Atmos. Chem. Phys., 14, 11335–11352, 2014 www.atmos-chem-phys.net/14/11335/2014/ doi:10.5194/acp-14-11335-2014 © Author(s) 2014. CC Attribution 3.0 License. New emission factors for Australian vegetation fires measured using open-path Fourier transform infrared spectroscopy – Part 2: Australian tropical savanna fires T. E. L. Smith1, C. Paton-Walsh2, C. P. Meyer3, G. D. Cook4, S. W. Maier5, J. Russell-Smith5, M. J. Wooster1, and C. P. Yates5 1King’s College London, Earth and Environmental Dynamics Research Group, Department of Geography, London, UK 2Centre for Atmospheric Chemistry, School of Chemistry, University of Wollongong, Wollongong, New South Wales, Australia 3CSIRO Marine and Atmospheric Sciences, PMB 1, Aspendale, Victoria, Australia 4CSIRO Ecosystem Sciences Sustainable Agriculture Flagship, PMB 44, Winnellie, Northern Territory, Australia 5Charles Darwin University, Research Institute for the Environment and Livelihoods, Darwin, Northern Territory, Australia Correspondence to: T. E. L. Smith (
[email protected]) Received: 30 December 2013 – Published in Atmos. Chem. Phys. Discuss.: 11 March 2014 Revised: 16 September 2014 – Accepted: 17 September 2014 – Published: 29 October 2014 Abstract. Savanna fires contribute approximately 40–50 % stantially between different savanna vegetation assemblages; of total global annual biomass burning carbon emissions. Re- with a majority of this variation being mirrored by variations cent comparisons of emission factors from different savanna in the modified combustion efficiency (MCE) of different regions have highlighted the need for a regional approach to vegetation classes. We conclude that a significant majority emission factor development, and better assessment of the of the variation in the emission factor for trace gases can be drivers of the temporal and spatial variation in emission fac- explained by MCE, irrespective of vegetation class, as illus- tors.