kepler’s third law and the estimated mass of the luminous galaxy. Around ten times as much mass was needed to explain the obser- vations. This missing mass was called dark matter, but the studies of the rotation curves did not give any hint of the nature of the dark matter. The picture of a large component of missing mass has been confirmed in the recent years by various cosmological observations. This has even revealed that the main part of the dark matter cannot be ordinary matter. Also, most of the missing mass is cold dark matter. The word cold means that these particles were non-relativistic at the time where structures began to form in the Universe. Even more surprisingly, cosmological observations have revealed that an even larger part of the energy in the Universe is something which has a negative pressure.
Recommended publications
  • Report of the Supersymmetry Theory Subgroup
    Report of the Supersymmetry Theory Subgroup J. Amundson (Wisconsin), G. Anderson (FNAL), H. Baer (FSU), J. Bagger (Johns Hopkins), R.M. Barnett (LBNL), C.H. Chen (UC Davis), G. Cleaver (OSU), B. Dobrescu (BU), M. Drees (Wisconsin), J.F. Gunion (UC Davis), G.L. Kane (Michigan), B. Kayser (NSF), C. Kolda (IAS), J. Lykken (FNAL), S.P. Martin (Michigan), T. Moroi (LBNL), S. Mrenna (Argonne), M. Nojiri (KEK), D. Pierce (SLAC), X. Tata (Hawaii), S. Thomas (SLAC), J.D. Wells (SLAC), B. Wright (North Carolina), Y. Yamada (Wisconsin) ABSTRACT Spacetime supersymmetry appears to be a fundamental in- gredient of superstring theory. We provide a mini-guide to some of the possible manifesta- tions of weak-scale supersymmetry. For each of six scenarios These motivations say nothing about the scale at which nature we provide might be supersymmetric. Indeed, there are additional motiva- tions for weak-scale supersymmetry. a brief description of the theoretical underpinnings, Incorporation of supersymmetry into the SM leads to a so- the adjustable parameters, lution of the gauge hierarchy problem. Namely, quadratic divergences in loop corrections to the Higgs boson mass a qualitative description of the associated phenomenology at future colliders, will cancel between fermionic and bosonic loops. This mechanism works only if the superpartner particle masses comments on how to simulate each scenario with existing are roughly of order or less than the weak scale. event generators. There exists an experimental hint: the three gauge cou- plings can unify at the Grand Uni®cation scale if there ex- I. INTRODUCTION ist weak-scale supersymmetric particles, with a desert be- The Standard Model (SM) is a theory of spin- 1 matter tween the weak scale and the GUT scale.
    [Show full text]
  • 22 Scattering in Supersymmetric Matter Chern-Simons Theories at Large N
    2 2 scattering in supersymmetric matter ! Chern-Simons theories at large N Karthik Inbasekar 10th Asian Winter School on Strings, Particles and Cosmology 09 Jan 2016 Scattering in CS matter theories In QFT, Crossing symmetry: analytic continuation of amplitudes. Particle-antiparticle scattering: obtained from particle-particle scattering by analytic continuation. Naive crossing symmetry leads to non-unitary S matrices in U(N) Chern-Simons matter theories.[ Jain, Mandlik, Minwalla, Takimi, Wadia, Yokoyama] Consistency with unitarity required Delta function term at forward scattering. Modified crossing symmetry rules. Conjecture: Singlet channel S matrices have the form sin(πλ) = 8πpscos(πλ)δ(θ)+ i S;naive(s; θ) S πλ T S;naive: naive analytic continuation of particle-particle scattering. T Scattering in U(N) CS matter theories at large N Particle: fund rep of U(N), Antiparticle: antifund rep of U(N). Fundamental Fundamental Symm(Ud ) Asymm(Ue ) ⊗ ! ⊕ Fundamental Antifundamental Adjoint(T ) Singlet(S) ⊗ ! ⊕ C2(R1)+C2(R2)−C2(Rm) Eigenvalues of Anyonic phase operator νm = 2κ 1 νAsym νSym νAdj O ;ν Sing O(λ) ∼ ∼ ∼ N ∼ symm, asymm and adjoint channels- non anyonic at large N. Scattering in the singlet channel is effectively anyonic at large N- naive crossing rules fail unitarity. Conjecture beyond large N: general form of 2 2 S matrices in any U(N) Chern-Simons matter theory ! sin(πνm) (s; θ) = 8πpscos(πνm)δ(θ)+ i (s; θ) S πνm T Universality and tests Delta function and modified crossing rules conjectured by Jain et al appear to be universal. Tests of the conjecture: Unitarity of the S matrix.
    [Show full text]
  • The Pev-Scale Split Supersymmetry from Higgs Mass and Electroweak Vacuum Stability
    The PeV-Scale Split Supersymmetry from Higgs Mass and Electroweak Vacuum Stability Waqas Ahmed ? 1, Adeel Mansha ? 2, Tianjun Li ? ~ 3, Shabbar Raza ∗ 4, Joydeep Roy ? 5, Fang-Zhou Xu ? 6, ? CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China ~School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China ∗ Department of Physics, Federal Urdu University of Arts, Science and Technology, Karachi 75300, Pakistan Institute of Modern Physics, Tsinghua University, Beijing 100084, China Abstract The null results of the LHC searches have put strong bounds on new physics scenario such as supersymmetry (SUSY). With the latest values of top quark mass and strong coupling, we study the upper bounds on the sfermion masses in Split-SUSY from the observed Higgs boson mass and electroweak (EW) vacuum stability. To be consistent with the observed Higgs mass, we find that the largest value of supersymmetry breaking 3 1:5 scales MS for tan β = 2 and tan β = 4 are O(10 TeV) and O(10 TeV) respectively, thus putting an upper bound on the sfermion masses around 103 TeV. In addition, the Higgs quartic coupling becomes negative at much lower scale than the Standard Model (SM), and we extract the upper bound of O(104 TeV) on the sfermion masses from EW vacuum stability. Therefore, we obtain the PeV-Scale Split-SUSY. The key point is the extra contributions to the Renormalization Group Equation (RGE) running from arXiv:1901.05278v1 [hep-ph] 16 Jan 2019 the couplings among Higgs boson, Higgsinos, and gauginos.
    [Show full text]
  • Dark Energy and Dark Matter As Inertial Effects Introduction
    Dark Energy and Dark Matter as Inertial Effects Serkan Zorba Department of Physics and Astronomy, Whittier College 13406 Philadelphia Street, Whittier, CA 90608 [email protected] ABSTRACT A disk-shaped universe (encompassing the observable universe) rotating globally with an angular speed equal to the Hubble constant is postulated. It is shown that dark energy and dark matter are cosmic inertial effects resulting from such a cosmic rotation, corresponding to centrifugal (dark energy), and a combination of centrifugal and the Coriolis forces (dark matter), respectively. The physics and the cosmological and galactic parameters obtained from the model closely match those attributed to dark energy and dark matter in the standard Λ-CDM model. 20 Oct 2012 Oct 20 ph] - PACS: 95.36.+x, 95.35.+d, 98.80.-k, 04.20.Cv [physics.gen Introduction The two most outstanding unsolved problems of modern cosmology today are the problems of dark energy and dark matter. Together these two problems imply that about a whopping 96% of the energy content of the universe is simply unaccounted for within the reigning paradigm of modern cosmology. arXiv:1210.3021 The dark energy problem has been around only for about two decades, while the dark matter problem has gone unsolved for about 90 years. Various ideas have been put forward, including some fantastic ones such as the presence of ghostly fields and particles. Some ideas even suggest the breakdown of the standard Newton-Einstein gravity for the relevant scales. Although some progress has been made, particularly in the area of dark matter with the nonstandard gravity theories, the problems still stand unresolved.
    [Show full text]
  • Old Supersymmetry As New Mathematics
    old supersymmetry as new mathematics PILJIN YI Korea Institute for Advanced Study with help from Sungjay Lee Atiyah-Singer Index Theorem ~ 1963 1975 ~ Bogomolnyi-Prasad-Sommerfeld (BPS) Calabi-Yau ~ 1978 1977 ~ Supersymmetry Calibrated Geometry ~ 1982 1982 ~ Index Thm by Path Integral (Alvarez-Gaume) (Harvey & Lawson) 1985 ~ Calabi-Yau Compactification 1988 ~ Mirror Symmetry 1992~ 2d Wall-Crossing / tt* (Cecotti & Vafa etc) Homological Mirror Symmetry ~ 1994 1994 ~ 4d Wall-Crossing (Seiberg & Witten) (Kontsevich) 1998 ~ Wall-Crossing is Bound State Dissociation (Lee & P.Y.) Stability & Derived Category ~ 2000 2000 ~ Path Integral Proof of Mirror Symmetry (Hori & Vafa) Wall-Crossing Conjecture ~ 2008 2008 ~ Konstevich-Soibelman Explained (conjecture by Kontsevich & Soibelman) (Gaiotto & Moore & Neitzke) 2011 ~ KS Wall-Crossing proved via Quatum Mechanics (Manschot , Pioline & Sen / Kim , Park, Wang & P.Y. / Sen) 2012 ~ S2 Partition Function as tt* (Jocker, Kumar, Lapan, Morrison & Romo /Gomis & Lee) quantum and geometry glued by superstring theory when can we perform path integrals exactly ? counting geometry with supersymmetric path integrals quantum and geometry glued by superstring theory Einstein this theory famously resisted quantization, however on the other hand, five superstring theories, with a consistent quantum gravity inside, live in 10 dimensional spacetime these superstring theories say, spacetime is composed of 4+6 dimensions with very small & tightly-curved (say, Calabi-Yau) 6D manifold sitting at each and every point of
    [Show full text]
  • QCD Theory 6Em2pt Formation of Quark-Gluon Plasma In
    QCD theory Formation of quark-gluon plasma in QCD T. Lappi University of Jyvaskyl¨ a,¨ Finland Particle physics day, Helsinki, October 2017 1/16 Outline I Heavy ion collision: big picture I Initial state: small-x gluons I Production of particles in weak coupling: gluon saturation I 2 ways of understanding glue I Counting particles I Measuring gluon field I For practical phenomenology: add geometry 2/16 A heavy ion event at the LHC How does one understand what happened here? 3/16 Concentrate here on the earliest stage Heavy ion collision in spacetime The purpose in heavy ion collisions: to create QCD matter, i.e. system that is large and lives long compared to the microscopic scale 1 1 t L T > 200MeV T T t freezefreezeout out hadronshadron in eq. gas gluonsquark-gluon & quarks in eq. plasma gluonsnonequilibrium & quarks out of eq. quarks, gluons colorstrong fields fields z (beam axis) 4/16 Heavy ion collision in spacetime The purpose in heavy ion collisions: to create QCD matter, i.e. system that is large and lives long compared to the microscopic scale 1 1 t L T > 200MeV T T t freezefreezeout out hadronshadron in eq. gas gluonsquark-gluon & quarks in eq. plasma gluonsnonequilibrium & quarks out of eq. quarks, gluons colorstrong fields fields z (beam axis) Concentrate here on the earliest stage 4/16 Color charge I Charge has cloud of gluons I But now: gluons are source of new gluons: cascade dN !−1−O(αs) d! ∼ Cascade of gluons Electric charge I At rest: Coulomb electric field I Moving at high velocity: Coulomb field is cloud of photons
    [Show full text]
  • THE STRONG INTERACTION by J
    MISN-0-280 THE STRONG INTERACTION by J. R. Christman 1. Abstract . 1 2. Readings . 1 THE STRONG INTERACTION 3. Description a. General E®ects, Range, Lifetimes, Conserved Quantities . 1 b. Hadron Exchange: Exchanged Mass & Interaction Time . 1 s 0 c. Charge Exchange . 2 d L u 4. Hadron States a. Virtual Particles: Necessity, Examples . 3 - s u - S d e b. Open- and Closed-Channel States . 3 d n c. Comparison of Virtual and Real Decays . 4 d e 5. Resonance Particles L0 a. Particles as Resonances . .4 b. Overview of Resonance Particles . .5 - c. Resonance-Particle Symbols . 6 - _ e S p p- _ 6. Particle Names n T Y n e a. Baryon Names; , . 6 b. Meson Names; G-Parity, T , Y . 6 c. Evolution of Names . .7 d. The Berkeley Particle Data Group Hadron Tables . 7 7. Hadron Structure a. All Hadrons: Possible Exchange Particles . 8 b. The Excited State Hypothesis . 8 c. Quarks as Hadron Constituents . 8 Acknowledgments. .8 Project PHYSNET·Physics Bldg.·Michigan State University·East Lansing, MI 1 2 ID Sheet: MISN-0-280 THIS IS A DEVELOPMENTAL-STAGE PUBLICATION Title: The Strong Interaction OF PROJECT PHYSNET Author: J. R. Christman, Dept. of Physical Science, U. S. Coast Guard The goal of our project is to assist a network of educators and scientists in Academy, New London, CT transferring physics from one person to another. We support manuscript Version: 11/8/2001 Evaluation: Stage B1 processing and distribution, along with communication and information systems. We also work with employers to identify basic scienti¯c skills Length: 2 hr; 12 pages as well as physics topics that are needed in science and technology.
    [Show full text]
  • The Positons of the Three Quarks Composing the Proton Are Illustrated
    The posi1ons of the three quarks composing the proton are illustrated by the colored spheres. The surface plot illustrates the reduc1on of the vacuum ac1on density in a plane passing through the centers of the quarks. The vector field illustrates the gradient of this reduc1on. The posi1ons in space where the vacuum ac1on is maximally expelled from the interior of the proton are also illustrated by the tube-like structures, exposing the presence of flux tubes. a key point of interest is the distance at which the flux-tube formaon occurs. The animaon indicates that the transi1on to flux-tube formaon occurs when the distance of the quarks from the center of the triangle is greater than 0.5 fm. again, the diameter of the flux tubes remains approximately constant as the quarks move to large separaons. • Three quarks indicated by red, green and blue spheres (lower leb) are localized by the gluon field. • a quark-an1quark pair created from the gluon field is illustrated by the green-an1green (magenta) quark pair on the right. These quark pairs give rise to a meson cloud around the proton. hEp://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/index.html Nucl. Phys. A750, 84 (2005) 1000000 QCD mass 100000 Higgs mass 10000 1000 100 Mass (MeV) 10 1 u d s c b t GeV HOW does the rest of the proton mass arise? HOW does the rest of the proton spin (magnetic moment,…), arise? Mass from nothing Dyson-Schwinger and Lattice QCD It is known that the dynamical chiral symmetry breaking; namely, the generation of mass from nothing, does take place in QCD.
    [Show full text]
  • Dark Matter and the Early Universe: a Review Arxiv:2104.11488V1 [Hep-Ph
    Dark matter and the early Universe: a review A. Arbey and F. Mahmoudi Univ Lyon, Univ Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, UMR 5822, 69622 Villeurbanne, France Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland Institut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France Abstract Dark matter represents currently an outstanding problem in both cosmology and particle physics. In this review we discuss the possible explanations for dark matter and the experimental observables which can eventually lead to the discovery of dark matter and its nature, and demonstrate the close interplay between the cosmological properties of the early Universe and the observables used to constrain dark matter models in the context of new physics beyond the Standard Model. arXiv:2104.11488v1 [hep-ph] 23 Apr 2021 1 Contents 1 Introduction 3 2 Standard Cosmological Model 3 2.1 Friedmann-Lema^ıtre-Robertson-Walker model . 4 2.2 A quick story of the Universe . 5 2.3 Big-Bang nucleosynthesis . 8 3 Dark matter(s) 9 3.1 Observational evidences . 9 3.1.1 Galaxies . 9 3.1.2 Galaxy clusters . 10 3.1.3 Large and cosmological scales . 12 3.2 Generic types of dark matter . 14 4 Beyond the standard cosmological model 16 4.1 Dark energy . 17 4.2 Inflation and reheating . 19 4.3 Other models . 20 4.4 Phase transitions . 21 5 Dark matter in particle physics 21 5.1 Dark matter and new physics . 22 5.1.1 Thermal relics . 22 5.1.2 Non-thermal relics .
    [Show full text]
  • Measuring the Spin of SUSY Particles SUSY: • Every SM Fermion (Spin 1/2
    Measuring the spin of SUSY particles SUSY: • every SM fermion (spin 1/2) ↔ SUSY scalar (spin 0) • every SM boson (spin 1 or 0) ↔ SUSY fermion (spin 1/2) Want to check experimentally that (e.g.) eL,R are really spin 0 and Ce1,2 are really spin 1/2. 2 preserve the 5th dimensional momentum (KK number). The corresponding coupling constants among KK modes Model with a 500 GeV-size extra are simply equal to the SM couplings (up to normaliza- tion factors such as √2). The Feynman rules for the KK dimension could give a rather SUSY- modes can easily be derived (e.g., see Ref. [8, 9]). like spectrum! In contrast, the coefficients of the boundary terms are not fixed by Standard Model couplings and correspond to new free parameters. In fact, they are renormalized by the bulk interactions and hence are scale dependent [10, 11]. One might worry that this implies that all pre- dictive power is lost. However, since the wave functions of Standard Model fields and KK modes are spread out over the extra dimension and the new couplings only exist on the boundaries, their effects are volume sup- pressed. We can get an estimate for the size of these volume suppressed corrections with naive dimensional analysis by assuming strong coupling at the cut-off. The FIG. 1: One-loop corrected mass spectrum of the first KK −1 result is that the mass shifts to KK modes from bound- level in MUEDs for R = 500 GeV, ΛR = 20 and mh = 120 ary terms are numerically equal to corrections from loops GeV.
    [Show full text]
  • 5 the Dirac Equation and Spinors
    5 The Dirac Equation and Spinors In this section we develop the appropriate wavefunctions for fundamental fermions and bosons. 5.1 Notation Review The three dimension differential operator is : ∂ ∂ ∂ = , , (5.1) ∂x ∂y ∂z We can generalise this to four dimensions ∂µ: 1 ∂ ∂ ∂ ∂ ∂ = , , , (5.2) µ c ∂t ∂x ∂y ∂z 5.2 The Schr¨odinger Equation First consider a classical non-relativistic particle of mass m in a potential U. The energy-momentum relationship is: p2 E = + U (5.3) 2m we can substitute the differential operators: ∂ Eˆ i pˆ i (5.4) → ∂t →− to obtain the non-relativistic Schr¨odinger Equation (with = 1): ∂ψ 1 i = 2 + U ψ (5.5) ∂t −2m For U = 0, the free particle solutions are: iEt ψ(x, t) e− ψ(x) (5.6) ∝ and the probability density ρ and current j are given by: 2 i ρ = ψ(x) j = ψ∗ ψ ψ ψ∗ (5.7) | | −2m − with conservation of probability giving the continuity equation: ∂ρ + j =0, (5.8) ∂t · Or in Covariant notation: µ µ ∂µj = 0 with j =(ρ,j) (5.9) The Schr¨odinger equation is 1st order in ∂/∂t but second order in ∂/∂x. However, as we are going to be dealing with relativistic particles, space and time should be treated equally. 25 5.3 The Klein-Gordon Equation For a relativistic particle the energy-momentum relationship is: p p = p pµ = E2 p 2 = m2 (5.10) · µ − | | Substituting the equation (5.4), leads to the relativistic Klein-Gordon equation: ∂2 + 2 ψ = m2ψ (5.11) −∂t2 The free particle solutions are plane waves: ip x i(Et p x) ψ e− · = e− − · (5.12) ∝ The Klein-Gordon equation successfully describes spin 0 particles in relativistic quan- tum field theory.
    [Show full text]
  • Effective Description of Dark Matter As a Viscous Fluid
    Motivation Framework Perturbation theory Effective viscosity Results FRG improvement Conclusions Effective Description of Dark Matter as a Viscous Fluid Nikolaos Tetradis University of Athens Work with: D. Blas, S. Floerchinger, M. Garny, U. Wiedemann . N. Tetradis University of Athens Effective Description of Dark Matter as a Viscous Fluid Motivation Framework Perturbation theory Effective viscosity Results FRG improvement Conclusions Distribution of dark and baryonic matter in the Universe Figure: 2MASS Galaxy Catalog (more than 1.5 million galaxies). N. Tetradis University of Athens Effective Description of Dark Matter as a Viscous Fluid Motivation Framework Perturbation theory Effective viscosity Results FRG improvement Conclusions Inhomogeneities Inhomogeneities are treated as perturbations on top of an expanding homogeneous background. Under gravitational attraction, the matter overdensities grow and produce the observed large-scale structure. The distribution of matter at various redshifts reflects the detailed structure of the cosmological model. Define the density field δ = δρ/ρ0 and its spectrum hδ(k)δ(q)i ≡ δD(k + q)P(k): . N. Tetradis University of Athens Effective Description of Dark Matter as a Viscous Fluid 31 timation method in its entirety, but it should be equally valid. 7.3. Comparison to other results Figure 35 compares our results from Table 3 (modeling approach) with other measurements from galaxy surveys, but must be interpreted with care. The UZC points may contain excess large-scale power due to selection function effects (Padmanabhan et al. 2000; THX02), and the an- gular SDSS points measured from the early data release sample are difficult to interpret because of their extremely broad window functions.
    [Show full text]