University of Cincinnati

Total Page:16

File Type:pdf, Size:1020Kb

University of Cincinnati U UNIVERSITY OF CINCINNATI Date: I, , hereby submit this original work as part of the requirements for the degree of: in It is entitled: Student Signature: This work and its defense approved by: Committee Chair: Approval of the electronic document: I have reviewed the Thesis/Dissertation in its final electronic format and certify that it is an accurate copy of the document reviewed and approved by the committee. Committee Chair signature: Immunobiology of IFRD1, a Novel Genetic Modifier of Cystic Fibrosis Lung Disease A dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (Ph.D.) In the Graduate Program of Molecular and Developmental Biology of the College of Medicine 2009 by Yuanyuan Gu M.D.-M.S. Nanjing University, China, 2005 Committee Chair: Christopher L. Karp, M.D. Marie-Dominique Filippi, Ph.D. H. Leighton Grimes, Ph.D. David A. Hildeman, Ph.D. Jeffrey A. Whitsett, M.D. Abstract Cystic fibrosis is the most common, lethal autosomal recessive disorder in the United States. Lung disease is the major cause of morbidity and mortality in CF. In the CF lung, chronic infection and dysregulated neutrophilic inflammation lead to progressive airway destruction. Despite the molecular insights afforded by identification of disease-causing gene, CFTR, a clear understanding of the pathogenesis of lung disease in CF remains elusive. There is a poor correlation of genotype with phenotype in lung disease in CF, which strongly suggests that the expression of lung disease in CF is influenced by environmental exposures and/or modifier genes. To search for genes modifying CF lung disease, the Karp lab performed a genome-wide association study in collaboration with GMSG cohort, validating top candidates in collaboration with the CFTSS cohort. Using this approach, genetic variation in IFRD1 was identified and verified as a modifier of lung disease severity in CF. IFRD1 is a HDAC-dependent transcriptional co-activator or co-repressor whose expression is particularly enriched in neutrophils.The goal of my dissertation studies was mechanistic insight into the modulation of CF lung disease by IFRD1. This dissertation research provides evidence in favor of the hypothesis that IFRD1 modulates the course of airway disease in CF through regulation of neutrophil effector function. This study also strongly suggests a mechanism by which IFRD1 modulates neutrophil function in a HDAC-dependent manner to co-suppress the expression of ATF3, a transcriptional repressor of NF-B activity in neutrophils. Finally, this research emphasizes the translational implications for therapeutic targeting of neutrophils in CF. This study suggests that the IFRD1/HDAC axis may provide a tractable therapeutic target in CF, and the plethora of other diseases in which neutrophils play an important pathogenic role. ii iii Acknowledgements I would like to thank my mentor, Dr. Christopher Karp, for his guidance and support during last four years. His passion for science has motivated me throughout my research training. His sense of humor has made the lab a pleasant place to work in. I would also like to thank him for his help in pursuing my career as a surgeon-scientist. I am lucky to have Dr. Jeffrey Whitsett, Marie-Dominique Filippi, Lee Grimes, and David Hildeman on my committee. They have challenged me and, more importantly, have provided valuable insight in my work. I am very thankful to all of my lab members for their help not only in research and but also in my life in the US. Leah Flick, Senad Divanovic, Rajat Madan, and Aurelien Trompette are all great teachers. Jessica Allen and Isaac Harley are the sweetest persons I have ever met. I would also like to thank Dr. Bruce Aronow and Isaac Harley for their help in bioinformatic analysis. I appreciate help from many other fellow graduate students, faculty and staff in the division of Molecular Immunology, Immunobiology and Developmental Biology, Finally, I would like to thank my family for their belief in education, braveness to let me sail in this ―big world‖, and unconditional love all the time. iv Abbreviation ATF3: activating transcription factor 3 CF: Cystic Fibrosis CFTR: CF transmembrane conductance regulator CFTSS: Cystic Fibrosis Twin and Sibling Study ChIP: chromatin immunopreciptation ER: endoplasmic reticulum fMLP: formyl-methionyl-leucyl-phenylalanine GMSG: Modifier Study Group GWAS: genome-wide association studies HDAC: histone deacetylase ICZ: indolo[3,2-b]carbazole IFN-Interferon IFRD1: interferon-related developmental regulator IL-10: interleukin 10 IL-8: interleukin 8 LPS: lipopolysaccharides LTB4: leukotriene B4 MBL2: mannose-binding lectin 2 TAP-MS: Tandem Affinity Purification-Mass spectrometry TGF1: Transforming growth factor beta 1 TLR4: Toll-like receptor 4 TNF-: tumour necrosis factor v Table of Contents Chapter I Introduction .......................................................................................................................... 1 1. Cystic Fibrosis and CFTR ........................................................................................................... 2 2. Neutrophil biology ...................................................................................................................... 8 3. CF modifier genetics ................................................................................................................. 10 4. IFRD1 ....................................................................................................................................... 13 5. Hypothesis ................................................................................................................................. 15 Table 1. Classification of CFTR mutations ................................................................................. 16 References ..................................................................................................................................... 17 Chapter II IFRD1 modifies CF lung disease by regulating neutrophil functions ............................... 27 Identification of IFRD1 as a modifier gene for cystic fibrosis lung disease ................................. 28 Methods Summary ...................................................................................................................... 37 Figure 1. IFRD1-deficient neutrophils exhibit decreases in specific effector functions. ............ 41 Figure 2. Genetic deficiency of IFRD1 is associated with delayed bacterial clearance, but decreased neutrophilic inflammation and ameliorated disease, after airway challenge with mucoid P. aeruginosa. ................................................................................................................................ 43 Figure 3. Association of IFRD1 polymorphisms with variation in human neutrophil effector function. ........................................................................................................................................ 44 Table 1 Transmission analysis of IFRD1 SNPs .......................................................................... 45 Methods ....................................................................................................................................... 46 Supplementary Information ........................................................................................................ 54 Supplementary Table 1. Association of SNPs at the IFRD1 locus with lung disease severity: GMSG cohort genome-wide SNP scan with pooled DNA; Affymetrix 100K array. .................... 54 Supplementary Table 2. Individual genotyping in 779 Caucasian CFTR ΔF508 homozygotes in the GMSG cohort; IFRD1 locus; Illumina SNP beadarray genotyping. ....................................... 56 Supplementary Table 3. Comparison of pooled estimates of allele frequencies with allele frequencies obtained via individual genotyping in 320 CFTR ΔF508 homozygotes GMSG cohort; IFRD1 locus; Affymetrix 100K pooled genotyping versus Illumina SNP beadarray genotyping. 58 Supplementary Table 4. ............................................................................................................... 61 Supplementary Table 5. Association of SNPs at the CEBPA/CEBPG locus with lung disease severity: GMSG cohort genome-wide SNP scan with pooled DNA; Affymetrix 100K array. ..... 62 Supplementary Table 6. Individual genotyping in 779 Caucasian CFTR ΔF508 homozygotes the GMSG cohort; CEBPA/CEBPG locus; Illumina SNP beadarray genotyping. .............................. 63 Supplementary Table 7. Comparison of estimated allele frequencies with allele frequencies obtained via individual genotyping in 320 Caucasian CFTR ΔF508 homozygotes GMSG cohort; CEBPA/CEBPG locus; Affymetrix 100K pooled genotyping versus Illumina SNP bead array genotyping. .................................................................................................................................... 64 Supplementary Table 8. Association of CEBP SNP haplotype rs7253865 G and rs1423062 A with CF lung function derived from family based association testing .......................................... 66 Supplementary Figure 1. Comparison of genome-wide SNP allele frequencies in the CF cohort vi (GMSG) with those from a genome-wide SNP scan in asthma patients and controls (Isle of Wight birth cohort study). .......................................................................................................................
Recommended publications
  • Mechanical Forces Induce an Asthma Gene Signature in Healthy Airway Epithelial Cells Ayşe Kılıç1,10, Asher Ameli1,2,10, Jin-Ah Park3,10, Alvin T
    www.nature.com/scientificreports OPEN Mechanical forces induce an asthma gene signature in healthy airway epithelial cells Ayşe Kılıç1,10, Asher Ameli1,2,10, Jin-Ah Park3,10, Alvin T. Kho4, Kelan Tantisira1, Marc Santolini 1,5, Feixiong Cheng6,7,8, Jennifer A. Mitchel3, Maureen McGill3, Michael J. O’Sullivan3, Margherita De Marzio1,3, Amitabh Sharma1, Scott H. Randell9, Jefrey M. Drazen3, Jefrey J. Fredberg3 & Scott T. Weiss1,3* Bronchospasm compresses the bronchial epithelium, and this compressive stress has been implicated in asthma pathogenesis. However, the molecular mechanisms by which this compressive stress alters pathways relevant to disease are not well understood. Using air-liquid interface cultures of primary human bronchial epithelial cells derived from non-asthmatic donors and asthmatic donors, we applied a compressive stress and then used a network approach to map resulting changes in the molecular interactome. In cells from non-asthmatic donors, compression by itself was sufcient to induce infammatory, late repair, and fbrotic pathways. Remarkably, this molecular profle of non-asthmatic cells after compression recapitulated the profle of asthmatic cells before compression. Together, these results show that even in the absence of any infammatory stimulus, mechanical compression alone is sufcient to induce an asthma-like molecular signature. Bronchial epithelial cells (BECs) form a physical barrier that protects pulmonary airways from inhaled irritants and invading pathogens1,2. Moreover, environmental stimuli such as allergens, pollutants and viruses can induce constriction of the airways3 and thereby expose the bronchial epithelium to compressive mechanical stress. In BECs, this compressive stress induces structural, biophysical, as well as molecular changes4,5, that interact with nearby mesenchyme6 to cause epithelial layer unjamming1, shedding of soluble factors, production of matrix proteins, and activation matrix modifying enzymes, which then act to coordinate infammatory and remodeling processes4,7–10.
    [Show full text]
  • The N-Cadherin Interactome in Primary Cardiomyocytes As Defined Using Quantitative Proximity Proteomics Yang Li1,*, Chelsea D
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs221606. doi:10.1242/jcs.221606 TOOLS AND RESOURCES The N-cadherin interactome in primary cardiomyocytes as defined using quantitative proximity proteomics Yang Li1,*, Chelsea D. Merkel1,*, Xuemei Zeng2, Jonathon A. Heier1, Pamela S. Cantrell2, Mai Sun2, Donna B. Stolz1, Simon C. Watkins1, Nathan A. Yates1,2,3 and Adam V. Kwiatkowski1,‡ ABSTRACT requires multiple adhesion, cytoskeletal and signaling proteins, The junctional complexes that couple cardiomyocytes must transmit and mutations in these proteins can cause cardiomyopathies (Ehler, the mechanical forces of contraction while maintaining adhesive 2018). However, the molecular composition of ICD junctional homeostasis. The adherens junction (AJ) connects the actomyosin complexes remains poorly defined. – networks of neighboring cardiomyocytes and is required for proper The core of the AJ is the cadherin catenin complex (Halbleib and heart function. Yet little is known about the molecular composition of the Nelson, 2006; Ratheesh and Yap, 2012). Classical cadherins are cardiomyocyte AJ or how it is organized to function under mechanical single-pass transmembrane proteins with an extracellular domain that load. Here, we define the architecture, dynamics and proteome of mediates calcium-dependent homotypic interactions. The adhesive the cardiomyocyte AJ. Mouse neonatal cardiomyocytes assemble properties of classical cadherins are driven by the recruitment of stable AJs along intercellular contacts with organizational and cytosolic catenin proteins to the cadherin tail, with p120-catenin β structural hallmarks similar to mature contacts. We combine (CTNND1) binding to the juxta-membrane domain and -catenin β quantitative mass spectrometry with proximity labeling to identify the (CTNNB1) binding to the distal part of the tail.
    [Show full text]
  • Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins
    International Journal of Molecular Sciences Article Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins M. Quadir Siddiqui 1,† , Maulik D. Badmalia 1,† and Trushar R. Patel 1,2,3,* 1 Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada; [email protected] (M.Q.S.); [email protected] (M.D.B.) 2 Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada 3 Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada * Correspondence: [email protected] † These authors contributed equally to the work. Abstract: Members of the human Zyxin family are LIM domain-containing proteins that perform critical cellular functions and are indispensable for cellular integrity. Despite their importance, not much is known about their structure, functions, interactions and dynamics. To provide insights into these, we used a set of in-silico tools and databases and analyzed their amino acid sequence, phylogeny, post-translational modifications, structure-dynamics, molecular interactions, and func- tions. Our analysis revealed that zyxin members are ohnologs. Presence of a conserved nuclear export signal composed of LxxLxL/LxxxLxL consensus sequence, as well as a possible nuclear localization signal, suggesting that Zyxin family members may have nuclear and cytoplasmic roles. The molecular modeling and structural analysis indicated that Zyxin family LIM domains share Citation: Siddiqui, M.Q.; Badmalia, similarities with transcriptional regulators and have positively charged electrostatic patches, which M.D.; Patel, T.R.
    [Show full text]
  • FBLIM1 Polyclonal Antibody
    PRODUCT DATA SHEET Bioworld Technology,Inc. FBLIM1 polyclonal antibody Catalog: BS72779 Host: Rabbit Reactivity: Human,Rat BackGround: munogen and the purity is > 95% (by SDS-PAGE). This gene encodes a protein with an N-terminal fila- Applications: min-binding domain, a central proline-rich domain, and, WB 1:500 - 1:2000 multiple C-terminal LIM domains. This protein localizes Storage&Stability: at cell junctions and may link cell adhesion structures to Store at 4°C short term. Aliquot and store at -20°C long the actin cytoskeleton. This protein may be involved in term. Avoid freeze-thaw cycles. the assembly and stabilization of actin-filaments and Specificity: likely plays a role in modulating cell adhesion, cell mor- FBLIM1 polyclonal antibody detects endogenous levels phology and cell motility. This protein also localizes to of FBLIM1 protein. the nucleus and may affect cardiomyocyte differentiation DATA: after binding with the CSX/NKX2-5 transcription factor. Alternative splicing results in multiple transcript variants encoding different isoforms. Product: Rabbit IgG, 1mg/ml in PBS with 0.02% sodium azide, 50% glycerol, pH7.2 Molecular Weight: 41kDa Western blot analysis of extracts of rat heart, using FBLIM1 antibody. Swiss-Prot: Note: Q8WUP2 For research use only, not for use in diagnostic procedure. Purification&Purity: The antibody was affinity-purified from rabbit antiserum by affinity-chromatography using epitope-specific im- Bioworld Technology, Inc. Bioworld technology, co. Ltd. Add: 1660 South Highway 100, Suite 500 St. Louis Park, Add: No 9, weidi road Qixia District Nanjing, 210046, MN 55416,USA. P. R. China. Email: [email protected] Email: [email protected] Tel: 6123263284 Tel: 0086-025-68037686 Fax: 6122933841 Fax: 0086-025-68035151 .
    [Show full text]
  • Arp37342 T100
    Aviva Systems Biology MEF2C antibody - N-terminal region (ARP37342_T100) Product Number ARP37342_T100 Product Page http://www.avivasysbio.com/mef2c-antibody-n-terminal-region-arp37342-t100.html Product Name MEF2C antibody - N-terminal region (ARP37342_T100) Size 100 ul Gene Symbol MEF2C Alias Symbols Mef2, AV011172, 5430401D19Rik, 9930028G15Rik Protein Size (# AA) 432 amino acids Molecular Weight 48kDa Product Format Liquid. Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% sucrose. NCBI Gene Id 17260 Host Rabbit Clonality Polyclonal Concentration Batch dependent within range: 100 ul at 0.5 - 1 mg/ml Official Gene Full Myocyte enhancer factor 2C Name Description This is a rabbit polyclonal antibody against MEF2C. It was validated on Western Blot using a cell lysate as a positive control. Aviva Systems Biology strives to provide antibodies covering each member of a whole protein family of your interest. We also use our best efforts to provide you antibodies recognize various epitopes of a target protein. For availability of antibody needed for your experiment, please inquire ([email protected]). Peptide Sequence Synthetic peptide located within the following region: SRTNSDIVEALNKKENKGSESPDPDSSYALTPRTEEKYKKINEEFDNMIK Target Reference Shen,H., et al., (2006) Genes Dev. 20 (6), 675-688 Description of MEF2C is a transcription regulator of slow fiber Target Protein Interactions Vgll2; Hdac4; Nkx2-5; Hdac5; Phb2; KDM1A; Carm1; Ifrd1; Ncoa3; Ncoa2; Foxh1; Reconstitution and For short term use, store at 2-8C up to 1 week. For long term storage, store at -20C in Storage small aliquots to prevent freeze-thaw cycles. Lead Time Domestic: within 1-2 days delivery International: 1-2 days *** Required Wet/Dry Ice Surcharge will automatically be applied upon checkout for the shipment.
    [Show full text]
  • Regulation of Neuronal Gene Expression and Survival by Basal NMDA Receptor Activity: a Role for Histone Deacetylase 4
    The Journal of Neuroscience, November 12, 2014 • 34(46):15327–15339 • 15327 Cellular/Molecular Regulation of Neuronal Gene Expression and Survival by Basal NMDA Receptor Activity: A Role for Histone Deacetylase 4 Yelin Chen,1 Yuanyuan Wang,1 Zora Modrusan,3 Morgan Sheng,1 and Joshua S. Kaminker1,2 Departments of 1Neuroscience, 2Bioinformatics and Computational Biology, and 3Molecular Biology, Genentech Inc., South San Francisco, California 94080 Neuronal gene expression is modulated by activity via calcium-permeable receptors such as NMDA receptors (NMDARs). While gene expression changes downstream of evoked NMDAR activity have been well studied, much less is known about gene expression changes that occur under conditions of basal neuronal activity. In mouse dissociated hippocampal neuronal cultures, we found that a broad NMDAR antagonist, AP5, induced robust gene expression changes under basal activity, but subtype-specific antagonists did not. While some of the gene expression changes are also known to be downstream of stimulated NMDAR activity, others appear specific to basal NMDARactivity.ThegenesalteredbyAP5treatmentofbasalcultureswereenrichedforpathwaysrelatedtoclassIIahistonedeacetylases (HDACs), apoptosis, and synapse-related signaling. Specifically, AP5 altered the expression of all three class IIa HDACs that are highly expressed in the brain, HDAC4, HDAC5, and HDAC9, and also induced nuclear accumulation of HDAC4. HDAC4 knockdown abolished a subset of the gene expression changes induced by AP5, and led to neuronal death under
    [Show full text]
  • Download Author Version (PDF)
    Molecular BioSystems Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/molecularbiosystems Page 1 of 29 Molecular BioSystems Mutated Genes and Driver Pathways Involved in Myelodysplastic Syndromes—A Transcriptome Sequencing Based Approach Liang Liu1*, Hongyan Wang1*, Jianguo Wen2*, Chih-En Tseng2,3*, Youli Zu2, Chung-che Chang4§, Xiaobo Zhou1§ 1 Center for Bioinformatics and Systems Biology, Division of Radiologic Sciences, Wake Forest University Baptist Medical Center, Winston-Salem, NC 27157, USA. 2 Department of Pathology, the Methodist Hospital Research Institute,
    [Show full text]
  • Key Genes Regulating Skeletal Muscle Development and Growth in Farm Animals
    animals Review Key Genes Regulating Skeletal Muscle Development and Growth in Farm Animals Mohammadreza Mohammadabadi 1 , Farhad Bordbar 1,* , Just Jensen 2 , Min Du 3 and Wei Guo 4 1 Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 77951, Iran; [email protected] 2 Center for Quantitative Genetics and Genomics, Aarhus University, 8210 Aarhus, Denmark; [email protected] 3 Washington Center for Muscle Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA; [email protected] 4 Muscle Biology and Animal Biologics, Animal and Dairy Science, University of Wisconsin-Madison, Madison, WI 53558, USA; [email protected] * Correspondence: [email protected] Simple Summary: Skeletal muscle mass is an important economic trait, and muscle development and growth is a crucial factor to supply enough meat for human consumption. Thus, understanding (candidate) genes regulating skeletal muscle development is crucial for understanding molecular genetic regulation of muscle growth and can be benefit the meat industry toward the goal of in- creasing meat yields. During the past years, significant progress has been made for understanding these mechanisms, and thus, we decided to write a comprehensive review covering regulators and (candidate) genes crucial for muscle development and growth in farm animals. Detection of these genes and factors increases our understanding of muscle growth and development and is a great help for breeders to satisfy demands for meat production on a global scale. Citation: Mohammadabadi, M.; Abstract: Farm-animal species play crucial roles in satisfying demands for meat on a global scale, Bordbar, F.; Jensen, J.; Du, M.; Guo, W.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • TIS7 and Skmc15 Regulate Adipocyte Differentiation and Intestinal Lipid Absorption
    bioRxiv preprint doi: https://doi.org/10.1101/719922; this version posted July 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 TIS7 and SKMc15 Regulate Adipocyte Differentiation and Intestinal Lipid Absorption 1 1,13 1,14 1,15 2 2,16 2 Ilja Vietor*, Domagoj Cikes, Kati Piironen, Ronald Gstir, Ivan Tancevski, Philipp Eller, Egon Demetz, 3 4 5 6 7,8 9,10,11 Michael Hess, Volker Kuhn (†), Gerald Degenhart, Johannes Rainer, Jan Rozman, Martin Klingenspor, 7,8,12 1 1 Martin Hrabe de Angelis, Taras Valovka, Lukas A. Huber 1 2 3 4 Division of Cell Biology, Biocenter, Department of Internal Medicine II, Department of Histology, Department Trauma 5 6 Surgery, Department Radiology, Medical University Innsbruck, Austria, Institute for Biomedicine, Eurac Research, 7 Bolzano, Italy, German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German 8 Research Center for Environmental Health, Neuherberg, Germany, German Center for Diabetes Research (DZD), 9 Neuherberg, Germany, Chair of Molecular Nutritional Medicine, Technical University of Munich, School of Life 10 Sciences, Weihenstephan, Freising, Germany, EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, 11 Technical University of Munich, Freising, Germany, ZIEL - Institute for Food & Health, Technical University of Munich, 12 Freising, Germany, Chair of Experimental Genetics, Technical University of Munich, School of Life Sciences, 13 Weihenstephan, Freising, Germany, IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 14 Vienna, Austria, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 15 16 Finland, ADSI – Austrian Drug Screening Institute GmbH, Innsbruck, Austria, Department of Internal Medicine, Medical University Graz, Austria * Address correspondence to: Ilja Vietor, Division of Cell Biology, Biocenter, Innsbruck Medical University, Innrain 80- 82, A-6020 Innsbruck, Austria.
    [Show full text]
  • New Insights Into the Cellular Temporal Response to Proteostatic Stress
    TOOLS AND RESOURCES New insights into the cellular temporal response to proteostatic stress Justin Rendleman1†, Zhe Cheng1†, Shuvadeep Maity1†, Nicolai Kastelic2, Mathias Munschauer2, Kristina Allgoewer1, Guoshou Teo1, Yun Bin Matteo Zhang1, Amy Lei1, Brian Parker1, Markus Landthaler2,3, Lindsay Freeberg4, Scott Kuersten4, Hyungwon Choi5,6, Christine Vogel1* 1Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States; 2Berlin Institute for Medical Systems Biology, Max Delbru¨ ck Center for Molecular Medicine, Berlin, Germany; 3Integrative Research Institute for the Life Sciences, Institute of Biology, Humboldt University, Berlin, Germany; 4Illumina Inc, Madison, United States; 5National University of Singapore, Singapore; 6Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore Abstract Maintaining a healthy proteome involves all layers of gene expression regulation. By quantifying temporal changes of the transcriptome, translatome, proteome, and RNA-protein interactome in cervical cancer cells, we systematically characterize the molecular landscape in response to proteostatic challenges. We identify shared and specific responses to misfolded proteins and to oxidative stress, two conditions that are tightly linked. We reveal new aspects of the unfolded protein response, including many genes that escape global translation shutdown. A subset of these genes supports rerouting of energy production in the mitochondria. We also find that many genes change at multiple levels, in either the same or opposing directions, and at different time points. We highlight a variety of putative regulatory pathways, including the stress- dependent alternative splicing of aminoacyl-tRNA synthetases, and protein-RNA binding within the 3’ untranslated region of molecular chaperones. These results illustrate the potential of this information-rich resource.
    [Show full text]