Recent Advances in Karst Research: from Theory to fieldwork and Applications

Total Page:16

File Type:pdf, Size:1020Kb

Recent Advances in Karst Research: from Theory to fieldwork and Applications Downloaded from http://sp.lyellcollection.org/ by guest on July 16, 2019 Recent advances in karst research: from theory to fieldwork and applications MARIO PARISE1,2*, FRANCI GABROVSEK3, GEORG KAUFMANN4 & NATASA RAVBAR3 1Department of Earth and Environmental Sciences, University Aldo Moro, Bari, Italy 2National Research Council, IRPI, Bari, Italy 3Karst Research Institute ZRC SAZU, Titov trg 2, Postojna, Slovenia 4Institute of Geological Sciences, Geophysics Section, Freie Universität Berlin, Germany *Correspondence: [email protected] Abstract: Karst landscapes and karst aquifers, which are composed of a variety of soluble rocks such as salt, gypsum, anhydrite, limestone, dolomite and quartzite, are fascinating areas of study. As karst rocks are abundant on the Earth’s surface, the fast evolution of karst landscapes and the rapid flow of water through karst aquifers present challenges from a number of different perspec- tives. This collection of 25 papers deals with different aspects of these challenges, including karst geology, geomorphology and speleogenesis, karst hydrogeology, karst modelling, and karst hazards and management. Together these papers provide a state-of-the-art review of the current challenges and solutions in describing karst from a scientific perspective. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. Karst describes the slow work of dissolution exerted effective water resource management is especially by water, enriched with carbon dioxide, on soluble crucial, such as England, northern and southern rocks such as carbonates, evaporites and halite France, parts of Germany, central Italy, eastern (White 1988; Ford & Williams 2007; Palmer Spain and large parts of the Mediterranean. On 2007). Morphological effects at the surface are repre- other continents, such as in the Middle East and Cen- sented by a variety of typical landforms, the most tral Asia, karst terrains occupy c. 25% of the land typical being dolines and sinkholes. Below the sur- surface. These karst terrains often host primary eco- face, conduits of different sizes are formed by the nomic benefits, such as drinking water and building dissolution of the soluble rocks, leading to a network materials. Karst areas are valuable ecosystems and of voids, of which the parts large enough to be have high levels of biodiversity (Brancelj & Culver explored by humans are defined as caves. 2005; Pipan & Culver 2013). The numerous caves The term karst stems from the German derivation and other natural phenomena have played an impor- of the local name of the region between Italy and tant part in stimulating tourism, contributing to eco- Slovenia (Carso in Italian, Kras in Slovene). This nomic development in many countries (Ravbar & region is the site where the discipline of karstology Šebela 2015). was born at the end of the seventeenth century. Karst landscapes are of great importance because The work of scholars such as Cvijić(1893) greatly they host remarkable natural resources, including contributed to the introduction of the term karst in karst aquifers. Karst water resources have been the international literature. The importance of the important in the historical and economic develop- wider region, namely the Dinaric karst area, is recog- ment of many regions (Parise & Sammarco 2015) nized by the use of many local terms that have and karst groundwater is of crucial importance become accepted in international karst terminology – today for the sustainable development of the econ- for example, doline, polje, uvala and ponor (Steva- omy in many countries and regions. Karst aquifers nović& Mijatovic 2005). currently supply c. 15% of the global population According to recent estimates (Chen et al. 2017), with drinking water and, in some regions, are the c. 14% of the Earth’s land surface consists of the only water resource available. carbonate rock outcrops that form karst. In Europe, Looking to the future, there are many concerns much of the karst occurs beneath some of the con- about karst regions. The predicted growth in popula- tinent’s most densely populated regions, where tion, which will mostly be concentrated in urban From:PARISE, M., GABROVSEK, F., KAUFMANN,G.&RAVBAR, N. (eds) 2018. Advances in Karst Research: Theory, Fieldwork and Applications. Geological Society, London, Special Publications, 466,1–24. First published online May 3, 2018, https://doi.org/10.1144/SP466.26 © 2018 The Author(s). Published by The Geological Society of London. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics Downloaded from http://sp.lyellcollection.org/ by guest on July 16, 2019 2 M. PARISE ET AL. areas, will increase pressures on karst aquifers in by spectacular surface geomorphology and subterra- terms of the global supply of water, although such nean features visible in caves. Show caves are often an increase might be partly mitigated by improve- among the most visited tourist sites in many parts of ments in treatment technologies for tapping water the world, which has led to karst landscapes being from sources other than karst. known by a wide range of people. As a result of the peculiar intrinsic characteristics There has been much interest in karst research in of karst and its specific processes, these resources are recent years, from many different disciplines. Caves particularly susceptible to destruction and over- have been recognized as sites where remarkable exploitation. The utilization of karst resources and remains and deposits are preserved (Sasowsky & populations living on karst landscapes pose specific Mylroie 2004), in contrast with the outside environ- scientific and practical challenges. There are many ment (the Earth’s surface), where the same features unresolved theoretical problems in karst processes, are generally destroyed by a combination of natural water flow, and mass and heat transport. The efficient (e.g. weathering, erosion or mass movements) and and safe exploitation of geothermal resources from anthropogenic processes. The biodiversity of karst karst systems also needs novel practical solutions. is progressively being recognized as of extreme Following the 2007 Special Publication of the importance and several studies involving experts in Geological Society, London, Natural and Anthropo- biology, medicine, astrobiology and planetary geol- genic Hazards in Karst Areas: Recognition, Analysis ogy have started, with the aim of exploring the and Mitigation (Parise & Gunn 2007), this volume bacteria and other species living in difficult environ- deals with the most recent advances in karst research ments and under peculiar climatic and environmental and presents an updated state-of-the-art source of the conditions (Boston & Northup 2017). Many cave main scientific activities currently taking place in this expeditions and explorations, in some of the most peculiar and vulnerable environment. important cave systems in the world, are now carried This volume presents the outcomes of several out through the joint action of speleologists and sessions dealing with karst held in the last few karst and cave scientists. New technologies, such years on the occasion of the General Assembly of as LiDAR scanners, allow the high-resolution scan- the European Geosciences Union. It is designed to ning of underground channels and their morphology. provide readers with an overview of studies in the These areas of research have resulted in the acquisi- peculiar and highly fragile karst environment. The tion of large amounts of data and many scientific volume presents a collection of papers, subdivided publications in the last few decades and there has into four sections (karst geology, geomorphology been a growing number of congresses dedicated to and speleogenesis; karst hydrogeology; karst model- karst research and speleology at both national and ling; and karst hazards and management), to provide international levels. a balanced overview of the diverse approaches avail- The cave environment has been recognized as a able to elucidate the current hot topics in karstology. potential platform to create analogues for space It includes both theoretical models and case studies exploration missions and caves are ideal sites for and consists of 25 papers prepared by researchers training astronauts (Fig. 1). The European Space from 14 countries, covering karst areas located in Agency has developed a specific training programme 16 countries. By integrating geomorphological, spe- and many astronauts from different space agencies leological, hydrogeological, geochemical, geophysi- around the world have been trained in caves over cal and engineering geological approaches, it the last five years (Bessone et al. 2017). provides readers with new insights into the subject The study of karst landscapes and their features is of comprehensive karstology and reveals important not just of interest in karst science, but has significant links between surface and subsurface processes and implications in many other fields. The multidisci- between the karst environment and society. Geolo- plinary nature of karst studies is expressed by the gists, engineers and geophysicists interested in number of workers from many different fields of sci- karst from both academia and geological or engi- ence who are interested in carrying out research in neering consulting companies will find papers of this extraordinary environment. interest. The fourth section, partly dedicated to man- Karst is relevant to oil research because carbonate agement of karst, will be of
Recommended publications
  • Introduction to Virginia's Karst
    Introduction to Virginia’s Karst A presentation of The Virginia Department of Conservation and Recreation’s Karst Program & Project Underground Karst - A landscape developed in limestone, dolomite, marble, or other soluble rocks and characterized by subsurface drainage systems, sinking or losing streams, sinkholes, springs, and caves. Cross-section diagram by David Culver, American University. Karst topography covers much of the Valley and Ridge Province in the western third of the state. Aerial photo of karst landscape in Russell County. Smaller karst areas also occur in the Cumberland Plateau, Piedmont, and Coastal Plain provinces. At least 29 counties support karst terrane in western Virginia. In western Virginia, karst occurs along slopes and in valleys between mountain ridges. There are few surface streams in these limestone valleys as runoff from mountain slopes disappears into the subsurface upon contact with the karst bedrock. Water flows underground, emerging at springs on the valley floor. Thin soils over fractured, cavernous limestone allow precipitation to enter the subsurface directly and rapidly, with a minimal amount of natural filtration. The purer the limestone, the less soil develops on the bedrock, leaving bare pinnacles exposed at the ground surface. Rock pinnacles may also occur where land use practices result in massive soil loss. Precipitation mixing with carbon dioxide becomes acidic as it passes through soil. Through geologic time slightly acidic water dissolves and enlarges the bedrock fractures, forming caves and other voids in the bedrock. Water follows the path of least resistance, so it moves through voids in rock layers, fractures, and boundaries between soluble and insoluble bedrock.
    [Show full text]
  • Living with Karst Booklet and Poster
    Publishing Partners AGI gratefully acknowledges the following organizations’ support for the Living with Karst booklet and poster. To order, contact AGI at www.agiweb.org or (703) 379-2480. National Speleological Society (with support from the National Speleological Foundation and the Richmond Area Speleological Society) American Cave Conservation Association (with support from the Charles Stewart Mott Foundation and a Section 319(h) Nonpoint Source Grant from the U.S. Environmental Protection Agency through the Kentucky Division of Water) Illinois Basin Consortium (Illinois, Indiana and Kentucky State Geological Surveys) National Park Service U.S. Bureau of Land Management USDA Forest Service U.S. Fish and Wildlife Service U.S. Geological Survey AGI Environmental Awareness Series, 4 A Fragile Foundation George Veni Harvey DuChene With a Foreword by Nicholas C. Crawford Philip E. LaMoreaux Christopher G. Groves George N. Huppert Ernst H. Kastning Rick Olson Betty J. Wheeler American Geological Institute in cooperation with National Speleological Society and American Cave Conservation Association, Illinois Basin Consortium National Park Service, U.S. Bureau of Land Management, USDA Forest Service U.S. Fish and Wildlife Service, U.S. Geological Survey ABOUT THE AUTHORS George Veni is a hydrogeologist and the owner of George Veni and Associates in San Antonio, TX. He has studied karst internationally for 25 years, serves as an adjunct professor at The University of Ernst H. Kastning is a professor of geology at Texas and Western Kentucky University, and chairs Radford University in Radford, VA. As a hydrogeolo- the Texas Speleological Survey and the National gist and geomorphologist, he has been actively Speleological Society’s Section of Cave Geology studying karst processes and cavern development for and Geography over 30 years in geographically diverse settings with an emphasis on structural control of groundwater Harvey R.
    [Show full text]
  • US Geological Survey Karst Interest Group Proceedings, Fayetteville
    Prepared In Cooperation with the Department of Geosciences at the University of Arkansas U.S. Geological Survey Karst Interest Group Proceedings, Fayetteville, Arkansas, April 26-29, 2011 Scientific Investigations Report 2011-5031 U.S. Department of the Interior U.S. Geological Survey Prepared in Cooperation with the Department of Geosciences at the University of Arkansas U.S. Geological Survey Karst Interest Group Proceedings, Fayetteville, Arkansas, April 26–29, 2011 Edited By Eve L. Kuniansky Scientific Investigations Report 2011–5031 U.S. Department of the Interior U.S. Geological Survey i U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia 2011 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Kuniansky,E.L., 2011, U.S. Geological Survey Karst Interest Group Proceedings, Fayetteville, Arkansas, April 26-29, 2011, U.S. Geological Survey Scientific Investigations Report 2011-5031, 212p. Online copies of the proceedings area available at: http://water.usgs.gov/ogw/karst/ Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report.
    [Show full text]
  • Hydrogeologic Characterization and Methods Used in the Investigation of Karst Hydrology
    Hydrogeologic Characterization and Methods Used in the Investigation of Karst Hydrology By Charles J. Taylor and Earl A. Greene Chapter 3 of Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water Edited by Donald O. Rosenberry and James W. LaBaugh Techniques and Methods 4–D2 U.S. Department of the Interior U.S. Geological Survey Contents Introduction...................................................................................................................................................75 Hydrogeologic Characteristics of Karst ..........................................................................................77 Conduits and Springs .........................................................................................................................77 Karst Recharge....................................................................................................................................80 Karst Drainage Basins .......................................................................................................................81 Hydrogeologic Characterization ...............................................................................................................82 Area of the Karst Drainage Basin ....................................................................................................82 Allogenic Recharge and Conduit Carrying Capacity ....................................................................83 Matrix and Fracture System Hydraulic Conductivity ....................................................................83
    [Show full text]
  • Drainage Structures and Transit-Time Distributions in Conduit-Dominated
    Drainage structures and transit-time distributions in conduit-dominated and fissured karst aquifer systems Zur Erlangung des akademischen Grades einer DOKTORIN DER NATURWISSENSCHAFTEN von der Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften des Karlsruher Instituts für Technologie (KIT) genehmigte DISSERTATION von Dipl.-Geol. Ute Lauber aus Dachau Tag der mündlichen Prüfung: 21.11.2014 Referent: Prof. Dr. Nico Goldscheider Korreferent: Prof. Dr. Tim Bechtel Karlsruhe 2014 Abstract Abstract Abstract Karst aquifers are widely distributed across the world and are important groundwater resources. Solutionally-enlarged conduits embedded in fissured rock matrix result in a highly heterogene- ous underground drainage pattern that makes karst aquifers difficult to characterize. To ensure sustainable protection and management of karst water resources, hydrogeologic knowledge of karst systems is required. However, the quantitative characterization of groundwater flow in karst systems remains a major challenge. Specific investigating techniques and approaches are needed to account for the complexity of drainage. This thesis emphasizes the identification of drainage structures and the quantification of related transit-time distributions and hydraulic pa- rameters. To account for the strong heterogeneities of different types of catchment areas, three diverse karst aquifer systems are investigated: a conduit-dominated karst system, a fissured karst system and an aquifer system that comprises a karst and a porous-media (alluvial/rockfall) aquifer. For a detailed hydrogeologic assessment of the different catchment areas, adapted methods applied include a combination of artificial tracer tests, natural tracer analysis, and dis- charge analysis. The first two parts of this thesis describe a conduit-dominated karst system, the catchment area of the Blautopf (Swabian Alb, Germany).
    [Show full text]
  • The Pennsylvania State University
    The Pennsylvania State University The Graduate School College of Earth and Mineral Sciences LITHOFACIES AND TRANSPORT OF CLASTIC SEDIMENTS IN KARSTIC AQUIFERS A Thesis in Geosciences by Rachel Bosch Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2015 The thesis of Rachel Bosch was reviewed and approved* by the following: William B. White Professor Emeritus of Geochemistry Thesis Adviser Lee R. Kump Professor of Geosciences Head of the Department of Geosciences Rudy L. Slingerland Professor of Geology Demian M. Saffer Professor of Geosciences Interim Associate Head for Graduate Programs and Research *Signatures are on file in the Graduate School. ii ABSTRACT Karst aquifers require transport of clastic sediments for the conduit system to remain open and thus to continue to be an eligible route for ongoing speleogenesis. Sediments are injected into the aquifer by sinking surface streams and through sinkholes, vertical shafts, open fractures, and other pathways from the land surface. Transport of clastic sediments tends to be episodic with sediment loads held in storage until moved by infrequent flood events. Although the overall mix of clastics depends on material available in the source area, distinctly different facies are universally recognizable depending on the flow dynamics within the conduit system. The facies are most clearly recognized when the source areas provide a wide variety of particle sizes from clays to boulders. In order of decreasing prevalence, one can distinguish (i) channel
    [Show full text]
  • A Way to Predict Natural Hazards in Karst
    A WAY TO PREDICT NATURAL HAZARDS IN KARST Pierre-Yves Jeannin Swiss Institute for Speleology and Karst-Studies, SISKA, Serre 68, CH-2301 La Chaux-de-Fonds, [email protected] Arnauld Malard Swiss Institute for Speleology and Karst-Studies, SISKA, Serre 68, CH-2301 La Chaux-de-Fonds, [email protected] Abstract modelling approaches are applied to link both aspects Flooding, ground collapses, subsidence and together, but they require a huge effort, and are thus contamination are hazards often encountered in a karst mostly reserved to academic work. environment. All are strongly associated to water. A good knowledge of the distribution of groundwater In most situations, a qualitative “conceptual 3D spatial potentiometric heads and fluxes in space and time is model” of the groundwater flow-system is sufficient to necessary to predict and prevent these hazards. address practical questions, as long as the model provides local information over the whole investigated region, A series of karst-specific approaches are being developed not just a generalized scheme (e.g. a hydrogeological by SISKA (Swiss Institute for Speleology and Karst- cross-section) as observed in many studies. Studies) in order to provide this type of information within a reasonable effort. Most of these are based on Here we present an approach for synthesizing all a key-approach (KARSYS) and could be successively available data into such a conceptual 3D spatial model. applied to address issues in karst environment. We believe that this type of approach is more efficient for Applications for flood and sinkhole hazards are addressing practical questions such as ground collapses presented.
    [Show full text]
  • Correlating Global Precipitation Measurement Satellite Data With
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Correlating Global Precipitation Measurement satellite 10.1002/2017GL073790 data with karst spring hydrographs for rapid Key Points: catchment delineation • An algorithm matching satellite precipitation data with karst spring Jake Longenecker1 , Timothy Bechtel1 , Zhao Chen2 , Nico Goldscheider2 , hydrographs was developed to 2 1 quickly and remotely identify Tanja Liesch , and Robert Walter catchments 1 2 • Tests using terrestrial rain gage data Earth and Environment, Franklin and Marshall College, Lancaster, Pennsylvania, USA, Karlsruhe Institute of Technology, and hydrographs from springs with Karlsruhe, Germany known catchments in Europe and North America verify the method • Application to a spring in Abstract To protect karst spring water resources, catchments must be known. We have developed a Pennsylvania detects remote recharge requiring a long groundwater flow method for correlating spring hydrographs with newly available, high-resolution, satellite-based Global path crossing multiple tectonic Precipitation Measurement data to rapidly and remotely locate recharge areas. We verify the method using a provinces synthetic comparison of ground-based rain gage data with the satellite precipitation data set. Application to karst springs is proven by correlating satellite data with hydrographs from well-known springs with published Supporting Information: catchments in Europe and North America. Application to an unknown-catchment spring in Pennsylvania • Supporting Information
    [Show full text]
  • World Heritage Caves and Karst: a Thematic Study
    World Heritage Convention IUCN World Heritage Studies 2008 Number Two World Heritage Caves and Karst A Thematic Study IUCN Programme on Protected Areas A global review of karst World Heritage properties: present situation, future prospects and management requirements . IUCN, International Union for Conservation of Nature Founded in 1948, IUCN brings together States, government agencies and a diverse range of non-governmental organizations in a unique worldwide partnership: over 1000 members in all, spread across some 140 countries. As a Union, IUCN seeks to influence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable. A central Secretariat coordinates the IUCN Programme and serves the Union membership, representing their views on the world stage and providing them with the strategies, services, scientific knowledge and technical support they need to achieve their goals. Through its six Commissions, IUCN draws together over 10,000 expert volunteers in project teams and action groups, focusing in particular on species and biodiversity conservation and the management of habitats and natural resources. The Union has helped many countries to prepare National Conservation Strategies, and demonstrates the application of its knowledge through the field projects it supervises. Operations are increasingly decentralized and are carried forward by an expanding network of regional and country offices, located principally in developing countries. IUCN builds on the strengths of its members, networks and partners to enhance their capacity and to support global alliances to safeguard natural resources at local, regional and global levels.
    [Show full text]
  • Recent (2003–05) Water Quality of Barton Springs, Austin, Texas, with Emphasis on Factors Affecting Variability
    In cooperation with the Texas Commission on Environmental Quality Recent (2003–05) Water Quality of Barton Springs, Austin, Texas, With Emphasis on Factors Affecting Variability Scientific Investigations Report 2006–5299 U.S. Department of the Interior U.S. Geological Survey Cover. Top left: Main Spring of Barton Springs (photograph courtesy of David Johns, City of Austin). Top right: Eliza Spring of Barton Springs (photograph courtesy of David Johns, City of Austin). Bottom right: Upper Spring of Barton Springs (photograph by Greg Stanton, U.S. Geological Survey). Bottom left: Old Mill Spring of Barton Springs (photograph by Brad Garner, U.S. Geological Survey). Recent (2003–05) Water Quality of Barton Springs, Austin, Texas, With Emphasis on Factors Affecting Variability By Barbara J. Mahler, Bradley D. Garner, MaryLynn Musgrove, Amber L. Guilfoyle, and Mohan V. Rao In cooperation with the Texas Commission on Environmental Quality Scientific Investigations Report 2006–5299 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Meyers, Director U.S. Geological Survey, Reston, Virginia: 2006 For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225 For more information about the USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.
    [Show full text]
  • KARST SPRING CUTOFFS, CAVE TIERS, and SINKING STREAM BASINS CORRELATED to FLUVIAL BASE LEVEL DECLINE in SOUTH-CENTRAL INDIANA Garre A
    KARST SPRING CUTOFFS, CAVE TIERS, AND SINKING STREAM BASINS CORRELATED TO FLUVIAL BASE LEVEL DECLINE IN SOUTH-CENTRAL INDIANA Garre A. Conner Pangea Geoservices, 2911 Mesker Park Drive, Evansville, Indiana, 47720, USA, [email protected] Abstract in a region. Recharge is passed between multiple cave The Mitchell Aquifer averages 80 m in thickness and levels or cave tiers by karst spring cutoffs. Karst spring underdrains a karst region in the Crawford Upland cutoff is a new term to describe a specific type of cave and Mitchell Plateau region in south-central Indiana stream diversion associated with springs and linking be- (110,000 km2). The Springville Escarpment is a transi- tween two cave tiers. A more detailed description and tional boundary between the upland and plateau. Cave illustrated example follows in this paper. stream linking between cave tiers in the aquifer and cor- relation of cave tier inception horizons to a base level Fluvial base level decline, lithology, and water chem- decline surface is interpreted for the Kirby Watershed, istry are the primary agents controlling speleogenic encompassing the prekarst headland of Indian Creek enlargement of a vadose cave stream after speleogenic (42 km2). The watershed was severed from lower Indian breakthrough. This study demonstrates a geologic de- Creek at Eller Col by limestone cavern drainage on the scription of a karst region by using the framework of ridge between White River and East Fork. Correlation stratigraphy and the cycle of speleo enlargement after of recharge basin topography and cave tiers is possible breakthrough. The shallow karst spring cutoffs and the owing to the observation of 55 karst springs confined analog deeper vadose canyons are useful for identifying to lithostratigraphic contacts at three spring stratigraphic the cave stream linking across multiple cave tiers and levels.
    [Show full text]
  • Mapping of Groundwater Spring Potential in Karst Aquifer System Using Novel Ensemble Bivariate and Multivariate Models
    water Article Mapping of Groundwater Spring Potential in Karst Aquifer System Using Novel Ensemble Bivariate and Multivariate Models Viet-Ha Nhu 1,2 , Omid Rahmati 3 , Fatemeh Falah 4, Saeed Shojaei 5, Nadhir Al-Ansari 6,* , Himan Shahabi 7,8 , Ataollah Shirzadi 9 , Krzysztof Górski 10 , Hoang Nguyen 11,* and Baharin Bin Ahmad 12 1 Geographic Information Science Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam; [email protected] 2 Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam 3 Soil Conservation and Watershed Management Research Department, Kurdistan Agricultural and Natural Resources Research and Education center, AREEO, Sanandaj 6616936311, Iran; [email protected] 4 Department of Watershed Management, Faculty of Agriculture and Natural Resources, Lorestan University, Lorestan 68151-44316, Iran; [email protected] 5 Young Researchers and Elite Club, Zahedan branch, Islamic Azad University, Zahedan 9816743545, Iran; [email protected] 6 Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 971 87 Lulea, Sweden 7 Department of Geomorphology, Faculty of Natural Resources, University of Kurdistan, Sanandaj 66177-15175, Iran; [email protected] 8 Board Member of Department of Zrebar Lake Environmental Research, Kurdistan Studies Institute, University of Kurdistan, Sanandaj 66177-15175, Iran 9 Department of Rangeland and Watershed Management, Faculty of Natural Resources, University of Kurdistan, Sanandaj 66177-15175,
    [Show full text]