The Titanium-Vanadium System Richard Mather Powers Iowa State College

Total Page:16

File Type:pdf, Size:1020Kb

The Titanium-Vanadium System Richard Mather Powers Iowa State College Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1952 The titanium-vanadium system Richard Mather Powers Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Physical Chemistry Commons Recommended Citation Powers, Richard Mather, "The titanium-vanadium system " (1952). Retrospective Theses and Dissertations. 13304. https://lib.dr.iastate.edu/rtd/13304 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. UMI Tlffi TITBlIUM-fMlDItJM SYSTEM by Biehard Mather Pov/ers A Dissertation Submitted to the Graduate Faenlty in Partial Fulfillment of The Requirements for the Degree of DOGTOE OF PHILOSOPIH Major Subject: Physical Chemistry Approved t Signature was redacted for privacy. in ChargJ/bf Ma^or Work Signature was redacted for privacy. Head of Major Defartmenl^; Signature was redacted for privacy. Dean of Graduate College Iowa State College 1952 UMI Number: DP12422 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI UMI Microform DP12422 Copyright 2005 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 li f ABLl OF COITIJITS I. PIJBPOSE OF STUDY 1 II. LITIBATIFBE SUHfEY 2 III, PEIPMATIOI OF STMfllG mTEEIALvS ...» 7 A* Blectrolytic Method 7 B» fanadim S 1. Calcim reduction of vanadiiira pentoxide using a sulfur booster .• 8 2#. Calcium reduction of vanadium pentoxide using an iodine booster . 13 C. Titaniuia 1$ 1. Hational Lead Company titanium sponge •»••«•«•••.««••••«»••••••••* 15 2» duPont titanium sponge 19 I¥. ALLOY PREPARATIOI 20 A» Electrolytic Co-deposition of Alloys 20 B# Go-reduction of Alloys 20 C» Arc Melting 30 1, Arc melting of sulfur boosted vanadium with National Lead Com­ pany titanium sponge 30 2, Arc melting of iodine boosted vanadium with duPont titanim sponge 32 T* ALLOY ANALYSIS 3^ YI. BETMMIIATION OF THE PHASE. DIAGRAM 38 A,. Melting Temperature Determinations ,••• 3® 1, Preparation of specimens 2. Melting point furnace H-1 ill » Temperature meastirement H-3 Procediire ^ 5* Standardization of the method w b, ¥Jiiidow correction h-7 Gas pickup 50 Bi Swmmj of melting temperature determinations 53 B• TherssiX An&lysis 60 C* Microstructures of the Titanium- fanadium Alloys 63 1. Preparation of raetallographic speciiaens 63 2. Arc melted alloys 6m- 3* Heat treatment of the alloys 68 D. X-Ray Studies 96 l/II. PHXSICAL PEOPiBTXES OF fHJ; ALLOYS 119 A. Density 119 B. Effiissivity Determinations 127 1» Method 128 2» lmissi-?ity of nickel 129 ImissiTity of the titanium- vanadium alloys ». H'. Summary of emissivity results •.... Melting temperature from emissiTity measurements 1^ C. Surface Tension 1^7 B.. Electrical Eesistiirity I66 E, Mechanical Properties 178 1# Cold rolling characteristics 178 2, Hot rolling characteristics ....... 180 Hardness I8H fensile properties 191 ¥111. CHEMI0AL PEOPERTIES OF THi; TITAHIUM- fAIABITO ALLOYS 203 A. Rate of Oxidation in Air 203 B, 315® C Steam Corrosion Rates 216 C# Solubility of the fitanium-?anadium Alloys in Hydrofluoric Acid 217 i¥ IX, COICLUSIOHS: 22^- X* BIBLIOGBiPHi 231 XI, ACMOWtEMMEIff S 236 -1- I. HJRPGSl OF SroBf SlBee botto tltanim ani TauaSim have "been considered as desirable materials for us® in certain reactors, it was thought that a study of allojs between these two might lead to materials with tmmn more desirable properties than either aetal alone. Consecpiently, a systeuatie investiga* tion of the alloys of the titanina-vanadim system was imdertaken. II. LITlRifOlE STJHTEf Before initiating experimental ^ork on the titanitua- Tanadim alloy system, a literature survey was made. What studies had heen carried out were of a liaited nature only, ao systeaatic overall investigation of this binary system was found# fhe earliest work reported on an alloy of these metals was that of 'Kroll (1) who employed powder metallurgy teehniques on mixtures of titanium with a number of alloying elements, fhe briquets were formed by pressing at 1^ tons per square inch into jA inch diameter coins, 1/k inch in height# these ccwpacts were presintered in a vacuum; then sintered at a high temperature under $0 lailliiaeters of argon# Following this treatment, they were covered with a salt layer and hot-rolled into one milliraeter strips, fhe single vanadiua alloy of I3eoll*s investigation that was prepared in this manner contained per cent vanadium and was reported 'to possess good rollability* fhe alloy had a Brinell hardness of k77 and eichlbited a micro structure shewing a titanium aatrix with a grain boundsj-y constituent, lore recently lU I. Larsen, E» F« -Swazy and others (2) investigated a number of titanium alloys, including those -3- ©f vanadim. fh© alloy® fateieateS by powder metal­ lurgy t#ctoi<pes, using Bareaa of Mines titanium powder, fh© sigje analysis of this material was the follwlngt 8 per cent throiigh 200 aesh, 20 per cent through 100 mesh, ^fl.»6 per cent through 60 laeshj and 99#9 cent tlirough 30 laesh. fhe principal impurities in the titanic were the follca-^ing: Mg 0,27 per cent| Fe 0,06 per cent? il 0,01 per centf ^Si 0,01 per centi CI 0,23 pe^p cent; H 0,095 per cent to ,111 per eent| 0 0,058 per cent to 0,072 per cent; and. S 0,02^ per cent to 0,035 per cent. Powder fixtures w©re compacted at a press-ure of 30 tons p©r scpare inch, fhese compacts were sintered for on© hour at 2200® F in a -racmi® of less than one micron, fhe sintered specimens were eold<-rolled wi'tti intermittent TOC-am anneals, or sheath rolled at 1^75® F, For th© titanimm^Tanadlnis alloys,, the aboT© titaniiua powder was combined with 95 per cent limp grade vanadium that had been crushed to pass the 30 mesh screen. Alloys containing 0,5 per cent, 5 P@r cent, and 15 per cent -ranaditua were pressed into bars and sintered for one hour at 2200® P. Ho depres­ sion of the aelting point was observed. The 15 per cent Tanaditiia bar did not cold-roll appreciably. However, tiie 0,5 per cent and the 5 P®r cent vanadima alloys were cold- rolled to reductions of between 25 per cent and 58 per cent •without serious edge cracking* fhe results of alloying may hest fee stjmariged in the following tahle. Further wrk was reported hy Larsen and others- (3) on a 5,7^ cent vanaditm alloy# 'fhis alloy was pre­ pared from 9? per cent lump vanadit® and du Pont titanium Tahle 1 Propertiei of Several fitiffiitiai-Tanadiuia Alloys (iBS'smf ^ lii. (3) P 239) Hardness Tensile Per cent Beiistivity <Eoekwell strength Per cent vanadiua (aicroha-cm#) (p#s,i») elongation 73 66 130,500 3^ (2") 0*5^ CC.E^77| 61 98,700 12*5^ (2") Ana. at I850® F) • 87 68 153,000 0 15^ <could not be cold-rolled sponge* fhe melting stock was prepared by compacting the mixture of raetals in a 1,93B' i^ich die# Melting and casting took place in graphite under an atmosphere of argon that had heen purified hy passage over titanium sponge at 900° C before entering the ftirnaee* fhe charge was heated by a split-graphite resistance furnace using currents up to 3^0 aaperes at 10 ¥olts» !Ph.e alloy generally absorbed from 0»03 to 0#06 per cent carbon from the crucible. In one alloy that contained 5.7^ per cent vanadium, a superficial tenacious oxidation product formed on annealing in a gas-fired .furnace, Mt did not interfere vith the properties or inpalr forging. They reported that this titanium-^anadiuffl alloy hardened appreciably on cpenehing» Considerable work has recently been published on the binary, ternary, and quaternary alloys of titanium by Craighead and others (^)» fhey report that the transi­ tion temperature of titanium is progressively lowered by additions of vanadium up to 5 P®!* cent# The tensile properties of several titanium-vanadium alloys with 5 per cent vanadium were studied by Busch and Bickenson (5a)• fhey obtained considerable varia­ tion in physical properties of the 5 per cent vanadium alloy samples# Recently, a phase diagram of the tit-anium-vanadium system has been reported by Adesnstedt and others (5b). Using both crystal bar and comaercial sponge titanium, together with cosmercial grade vanadium, these investi­ gators found that taie beta to alpha plus beta phase boundary was lowered by additions of vanadim to -6- titaniiffii* The single phase alpha field x-as found to ex­ tend to the 3*5 pfsr cent vanadiiam composition at 6^0° C for the crystal har titanim# At this temperature, the heta to alpha plus beta boundary was located at about the 20 per cent Tanadiura composition. In addition to the phase diagram, resistivities at 0® C, coefficients of expansion from room temperature to 1200® F, and lattice parameters and hardnesses as a function of composition were determined.
Recommended publications
  • Aluminum-Vanadium System Donald Joseph Kenney Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1953 Aluminum-vanadium system Donald Joseph Kenney Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Physical Chemistry Commons Recommended Citation Kenney, Donald Joseph, "Aluminum-vanadium system " (1953). Retrospective Theses and Dissertations. 13302. https://lib.dr.iastate.edu/rtd/13302 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. UMI mmMm-immim STSTEM BmaM S, Ktrmey A Mssertattioa aibaitted to the Sradttate Paeulty in fsKptial Fulfillffleat of the l®cpiir«a®ats tor the Degree of eocfoa or piiLosoFif Sabjecti aysiefil CheBdstry ^proved f Signature was redacted for privacy. In C2iarg®;!6f Ifejor Work Signature was redacted for privacy. Signature was redacted for privacy. Iowa State College 1953 UMI Number: DP12420 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Toxicological Profile for Vanadium
    VANADIUM 107 4. CHEMICAL AND PHYSICAL INFORMATION 4.1 CHEMICAL IDENTITY Vanadium is a naturally occurring element that appears in group 5(B5) of the periodic table (Lide 2008). Vanadium is widely distributed in the earth’s crust at an average concentration of 100 ppm nd (approximately 100 mg/kg), similar to that of zinc and nickel (Byerrum 1991). Vanadium is the 22 most abundant element in the earth’s crust (Baroch 2006). Vanadium is found in about 65 different minerals; carnotite, roscoelite, vanadinite, and patronite are important sources of this metal along with bravoite and davidite (Baroch 2006, Lide 2008). It is also found in phosphate rock and certain ores and is present in some crude oils as organic complexes (Lide 2008). Table 4-1 lists common synonyms and other pertinent identification information for vanadium and representative vanadium compounds. 4.2 PHYSICAL AND CHEMICAL PROPERTIES Vanadium is a gray metal with a body-centered cubic crystal system. It is a member of the first transition series. Because of its high melting point, it is referred to as a refractory metal (Baroch 2006). When highly pure, it is a bright white metal that is soft and ductile. It has good structural strength and a low- fission neutron cross section. Vanadium has good corrosion resistance to alkalis, sulfuric and hydrochloric acid, and salt water; however, the metal oxidizes readily above 660 °C (Lide 2008). The chemistry of vanadium compounds is related to the oxidation state of the vanadium (Woolery 2005). Vanadium has oxidation states of +2, +3, +4, and +5. When heated in air at different temperatures, it oxidizes to a brownish black trioxide, a blue black tetraoxide, or a reddish orange pentoxide.
    [Show full text]
  • Effect of the Vanadium Addition on the Grain Size and Mechanical Properties of the Copper-Aluminium-Zinc Shape Memory Alloys K
    EFFECT OF THE VANADIUM ADDITION ON THE GRAIN SIZE AND MECHANICAL PROPERTIES OF THE COPPER-ALUMINIUM-ZINC SHAPE MEMORY ALLOYS K. Enami, N. Takimoto, S. Nenno To cite this version: K. Enami, N. Takimoto, S. Nenno. EFFECT OF THE VANADIUM ADDITION ON THE GRAIN SIZE AND MECHANICAL PROPERTIES OF THE COPPER-ALUMINIUM-ZINC SHAPE MEMORY ALLOYS. Journal de Physique Colloques, 1982, 43 (C4), pp.C4-773-C4-778. 10.1051/jphyscol:19824126. jpa-00222109 HAL Id: jpa-00222109 https://hal.archives-ouvertes.fr/jpa-00222109 Submitted on 1 Jan 1982 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE Colloque C4, suppl&nent au no 12, Tome 43, dbcembre 1982 page C4-773 EFFECT OF THE VANADIUM ADDITION ON THE GRAIN SIZE AND MECHANICAL PROPERTIES OF THE COPPER-ALUMINIUM-ZINC SHAPE MEMORY ALLOYS K. Enami, N. Takimoto and S. Nenno Department of Materials Science and Engineering, Osaka University, Suita, Osaka, Japan (Revised text accepted 27 September 1982) Abstract. - The effects of vanadium addition on the 0-grain size, pseudo- elastic and shape memory behaviour and fracture mode of the copper-aluminium- zinc shape memory alloys with different vanadium contents were investigated.
    [Show full text]
  • 169 a NEW IRON/VANADIUM (FE/V) REDOX FLOW BATTERY Liyu Li
    A NEW IRON/VANADIUM (FE/V) REDOX FLOW BATTERY Liyu Li, Wei Wang, Zimin Nie, Baowei Chen, Feng Chen, Qingtao Luo, Soowhan Kim, and Gary Z Yang Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA ABSTRACT A novel redox flow battery using Fe2+/Fe3+ and V2+/V3+ redox couples in chloride supporting electrolyte and in chloric/sulfuric mixed-acid supporting electrolyte was investigated for potential stationary energy storage applications. The iron/vanadium (Fe/V) redox flow cell using mixed reactant solutions operated within a voltage window of 0.5~1.35 volts with a nearly 100% utilization ratio and demonstrated stable cycling over 100 cycles with energy efficiency > 80% and almost no capacity fading. Stable performance was achieved in the temperature range between 0 °C and 50 °C. Unlike the iron/chromium (Fe/Cr) redox flow battery that operates at an elevated temperature of 65 °C, the necessity of external heat management is eliminated. The improved electrochemical performance makes the Fe/V redox flow battery a promising option as a stationary energy storage device to enable renewable integration and stabilization of the electric grid. Keywords: redox flow battery, hydrochloric acid, sulfuric acid, Fe/V, mixed acid, energy storage INTRODUCTION energy loss and significantly increases the overall operating cost [3]. Redox flow batteries (RFBs) are electrochemical devices that store electrical energy In our work, we proposed and investigated the in liquid electrolytes [1]. The energy conversion electrochemical performance of a new RFB that between chemical energy and electricity energy is employs a V2+/V 3+ solution anolyte and a Fe2+/Fe 3+ carried out as liquid electrolytes flow through cell solution catholyte or a mixed solution as both the stacks.
    [Show full text]
  • Investigation of the Alkali-Metal Vanadium Oxide Xerogel Bronzes: &V205mh20 (A = K and Cs) Y.-J
    1616 Chem. Mater. 1995, 7, 1616-1624 Investigation of the Alkali-Metal Vanadium Oxide Xerogel Bronzes: &V205mH20 (A = K and Cs) Y.-J. Liu,tl# J. A. Cowen,**#T. A. &plan,$>$D. C. DeGroot,l J. Schindler,l C. R. &nnewurf,l and M. G. Kanatzidis*stT§ Department of Chemistry, Michigan State University, East Lansing, Michigan 48824; Department of Physics, Michigan State University, East Lansing, Michigan 48824; Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824; and Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208 Received January 18, 1995. Revised Manuscript Received June 13, 1995@ The synthesis of bronze-like AXV205*nHz0xerogels (A = K and Cs, 0.05 x 0.6) and systematic characterization of their chemical, structural, spectroscopic magnetic, and charge- transport properties are reported. These materials were prepared by the reaction of V205-nHzO with various amounts of alkali iodide (KI and CSI) in acetone under Nz atmosphere for 3 days. X-ray diffraction and spectroscopic data indicate that the V2O5 framework in AZVz05*nH20maintains the pristine V205 xerogel structure. The increased V4+ (dl) concentration in the V205 framework causes the disappearance of EPR hyperfine structure and the increase of magnetic susceptibility and electrical conductivity. The optical diffuse reflectance spectra of these compounds show characteristic absorption bands due to inter-valence (V4+N5+)charge-transfer transitions. The magnetic behavior is best described as Curie- Weiss type coupled with temperature-independent paramagnetism (TIP). The Curie constant and EPR peak width of the &VsO~.nH20 materials show unusual behavior consistent with strong antiferromagnetic coupling of neighboring V4+centers.
    [Show full text]
  • BNL-79513-2007-CP Standard Atomic Weights Tables 2007 Abridged To
    BNL-79513-2007-CP Standard Atomic Weights Tables 2007 Abridged to Four and Five Significant Figures Norman E. Holden Energy Sciences & Technology Department National Nuclear Data Center Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 www.bnl.gov Prepared for the 44th IUPAC General Assembly, in Torino, Italy August 2007 Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]
  • Poisoning of SCR Catalysts by Alkali and Alkaline Earth Metals
    catalysts Review Poisoning of SCR Catalysts by Alkali and Alkaline Earth Metals Luciana Lisi * and Stefano Cimino * Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS), Consiglio Nazionale delle Ricerche (CNR), Via Guglielmo Marconi 4/10, 80125 Napoli, Italy * Correspondence: [email protected] (L.L.); [email protected] (S.C.) Received: 19 November 2020; Accepted: 10 December 2020; Published: 16 December 2020 Abstract: SCR still represents the most widely applied technique to remove nitrogen oxides from flue gas from both stationary and mobile sources. The catalyst lifetime is greatly affected by the presence of poisoning compounds in the exhaust gas that deactivate the catalysts over time on stream. The progressive and widespread transition towards bio-derived fuels is pushing research efforts to deeply understand and contrast the deactivating effects of some specific poisons among those commonly found in the emissions from combustion processes. In particular, exhaust gases from the combustion of bio-fuels, as well as from municipal waste incineration plants and marine engines, contain large amounts of alkali and alkaline earth metals that can severely affect the acid, redox, and physical properties of the SCR catalysts. This review analyzes recent studies on the effects of alkali and alkaline earth metals on different types of SCR catalysts divided into three main categories (conventional V2O5-WO3/TiO2, supported non-vanadium catalysts and zeolite-based catalysts) specifically focusing on the impact of poisons on the reaction mechanism while highlighting the different type of deactivation affecting each group of catalysts. An overview of the different regeneration techniques aimed at recovering as much as possible the original performance of the catalysts, highlighting the pros and cons, is given.
    [Show full text]
  • V for Vanadium
    in your element V for vanadium Andrea Taroni shares his experience with vanadium — a colourful element with a rich chemistry (and physics!) that is emblematic of all transition metals. uite why I chose to study chemistry changing the colour of the complex. The at university is a mystery, even to me. rest of my undergraduate practical required QI mostly got the general principles, but me to determine the oxidation states of it was as if its details — oxidation, reduction; vanadium upon reducing my solution cis, trans; R, S — or rather which way around with various agents. I vividly recall the those details went, had been designed to sudden changes in colour that came with consistently make me feel like I couldn’t tell each oxidation state switch, and I like to my right hand from my left. It is fair to say I think this gave me a greater appreciation wasn’t a natural at the subject. for the inspired decision to name the One of the first elements I remember element after Vanadis, the Norse goddess encountering in the lab — by attempting more commonly known as Freyja, whose to work with it, as opposed to simply attributes include beauty. PHOTOGRAPHY/ ANDREW LAMBERT LIBRARY PHOTO SCIENCE acknowledging its existence — is vanadium. In fact, many transition metal My inorganic chemistry lab practical compounds have spectacular colours (earning Albert Fert and Peter Grünberg involved the synthesis and analysis of the (pictured), making them ideal for pigments. the 2007 Nobel Prize in Physics in the five-coordinate complex VO(acac)2 (where Their rich redox chemistry is also key to process).
    [Show full text]
  • Toxicological Profile for Vanadium
    TOXICOLOGICAL PROFILE FOR VANADIUM U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry September 2012 VANADIUM ii DISCLAIMER Use of trade names is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry, the Public Health Service, or the U.S. Department of Health and Human Services. VANADIUM iii UPDATE STATEMENT A Toxicological Profile for Vanadium, Draft for Public Comment was released in September 2009. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology and Human Health Sciences (proposed) Environmental Toxicology Branch (proposed) 1600 Clifton Road NE Mailstop F-62 Atlanta, Georgia 30333 VANADIUM iv This page is intentionally blank. VANADIUM v FOREWORD This toxicological profile is prepared in accordance with guidelines* developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary. The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for the toxic substances each profile describes. Each peer-reviewed profile identifies and reviews the key literature that describes a substance's toxicologic properties. Other pertinent literature is also presented but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced.
    [Show full text]
  • 14 CAS No.: 7440-62-2(Vanadium) Substance: Vanadium and Its Compounds Chemical Substances Control Law Reference No.: PRTR Law Ca
    14 CAS No.: 7440-62-2(Vanadium) Substance: Vanadium and its compounds Chemical Substances Control Law Reference No.: PRTR Law Cabinet Order No.: 1-321 (Vanadium compounds) Element Symbol: V Atomic Weight: 50.94 1. General information Vanadium, vanadium (IV) oxide, and vanadium (III) oxide are insoluble in water. The aqueous solubilities of vanadium (V) pentoxide, ammonium metavanadate (V), and sodium metavanadate (V) are 700 mg/1,000 g (25°C), 4.8×104 mg/1,000 g (20°C), and 2.1×105 mg/1,000 g (25°C), respectively. Sodium metavanadate (V) and vanadium oxysulfate (IV) are soluble in water. Vanadium oxytrichloride (V) is thought to hydrolyze in the presence of moisture to form vanadium oxide and hydrochloric acid. Potassium vanadate (V) is almost insoluble in cold water. At temperatures lower than 63°C, vanadium (IV) tetrachloride is thought to gradually break down into vanadium trichloride and chlorine, and vanadium (IV) oxydichloride is also believed to break down gradually. Vanadium pentoxide is difficult to break down and bioaccumulation is judged to be low. Vanadium compounds are designated as Class 1 Designated Chemical Substances under the Law Concerning Reporting, etc. of Releases to the Environment of Specific Chemical Substances and Promoting Improvements in Their Management (PRTR Law). Uses of metallic vanadium and vanadium alloys include electronic materials, encapsulant materials, heat-resistant materials, superalloys, and aircraft components. Uses of vanadium steel include turbines for nuclear reactors and turbo engines, cutting tools such as drills, pipelines, tanks, and bridges. Vanadium pentoxide is primarily used as a raw material for metallic vanadium, vanadium alloys, and ferrous alloys such as vanadium steel.
    [Show full text]
  • Wear and Corrosion Resistance of Chromium–Vanadium Carbide Coatings Produced Via Thermo-Reactive Deposition
    coatings Article Wear and Corrosion Resistance of Chromium–Vanadium Carbide Coatings Produced via Thermo-Reactive Deposition Fabio Castillejo 1, Jhon Jairo Olaya 2,* and Jose Edgar Alfonso 3 1 Grupo de Ciencia e Ingeniería de Materiales, Universidad Santo Tomás, Carrera 9 No 51-11, Bogotá 110911, Colombia; [email protected] 2 Departamento de Ingeniería Mecánica y Mecatrónica, Universidad Nacional de Colombia, Carrera 45 No 26-85, Bogotá 110911, Colombia 3 Departamento de Física, Universidad Nacional de Colombia, Carrera 45 No 26-85, Bogotá 110911, Colombia; [email protected] * Correspondence: [email protected] Received: 15 February 2019; Accepted: 20 March 2019; Published: 27 March 2019 Abstract: Chromium carbide, vanadium carbide, and chromium–vanadium mixture coatings were deposited on AISI D2 steel via the thermo-reactive deposition/diffusion (TRD) technique. The carbides were obtained from a salt bath composed of molten borax, ferro-chrome, ferro-vanadium, and aluminum at 1020 ◦C for 4 h. Analysis of the morphology and microstructure of the coatings was done via scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The hardness of the coatings was evaluated using nano-indentation, and the friction coefficient was determined via pin-on-disk (POD) testing. The electrochemical behavior was studied through potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS). The XRD results show evidence of the presence of V8C7 in the vanadium carbide coating and Cr23C6 and Cr7C3 in the chromium carbide coating. The hardness value for the vanadium–chromium carbide coating was 23 GPa, which was higher than the 6.70 ± 0.28 GPa for the uncoated steel.
    [Show full text]