[Palaeontology, Vol. 61, Part 5, 2018, pp. 647–658] RAPID COMMUNICATION DIETS OF GIANTS: THE NUTRITIONAL VALUE OF SAUROPOD DIET DURING THE MESOZOIC by FIONA L. GILL1 ,JURGEN€ HUMMEL2,A.REZASHARIFI2,ALEXANDRAP. LEE3 and BARRY H. LOMAX3 1School of Earth & Environment, University of Leeds, Leeds, LS2 9JT, UK;
[email protected] 2Department of Animal Sciences, University of Goettingen, Goettingen, Germany;
[email protected],
[email protected] 3The School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK;
[email protected],
[email protected] Typescript received 27 July 2017; accepted in revised form 12 June 2018 Abstract: A major uncertainty in estimating energy bud- Here we show plant species-specific responses in metaboliz- gets and population densities of extinct animals is the carry- able energy and nitrogen content, equivalent to a two-fold ing capacity of their ecosystems, constrained by net primary variation in daily food intake estimates for a typical sauro- productivity (NPP) and its digestible energy content. The pod, for dinosaur food plant analogues grown under CO2 hypothesis that increases in NPP due to elevated atmospheric concentrations spanning estimates for Mesozoic atmospheric CO2 contributed to the unparalleled size of the sauropods concentrations. Our results potentially rebut the hypothesis has recently been rejected, based on modern studies on her- that constraints on sauropod diet quality were driven by bivorous insects that imply a general, negative correlation of Mesozoic CO2 concentration. diet quality and increasing CO2. However, the nutritional value of plants grown under elevated CO2 levels might be Key words: Mesozoic, sauropod, diet, atmospheric CO2, very different for vertebrate megaherbivores than for insects.