B. Sc. I YEAR PRACTICAL ZOOLOGY

Total Page:16

File Type:pdf, Size:1020Kb

B. Sc. I YEAR PRACTICAL ZOOLOGY BSC ZO- 104 B. Sc. I YEAR PRACTICAL ZOOLOGY DEPARTMENT OF ZOOLOGY SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY Board of Studies and Programme Coordinator Board of Studies Prof. H.C.S.Bisht Department of Zoology Prof. B.D.Joshi DSB Campus,Kumaun University, Retd.Prof. Nainital Department of Zoology Gurukul Kangri University Prof. H.C.Tiwari Haridwar Retd. Prof. & Principal Department of Zoology, Dr.N.N.Pandey MB Govt.PG College Principal Scientist, Haldwani Nainital. Directorate of Coldwater Fisheries Research (ICAR) Bhimtal (Nainital). Dr. Shyam S.Kunjwal Department of Zoology School of Sciences, Uttarakhand Open University Programme Coordinator Dr. Shyam S.Kunjwal Department of Zoology School of Sciences, Uttarakhand Open University Haldwani, Nainital Unit writing and Editing Editor Writer Dr. Mahesh Kumar Dr. Suneeta Negi Department of Zoology Associate Professor MB Govt.PG College Haldwani Department of Zoology (Kumaun University Nainital) Govt.PG College Kotdwar Uttarakhand (India). (HNB Garhwal)University Dr.Shyam S.Kunjwal Department of Zoology School of Sciences Uttarakhand Open University Haldwani (Nainital) Dr.Poonam Tripathi Assistant Professor Department of Zoology MB Govt.PG College Haldwani (Kumaun University Nainital) Uttarakhand (India). Shruti Saxena Assistant Professor Department of Zoology SGRRPG College, Dehradun Dr.Manisha Uniyal Assistant Professor Department of Zoology SGRRPG College, Dehradun Dr.N.C.Khanduri Assistant Professor Department of Zoology Govt.PG College Agustyamuni ```````Course Title and Code : Practical Zoology (BSCZO 104) ISBN : 978-93-85740-56-5 Copyright : Uttarakhand Open University Edition : 2017 Published By : Uttarakhand Open University, Haldwani, Nainital- 263139 BSCZO-104 Practical Zoology DEPARTMENT OF ZOOLOGY SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY Phone No. 05946-261122, 261123 Toll free No. 18001804025 Fax No. 05946-264232, E. mail: [email protected] htpp://uou.ac.in Contents Course 4: Practical Zoology Course code: BSCZO104 Credit: 3 Unit Block and Unit title Page number number Block 1 Museum Specimen Study 1-288 1 Protozoa : Amoeba , Paramecium, Euglena , Ceratium and Noctiluca . 1-33 Plasmodium , Monocystis, Trypanosoma , Leishmania , Ent-amoeba and Giardia. 2 Porifera: Leucosolenia, Grantia , Scypha , Hyalonema , Euplectella , Spongilla 34-55 and Euspongia . L. S. and T. S. of Scypha & Grantia. 3 Coelentrata: Medusa of Obelia, larval stages of Aurelia , Physali a, Porpita , Vellela , 56-85 Tubipora , Millepora , Aurelia , Gorgonium , Pennatua , Alcyonium , Adamsia. 4 86-110 Platyhelminthes: Dugesia, Fasciola and Taenia .Transverse sections of Fasciola and Taenia , mature and gravid proglottids of Taenia , developmental stages of Fasciola and Taenia. 5 Nematoda: Ascaris , Ancylostoma , Dracunculus , Wuchereria , Trichinella , 111-131 Schistosoma and Enterobius. 6 Annelida: Nereis, Heteronereis, Aphrodite, Arenicola, Pheretima, 132-160 Pontobdella, and Hirudinaria . Transverse sections of Nereis and Hirudinaria , Trochophore larva of Nereis , Parapodium of Nereis and Heteronereis 7 Arthropoda : Limulus , Spider, Palamnaeus , Apus , Lepas, Balanus , 161-229 Sacculina , Palaemon , Lobster, Eupagurus , Crab, Lepisma , Odontotermes , Pediculus , Schistocerca , Papilio , Bombyx , Xenop sylla, Apis , Julus and Scolopendra . Crustacean larvae (Nauplius , Zoea , Megalopa and Mysis ), mosquito larva & pupa. Sacculina , Lice, flea, bedbug, tick and mites 8 Mollusca: Chiton, Dentalium , Sepia, Patella, Pila, Turbinella, Aplysia , Slug, Snail , 230-265 My tilus , Octopus. Transverse sections of Lamellidens and Glochidium larva. 9 Enchinodermata: Pentaceros , Asterias , Ophiothrix , Echinus , Holothuria 266-288 and Antedon. Pedicellariae of Star fish. Block 2 Experimentation 289-448 10 Study of living animals: Amoeba, Paramecium, Euglena, Hydra and rectal 289-320 ciliates 11 Minor dissections /Permanent slide preparation: Permanent preparations / 321-354 Minor dissections of the following: Paramecium Porifera: Sponge spicules and gemmules. Coelenterates: Obelia colony, Obelia medusa. Arthropoda: Mouth parts of honey bee, butterfly, cockroach and grasshopper. 12 Cytological study: 355-409 a. Study of mitosis and meiosis using available material. b. Study of permanent slides showing stages of cell division, giant chromosome, , mitochondria, Golgi body etc 13 Genetics experiment: 410-448 Experimentation on Mendelian and non – Mendelian inheritance, study of mutants of Drosophila through charts/photographs. ZO-104: Practical Zoology Uttarakhand Open University UNIT 1: PROTOZOA (STUDY OF PERMANENT SLIDES) Contents 1.1- Objectives 1.2-Introduction 1.3- General Character & Classification 1.4- Study of Protozoan’s :- 1.4.1- Amoeba and Paramecium 1.4.2- Euglena 1.4.3- Ceratium & Noctiluca 1.4.5- Plasmodium & Trypnosoma 1.4.6-Leishmania, Entamoeba and Giardia 1.5- Summary 1.6- Glossary 1.8-References 1.9-Suggested Readings Page 1 ZO-104: Practical Zoology Uttarakhand Open University 1.1-Objectives: • To study General characters of Phylum Protozoa and its classification up to order. • Study of permanent slides & study of Protozoan’s with particular reference to Amoeba , Paramecium, Ceratium, Noctiluca , Euglena, Plasmodium , Monocystis, Trypnosoma, Leishmania , Entamoeba and Giardia . 1.2-Introduction • The Protozoa are heterogeneous assemblage of some 50,000 cellular or single- cell organism found worldwide in most habitats. Protozoa means ‘first animal’ the simplest form of animal life. Protozoa are unicellular microorganisms (eukaryotes) that lack cell walls. They are found in marine habitat or soil, in fresh water bodies, symbiotic, some forms are parasites in other organisms. Protozoa depends on nutrition, temperature, pH, and some depends on sunlight. • Protozoa were defined as unicellular protists with animal-like behavior, such as movement. Protozoa were regarded as the partner group of protists to protophyta, which have plant-like behavior, e.g. photosynthesis. The term protozoan has become highly problematic due to the introduction of modern ultra structural, biochemical, and genetic techniques, which have showed that the group does not form a clade as required by modern classifications. Modern unicellular clades within Eukaryotes which may be viewed as approximately collectively replacing the class of protozoa include: Excavata, Amoeba, Chromalveolata and Rhizaria . • Protozoan’s are usually single-celled heterotrophic eukaryotes containing non- filamentous structures that belong to any of the major lineages of protists. They are restricted to moist or aquatic habitats (i.e., they are obligate aquatic organisms). Many protozoan species are symbionts, some are parasites, and some are predators of feces bacteria and algae. There are an estimated 50,000 protozoan species. Page 2 ZO-104: Practical Zoology Uttarakhand Open University • The Protozoa are considered to be a subkingdom of the kingdom Protista, although in the classical system they were placed in the kingdom Animalia. More than 50,000 species have been described, most of which are free-living organisms; protozoa are found in almost every possible habitat. The fossil record in the form of shells in sedimentary rocks shows that protozoa were present in the Pre-Cambrian era. Anton van Leeuwenhoek was the first person to see protozoa, using microscopes he constructed with simple lenses. Between 1674 and 1716, he described, in addition to free-living protozoa, several parasitic species from animals, and Giardia lamblia from his own stools. 1.3- General Characters of phylum Protozoa:- 1. Protozoa are microscopic animalcules with very simple organization. 2. These are unicellular, having one or more nuclei. 3. The body may be naked or protected either with the pellicle or with skeleton in the form of test or cyst. 4. The single cell of the body performs all the vital activities i.e. there is no physiological division of labour. 5. Animalcules may be “free living, commensal or parasitic. The free living forms are aquatic, inhabiting fresh and slat waters. These may be solitary or colonial. The parasitic forms reside on or inside the body of animals and plants. 6. Nutrition may be holozoic (animal-like), holophytic (plant-like), saprozoic (subsisting on dead organic matter.) saprophytic (feeding on liquid food) or parasitic. 7. The digestion is intracellular and is accomplished inside the food vacuole. 8. Locomotory organs may be pseudopodia or flagella or cilia or absent. 9. Respiration and excretion are brought about through the general body surface. The contractile vacuoles help in osmoregulation and excretion. 10. Asexual reproduction by binary fission, multiple fission and budding and Sexual reproduction by gamete formation or by the conjugation of adult. Page 3 ZO-104: Practical Zoology Uttarakhand Open University Classification of Protozoa:- Outline Classification of Phylum Protozoa:- Subphylum: 1. Sarcomastigophora Superclass: 1. Mastigophora ClassA. Phytomastigophorea = (Phytoflagellata) Orders: 1. Chrysomonadida 4. Euglenida 2. Cryptomonadida 5. Chloromonadida 3. Dinoflagellida 6. Volvocida Class B. Zoomastigophora (Zooflagellata) 1. Rhizomastigida 2. Kinetoplastida 3. Choanoflagellida 4. Diplomonadida 5. Hypermastigida 6. Trichomonadida Super class: 2 Opalinata Order: Opalinida Superclass: 3 Sarcodina Class: A Rhizopodea Subclass :(a) Lobosia Orders: 1. Amoebida 2. Arcellinida (=Testacida) Subclass b . Filosia Subclass c: Granuloreticulosia Order: 1. Foraminiferida Class B. Piroplasmea Order: Piroplasmida Class C.
Recommended publications
  • Trends of Aquatic Alien Species Invasions in Ukraine
    Aquatic Invasions (2007) Volume 2, Issue 3: 215-242 doi: http://dx.doi.org/10.3391/ai.2007.2.3.8 Open Access © 2007 The Author(s) Journal compilation © 2007 REABIC Research Article Trends of aquatic alien species invasions in Ukraine Boris Alexandrov1*, Alexandr Boltachev2, Taras Kharchenko3, Artiom Lyashenko3, Mikhail Son1, Piotr Tsarenko4 and Valeriy Zhukinsky3 1Odessa Branch, Institute of Biology of the Southern Seas, National Academy of Sciences of Ukraine (NASU); 37, Pushkinska St, 65125 Odessa, Ukraine 2Institute of Biology of the Southern Seas NASU; 2, Nakhimova avenue, 99011 Sevastopol, Ukraine 3Institute of Hydrobiology NASU; 12, Geroyiv Stalingrada avenue, 04210 Kiyv, Ukraine 4Institute of Botany NASU; 2, Tereschenkivska St, 01601 Kiyv, Ukraine E-mail: [email protected] (BA), [email protected] (AB), [email protected] (TK, AL), [email protected] (PT) *Corresponding author Received: 13 November 2006 / Accepted: 2 August 2007 Abstract This review is a first attempt to summarize data on the records and distribution of 240 alien species in fresh water, brackish water and marine water areas of Ukraine, from unicellular algae up to fish. A checklist of alien species with their taxonomy, synonymy and with a complete bibliography of their first records is presented. Analysis of the main trends of alien species introduction, present ecological status, origin and pathways is considered. Key words: alien species, ballast water, Black Sea, distribution, invasion, Sea of Azov introduction of plants and animals to new areas Introduction increased over the ages. From the beginning of the 19th century, due to The range of organisms of different taxonomic rising technical progress, the influence of man groups varies with time, which can be attributed on nature has increased in geometrical to general processes of phylogenesis, to changes progression, gradually becoming comparable in in the contours of land and sea, forest and dimensions to climate impact.
    [Show full text]
  • New Zealand Oceanographic Institute Memoir 100
    ISSN 0083-7903, 100 (Print) ISSN 2538-1016; 100 (Online) , , II COVER PHOTO. Dictyodendrilla cf. cavernosa (Lendenfeld, 1883) (type species of Dictyodendri/la Bergquist, 1980) (see page 24), from NZOI Stn I827, near Rikoriko Cave entrance, Poor Knights Islands Marine Reserve. Photo: Ken Grange, NZOI. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NATIONAL INSTITUTE OF WATER AND ATMOSPHERIC RESEARCH The Marine Fauna of New Zealand: Index to the Fauna 2. Porifera by ELLIOT W. DAWSON N .Z. Oceanographic Institute, Wellington New Zealand Oceanographic Institute Memoir 100 1993 • This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Cataloguing in publication DAWSON, E.W. The marine fauna of New Zealand: Index to the Fauna 2. Porifera / by Elliot W. Dawson - Wellington: New Zealand Oceanographic Institute, 1993. (New Zealand Oceanographic Institute memoir, ISSN 0083-7903, 100) ISBN 0-478-08310-6 I. Title II. Series UDC Series Editor Dennis P. Gordon Typeset by Rose-Marie C. Thompson NIWA Oceanographic (NZOI) National Institute of Water and Atmospheric Research Received for publication: 17 July 1991 © NIWA Copyright 1993 2 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page ABSTRACT 5 INTRODUCTION 5 SCOPE AND ARRANGEMENT 7 SYSTEMATIC LIST 8 Class DEMOSPONGIAE 8 Subclass Homosclcromorpha ..............................................................................................
    [Show full text]
  • Final Thesis File (7.170Mb)
    A TAXONOMIC REVISION OF THE TERTIARY ECHINOID GENUS MONOSTYCHIA Tony Sadler ORCID: 0000-0002-3406-8885 Submitted for the total fulfilment of the requirements of the degree of Doctor of Philosophy July 2020 School of Earth Sciences The University of Melbourne ABSTRACT For over 100 years the genus Monostychia (Echinoidea: Clypeasteroida) and its type species M. australis Laube, 1869 have been a taxonomic home for a wide range of genera and species with the commonality of a rounded to pentagonal, discoidal test and a submarginal periproct. The specimens comprising this group are all extinct and from the Tertiary strata of southern Australia. While there have been a few minor species identified beyond M. australis, notably M. etheridgei Woods, 1877 and P. loveni (Duncan, 1877), it has been clear to many researchers that the variability remaining in M. australis was representative of numerous other taxa awaiting discovery. Recent taxonomic works on the Clypeasteroida suggested that the number of interambulacral plates on the oral surface of the test of some species was a useful diagnostic character. Of interest were the plates that first come into contact with the periproct. However, there appeared little evidence in the literature that it had been established that the number of such plates remained constant with test length and age, or that the variability in each taxon, of those plate numbers, has been determined. Without understanding those two issues the utility of plate numbers was questionable. This study set out to resolve some of those issues for Monostychia and its relatives. It was found that the number of interambulacral and ambulacral plates on the oral surface was fixed and did not change with increasing test length and therefore there was potential utility for plate numbers as a taxonomic tool.
    [Show full text]
  • Coastal and Marine Ecological Classification Standard (2012)
    FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ......................................................
    [Show full text]
  • 24 Guide to Crustacea
    24 Guide to Crustacea. Fleas." They are abundant everywhere in ponds and ditches, and a few species are found in the sea. One of the commonest species in fresh water is Daphnia pulex, of which specimens are exhibited together with an enlarged draw- ing of the animal as seen under a low power of the microscope FIG. 10. Daphnia pulex. Female carrying eggs in the brood-chamber. Enlarged. [Table-case No. 1.] (Fig. 10). Leptodora kindtii is the largest species of the Order. It is found chiefly in lakes, and its glassy transparency makes it a very beautiful object when alive. It is exceptional in the small size of the carapace, which does not enclose the body and serves only as a brood-pouch. Ostracoda. 25 Sub-class II.—OSTRACODA. (Table-ease No. 1.) The number of somites, as indicated by the appendages, is smaller than in any other Crustacea, there being, at most, only two pairs of trunk-limbs behind those belonging to the head- region. The carapace forms a bivalved shell completely en- closing the body and limbs. There is a large, and often leg-like, palp on the mandible. The antennules and antennae are used for creeping or swimming. The Ostracoda (Fig. 10) are for the most part extremely minute animals, and only one or two of the larger species can be exhibited. They occur abundantly in fresh water and in FIG. 11. Shells of Ostracoda, seen from the side. A. Philomedes brenda (Myodocopa) ; B. Cypris fuscata (Podocopa); ('. Cythereis ornata (Podocopa): all much enlarged, n., Notch characteristic of the Myodocopa; e., the median eye ; a., mark of attachment of the muscle connecting the two valves of the shell.
    [Show full text]
  • Habitat-Forming Deep-Sea Corals in the Northeast Pacific Ocean
    Habitat-forming deep-sea corals in the Northeast Pacific Ocean Peter Etnoyer1, Lance E. Morgan2 1 Aquanautix Consulting, 3777 Griffith View Drive, Los Angeles, CA 90039, USA ([email protected]) 2 Marine Conservation Biology Institute, 4878 Warm Springs Rd., Glen Ellen, CA 95442, USA Abstract. We define habitat-forming deep-sea corals as those families of octocorals, hexacorals, and stylasterids with species that live deeper than 200 m, with a majority of species exhibiting complex branching morphology and a sufficient size to provide substrata or refugia to associated species. We present 2,649 records (name, geoposition, depth, and data quality) from eleven institutions on eight habitat- forming deep-sea coral families, including octocorals in the families Coralliidae, Isididae, Paragorgiidae and Primnoidae, hexacorals in the families Antipathidae, Oculinidae and Caryophylliidae, and stylasterids in the family Stylasteridae. The data are ranked according to record quality. We compare family range and distribution as predicted by historical records to the family extent as informed by recent collections aboard the National Oceanic of Atmospheric Administration (NOAA) Office of Ocean Exploration 2002 Gulf of Alaska Seamount Expedition (GOASEX). We present a map of one of these families, the Primnoidae. We find that these habitat-forming families are widespread throughout the Northeast Pacific, save Caryophylliidae (Lophelia sp.) and Oculinidae (Madrepora sp.), which are limited in occurrence. Most coral records fall on the continental shelves, in Alaska, or Hawaii, likely reflecting research effort. The vertical range of these families, based on large samples (N >200), is impressive. Four families have maximum-recorded depths deeper than 1500 m, and minimum depths shallower than 40 m.
    [Show full text]
  • Status and Protection of Globally Threatened Species in the Caucasus
    STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N.
    [Show full text]
  • Light Exposure Enhances Urea Absorption in the Fluted Giant Clam
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb176313. doi:10.1242/jeb.176313 RESEARCH ARTICLE Light exposure enhances urea absorption in the fluted giant clam, Tridacna squamosa, and up-regulates the protein abundance of a light-dependent urea active transporter, DUR3-like, in its ctenidium Christabel Y. L. Chan1, Kum C. Hiong1, Mel V. Boo1, Celine Y. L. Choo1, Wai P. Wong1, Shit F. Chew2 and Yuen K. Ip1,3,* ABSTRACT Symbiodinium, which are also known as zooxanthellae (Trench, Giant clams live in nutrient-poor reef waters of the Indo-Pacific and rely 1987). Giant clams (Phylum: Mollusca, Family: Cardiidae, on symbiotic dinoflagellates (Symbiodinium spp., also known as Subfamily: Tridacninae, Genus: Tridacna or Hippopus)are zooxanthellae) for nutrients. As the symbionts are nitrogen deficient, common inhabitants of coral reefs in the tropical Indo-Pacific. the host clam has to absorb exogenous nitrogen and supply it to them. The host clam harbors symbiotic zooxanthellae (Symbiodinium This study aimed to demonstrate light-enhanced urea absorption in the clade A, C and D; LaJuenesse et al., 2004; Takabayashi et al., 2004; fluted giant clam, Tridacna squamosa, and to clone and characterize Hernawan, 2008; Lee et al., 2015) which live extracellularly in a the urea active transporter DUR3-like from its ctenidium (gill). The branched tubular system surrounded by hemolymph (Norton et al., results indicate that T. squamosa absorbs exogenous urea, and the 1992). Zooxanthellae reside mainly inside the tiny tertiary tubules rate of urea uptake in the light was significantly higher than that in located below the surface of the fleshy and colorful outer mantle darkness.
    [Show full text]
  • RECON: Reef Effect Structures in the North Sea, Islands Or Connections?
    RECON: Reef effect structures in the North Sea, islands or connections? Summary Report Authors: Coolen, J.W.P. & R.G. Jak (eds.). Wageningen University & Research Report C074/17A RECON: Reef effect structures in the North Sea, islands or connections? Summary Report Revised Author(s): Coolen, J.W.P. & R.G. Jak (eds.). With contributions from J.W.P. Coolen, B.E. van der Weide, J. Cuperus, P. Luttikhuizen, M. Schutter, M. Dorenbosch, F. Driessen, W. Lengkeek, M. Blomberg, G. van Moorsel, M.A. Faasse, O.G. Bos, I.M. Dias, M. Spierings, S.G. Glorius, L.E. Becking, T. Schol, R. Crooijmans, A.R. Boon, H. van Pelt, F. Kleissen, D. Gerla, R.G. Jak, S. Degraer, H.J. Lindeboom Publication date: January 2018 Wageningen Marine Research Den Helder, January 2018 Wageningen Marine Research report C074/17A Coolen, J.W.P. & R.G. Jak (eds.) 2017. RECON: Reef effect structures in the North Sea, islands or connections? Summary Report Wageningen, Wageningen Marine Research, Wageningen Marine Research report C074/17A. 33 pp. Client: INSITE joint industry project Attn.: Richard Heard 6th Floor East, Portland House, Bressenden Place London SW1E 5BH, United Kingdom This report can be downloaded for free from https://doi.org/10.18174/424244 Wageningen Marine Research provides no printed copies of reports Wageningen Marine Research is ISO 9001:2008 certified. Photo cover: Udo van Dongen. © 2017 Wageningen Marine Research Wageningen UR Wageningen Marine Research The Management of Wageningen Marine Research is not responsible for resulting institute of Stichting Wageningen damage, as well as for damage resulting from the application of results or Research is registered in the Dutch research obtained by Wageningen Marine Research, its clients or any claims traderecord nr.
    [Show full text]
  • Resurrecting a Subgenus to Genus: Molecular Phylogeny of Euphyllia and Fimbriaphyllia (Order Scleractinia; Family Euphylliidae; Clade V)
    Resurrecting a subgenus to genus: molecular phylogeny of Euphyllia and Fimbriaphyllia (order Scleractinia; family Euphylliidae; clade V) Katrina S. Luzon1,2,3,*, Mei-Fang Lin4,5,6,*, Ma. Carmen A. Ablan Lagman1,7, Wilfredo Roehl Y. Licuanan1,2,3 and Chaolun Allen Chen4,8,9,* 1 Biology Department, De La Salle University, Manila, Philippines 2 Shields Ocean Research (SHORE) Center, De La Salle University, Manila, Philippines 3 The Marine Science Institute, University of the Philippines, Quezon City, Philippines 4 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan 5 Department of Molecular and Cell Biology, James Cook University, Townsville, Australia 6 Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan 7 Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Manila, Philippines 8 Taiwan International Graduate Program-Biodiversity, Academia Sinica, Taipei, Taiwan 9 Institute of Oceanography, National Taiwan University, Taipei, Taiwan * These authors contributed equally to this work. ABSTRACT Background. The corallum is crucial in building coral reefs and in diagnosing systematic relationships in the order Scleractinia. However, molecular phylogenetic analyses revealed a paraphyly in a majority of traditional families and genera among Scleractinia showing that other biological attributes of the coral, such as polyp morphology and reproductive traits, are underutilized. Among scleractinian genera, the Euphyllia, with nine nominal species in the Indo-Pacific region, is one of the groups Submitted 30 May 2017 that await phylogenetic resolution. Multiple genetic markers were used to construct Accepted 31 October 2017 Published 4 December 2017 the phylogeny of six Euphyllia species, namely E. ancora, E. divisa, E.
    [Show full text]
  • Tsunami-Generated Rafting of Foraminifera Across the North Pacific Ocean
    Aquatic Invasions (2018) Volume 13, Issue 1: 17–30 DOI: https://doi.org/10.3391/ai.2018.13.1.03 © 2018 The Author(s). Journal compilation © 2018 REABIC Special Issue: Transoceanic Dispersal of Marine Life from Japan to North America and the Hawaiian Islands as a Result of the Japanese Earthquake and Tsunami of 2011 Research Article Tsunami-generated rafting of foraminifera across the North Pacific Ocean Kenneth L. Finger University of California Museum of Paleontology, Valley Life Sciences Building – 1101, Berkeley, CA 94720-4780, USA E-mail: [email protected] Received: 9 February 2017 / Accepted: 12 December 2017 / Published online: 15 February 2018 Handling editor: James T. Carlton Co-Editors’ Note: This is one of the papers from the special issue of Aquatic Invasions on “Transoceanic Dispersal of Marine Life from Japan to North America and the Hawaiian Islands as a Result of the Japanese Earthquake and Tsunami of 2011." The special issue was supported by funding provided by the Ministry of the Environment (MOE) of the Government of Japan through the North Pacific Marine Science Organization (PICES). Abstract This is the first report of long-distance transoceanic dispersal of coastal, shallow-water benthic foraminifera by ocean rafting, documenting survival and reproduction for up to four years. Fouling was sampled on rafted items (set adrift by the Tohoku tsunami that struck northeastern Honshu in March 2011) landing in North America and the Hawaiian Islands. Seventeen species of shallow-water benthic foraminifera were recovered from these debris objects. Eleven species are regarded as having been acquired in Japan, while two additional species (Planogypsina squamiformis (Chapman, 1901) and Homotrema rubra (Lamarck, 1816)) were obtained in the Indo-Pacific as those objects drifted into shallow tropical waters before turning north and east to North America.
    [Show full text]
  • Elphidium Williamsoni
    QUANTIFICATION OF THE EFFECTS OF OCEAN ACIDIFICATION ON BENTHIC FORAMINIFERA Luis Fabricio Guamán Guevara A Thesis Submitted for the Degree of PhD at the University of St Andrews 2019 Full metadata for this thesis is available in St Andrews Research Repository at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this thesis: http://hdl.handle.net/10023/17792 This item is protected by original copyright This item is licensed under a Creative Commons License https://creativecommons.org/licenses/by-nc-nd/4.0 Quantification of the effects of ocean acidification on benthic foraminifera Luis Fabricio Guamán Guevara This thesis is submitted in partial fulfilment for the degree of Doctor of Philosophy (PhD) at the University of St Andrews October 2018 Candidate's declaration I, Luis Fabricio Guaman Guevara, do hereby certify that this thesis, submitted for the degree of PhD, which is approximately 53,000 words in length, has been written by me, and that it is the record of work carried out by me, or principally by myself in collaboration with others as acknowledged, and that it has not been submitted in any previous application for any degree. I was admitted as a research student at the University of St Andrews in November 2014. I received funding from an organisation or institution and have acknowledged the funder(s) in the full text of my thesis. Date Signature of candidate Supervisor's declaration I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of PhD in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree.
    [Show full text]