Reuse As a Waste Management and Climate Change Mitigation Strategy

Total Page:16

File Type:pdf, Size:1020Kb

Reuse As a Waste Management and Climate Change Mitigation Strategy Transforming trash: reuse as a waste management and climate change mitigation strategy By Sintana Eugenia Vergara A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Energy and Resources in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Kara Nelson, chair Professor George Tchobanoglous Professor Arpad Horvath Professor Michael O’Hare Fall 2011 Abstract Transforming Trash: reuse as a waste management and climate change mitigation strategy By Sintana Eugenia Vergara Doctor of Philosophy in Energy and Resources University of California Berkeley Professor Kara Nelson, chair Waste reflects the culture that produces it and affects the health of the people and environment surrounding it. As urbanization and waste production increase on a global scale, cities are faced with the challenge of how to manage their waste effectively to minimize its negative impacts on public and environmental health. Using waste as a resource can offer a variety of environmental benefits, including climate change mitigation, though these benefits are variable and uncertain. My work begins with an overview of the relationship between solid waste and the environment, focusing on two trends over time and space: regionalization and formalization of waste management. Recognizing that appropriate waste management must be determined locally, I then focus on two places, one in the Global North, and one in the Global South, whose waste production and management differ tremendously, and quantify the climate benefits from reuse strategies at different scales using life-cycle assessment (LCA). In California, USA, where waste production and access to technology are abundant, I ask: how can the state minimize the greenhouse gas (GHG) emissions from its municipal waste management? I conclude that source reduction and anaerobic digestion are the methods by which CA could most greatly and robustly reduce its waste emissions. I also find that waste LCA results are very sensitive to model assumptions, about system boundary, landfill behavior, and electricity generation, though the emissions from source reduction are robust to these inputs. In Bogotá, Colombia, where the municipal government is in the process of modernizing their recycling system, I ask: what are the GHG emission implications of this modernization? I find that the unregulated recycling system is more financially sustainable, more socially inclusive, and abates more greenhouse gas emissions than does the municipal system. The municipal system, on the other hand, conforms to aesthetic visions of a modern city, and provides workers with steady employment and benefits. A hybrid model could combine the incentives and efficiency of the informal system with the working conditions of the municipal one. In Bogotá and in California, modes of reuse – technologies or behaviors that use waste as a resource – offer waste management, environmental and climate benefits. 1 To my family. To my father, for your tireless work to protect our planet, for encouraging my pursuit of interesting questions, and for believing I could do anything; To my brother, for being a positive, brilliant force in the world, for your life-long friendship, and your curiosity; To my mother, my inspiration and my best friend, for your commitment to love, truth, and justice. i Acknowledgements. I feel very fortunate to have so many people to thank. First of all, I want to thank my family, for a wonderful life filled with love and support. Thank you to Martha and Tony, my second set of parents, for always leading by example and working towards a better world. Thank you, Pepe, for your love, for the beautiful yesterdays and the tomorrows to come. And Mariana, thanks for helping to make these years in Berkeley so lovely and so magical. And to all my friends, family, and colleagues: thank you for making this world more beautiful and more interesting. I want to thank the Energy and Resources Group, students and faculty, for this unparalleled intellectual community. What a tremendous gift and opportunity it has been to be among you for 6 years. Special thanks go to: • Stacy Jackson, for our weekly swims and the beautiful friendship that arose from them. You are an inspiration! • Malini Ranganathan, Anne Short, and Ashley Murray, for being model citizens, scholars, and women. • Isha Ray, for your guidance, generosity, and wit. • Alex Farrell, for encouraging my love of garbage, and for instilling in me principles of honest and effective scholarship. • Derek Lemoine, for broadening my academic horizons and always challenging me. • Josh, for the pranting (!), adventures, and friendship, and the Aptes, for sharing with me their cabin in the woods, where I prepared for my oral exams and wrote the final chapter of this dissertation. • Kevin and Andy for our writing group. • Niels, Pants, and Christian, for great friendships, backpacking trips, and conversations. I’d like to thank my committee – Kara Nelson, Arpad Horvath, Mike O’Hare, George Tchobanoglous – for your feedback, encouragement, and guidance. I also received wonderful research support from collaborators in Denmark and in Colombia. Special thanks to Anders Damgaard, Daniel Gomez, Marco Tulio Espinosa, Asociación de Recicladores de Bogotá, Silvio Ruiz Grisales, and many workers in the recycling chain who shared their time and stories with me. I am also grateful for generous funding from the National Science Foundation Graduate Research Fellowship, the Institute for International Studies (Simpson Fellowship), the US Student Fulbright Fellowship, the University of California Berkeley’s Chancellor’s Fellowship, Partners of the Americas Climate Change Fellowship, and the Fernström Fellowship. ii “The consumption of soap and paper, the quantity of letters exchanged, the extension of public libraries and the use made of them etc are often taken as a measure of the actual degree of civilization of a nation. An extensive and refined use made of the waste materials of industry and housekeeping might be considered with equal right as the measure of the degree of industrial development and capability.” - Regnier Ferdinand von Habsburg, 1876 (As quoted in Desrochers, 2002) iii Table of contents. Abstract ......................................................................................................................................................................................... 1 Table of contents. ..................................................................................................................................................................... iv Table of figures. ........................................................................................................................................................................ vii Introduction. .............................................................................................................................................................................. 1 Chapter 1. Municipal Solid Waste and the environment: a global perspective ...................................... 3 1. Introduction .................................................................................................................................................................. 4 2. Solid Waste: Composition, Quantities, and Variability ................................................................................... 6 2.1. Quantities and Composition ............................................................................................................................... 6 2.2. Variability .................................................................................................................................................................... 9 2.3. Uncertainty and Data Quality .......................................................................................................................... 10 2.4. Variability in waste management ................................................................................................................... 10 3. Evolution of solid waste management ............................................................................................................. 11 3.1. Drivers in waste management development ............................................................................................ 11 3.2. Historical development of waste management systems ...................................................................... 12 3.2.1. Shift from local to regional, and informal to formal waste management: A look at the United States ....................................................................................................................................................................... 12 3.2.2. Evolution of the informal sector as a waste service provider ........................................................... 15 3.2.2.1. Informal public good provision ............................................................................................................... 15 3.2.2.2. The informal waste sector ......................................................................................................................... 17 3.3. Formalization of waste management in the Global South: A look at Bogotá, Colombia .......... 19 4. Current status of solid waste management: Technologies and Policies .............................................. 19 4.1. Technologies .........................................................................................................................................................
Recommended publications
  • Hazardous Waste Minimization Guide
    Waste Minimization Guide Environmental Health & Safety 4202 E. Fowler Ave. OPM 100 Tampa, FL 33620 (813) 974-4036 h ttp://www.usf.edu/ehs/ June 1, 2020 Table of Contents Introduction .............................................................................................................................................. 2 Methods for Waste Minimization ............................................................................................................. 2 Source Reduction .................................................................................................................................. 2 Environmentally Sound Recycling (ESR) .................................................................................................... 4 Treatment ............................................................................................................................................. 4 Managing Waste Efficiently ...................................................................................................................... 4 Flammable Liquids and Solids ............................................................................................................... 5 Halogenated Solvents ........................................................................................................................... 5 Solvent Contaminated Towels and Rags ............................................................................................... 6 Paint related Wastes ............................................................................................................................
    [Show full text]
  • Five Principles of Waste Product Redesign Under the Upcycling Concept
    International Forum on Energy, Environment Science and Materials (IFEESM 2015) Five Principles of Waste Product Redesign under the Upcycling Concept Jiang XU1 & Ping GU1 1School of Design, Jiangnan University, Wuxi, China KEYWORD: Upcycling; Redesign principle; Green design; Industrial design; Product design ABSTRACT: It explores and constructs the principles of waste product redesign which are based on the concept of upcycling. It clarifies the basic concept of upcycling, briefly describes its current development, deeply discusses its value and significance, combines with the idea of upcycling which behinds regeneration design principle from the concept of “4R” of green design, and takes real-life case as example to analyze the principles of waste product redesign. It puts forward five principles of waste product redesign: value enhancement, make the most use of waste, durable and environmental protection, cost control and populace's aesthetic. INTRODUCTION Recently, environmental problems was becoming worse and worse, while as a developing country, China is facing dual pressures that economical development and environmental protection. However, large numbers of goods become waste every day all over the world, but the traditional recycling ways, such as melting down and restructuring, not only produce much CO2, but also those restruc- tured parts or products cannot mention in the same breath with raw ones. As a result, the western countries started to center their attention to the concept of “upcycling” of green design, which can transfer the old and waste things into more valuable products to vigorously develop the green econ- omy. Nevertheless, this new concept hasn’t been well known and the old notion of traditionally inef- ficient reuse still predominant in China, so it should be beneficial for our social development to con- struct the principles of waste products’ redesign which are based on the concept of upcycling.
    [Show full text]
  • Redesign. Rethink. Reduce. Reuse. Go Beyond Recycling
    REDESIGN. RETHINK. REDUCE. REUSE. GO BEYOND RECYCLING. WHAT IS ZERO WASTE? the entire lifecycle of products used within a facility. With TRUE, your facility can demonstrate to the world what you’re doing to minimize Zero waste is a philosophy that encourages the redesign of resource your waste output. life cycles so that all products are reused; a process that is very similar to the way that resources are reused in nature. Although recycling is HOW DOES CERTIFICATION WORK? the first step in the journey, achieving zero waste goes far beyond. By focusing on the larger picture, facilities and organizations can reap The TRUE Zero Waste certification program is an Assessor-based financial benefits while becoming more resource efficient. program that rates how well facilities perform in minimizing their non-hazardous, solid wastes and maximizing their efficient in the use According to the EPA, the average American generates 4.4 pounds of of resources. A TRUE project’s goal is to divert 90 percent or greater trash each day, and according to the World Bank, global solid waste overall diversion from the landfill, incineration (waste-to-energy) and generation is on pace to increase 70 percent by 2025. For every can of the environment for solid, non-hazardous wastes for the most recent garbage at the curb, for instance, there are 87 cans worth of materials 12 months. that come from extraction industries that manufacture natural resources into finished products—like timber, agricultural, mining and Certification is available for any physical facility and their operations, petroleum. This means that while recycling is important, it doesn’t including facilities owned by: companies, property managers, address the real problem.
    [Show full text]
  • Reduce, Reuse and Recycle (The 3Rs) and Resource Efficiency As the Basis for Sustainable Waste Management
    CSD-19 Learning Centre “Synergizing Resource Efficiency with Informal Sector towards Sustainable Waste Management” 9 May 2011, New York Co-organized by: UNCRD and UN HABITAT Reduce, Reuse and Recycle (the 3Rs) and Resource Efficiency as the basis for Sustainable Waste Management C. R. C. Mohanty UNCRD 3Rs offer an environmentally friendly alternatives to deal with growing generation of wastes and its related impact on human health, eco nomy and natural ecosystem Natural Resources First : Reduction Input Reduce waste, by-products, etc. Production (Manufacturing, Distribution, etc.) Second : Reuse Third : Material Recycling Use items repeatedly. Recycle items which cannot be reused as raw materials. Consumption Fourth : Thermal Recycling Recover heat from items which have no alternatives but incineration and which cannot Discarding be recycled materially. Treatment (Recycling, Incineration, etc.) Fifth : Proper Disposal Dispose of items which cannot be used by any means. (Source: Adapted from MoE-Japan) Landfill disposal Stages in Product Life Cycle • Extraction of natural resources • Processing of resources • Design of products and selection of inputs • Production of goods and services • Distribution • Consumption • Reuse of wastes from production or consumption • Recycling of wastes from consumption or production • Disposal of residual wastes Source: ADB, IGES, 2008 Resource efficiency refers to amount of resource (materials, energy, and water) consumed in producing a unit of product or services. It involves using smaller amount of physical
    [Show full text]
  • Sector N: Scrap and Waste Recycling
    Industrial Stormwater Fact Sheet Series Sector N: Scrap Recycling and Waste Recycling Facilities U.S. EPA Office of Water EPA-833-F-06-029 February 2021 What is the NPDES stormwater program for industrial activity? Activities, such as material handling and storage, equipment maintenance and cleaning, industrial processing or other operations that occur at industrial facilities are often exposed to stormwater. The runoff from these areas may discharge pollutants directly into nearby waterbodies or indirectly via storm sewer systems, thereby degrading water quality. In 1990, the U.S. Environmental Protection Agency (EPA) developed permitting regulations under the National Pollutant Discharge Elimination System (NPDES) to control stormwater discharges associated with eleven categories of industrial activity. As a result, NPDES permitting authorities, which may be either EPA or a state environmental agency, issue stormwater permits to control runoff from these industrial facilities. What types of industrial facilities are required to obtain permit coverage? This fact sheet specifically discusses stormwater discharges various industries including scrap recycling and waste recycling facilities as defined by Standard Industrial Classification (SIC) Major Group Code 50 (5093). Facilities and products in this group fall under the following categories, all of which require coverage under an industrial stormwater permit: ◆ Scrap and waste recycling facilities (non-source separated, non-liquid recyclable materials) engaged in processing, reclaiming, and wholesale distribution of scrap and waste materials such as ferrous and nonferrous metals, paper, plastic, cardboard, glass, and animal hides. ◆ Waste recycling facilities (liquid recyclable materials) engaged in reclaiming and recycling liquid wastes such as used oil, antifreeze, mineral spirits, and industrial solvents.
    [Show full text]
  • Designing out Waste: a Design Team Guide for Buildings
    Uniclass A42: N462 CI/SfB (Ajp) (T6) Designing out Waste: A design team guide for buildings LESS WASTE, SHARPER DESIGN Halving Waste to Landfill “ Clients are making construction waste reduction a priority and design teams must respond. This stimulating guide to designing out construction waste clearly illustrates how design decisions can make a significant and positive difference, not only through reducing environmental impact but also making the most of resources. It’s a promising new opportunity for design teams, which I urge them to take up.” Sunand Prasad, RIBA President 1.0 Introduction 6 Contents 2.0 The case for action 8 2.1 Materials resource efficiency 10 2.2 Drivers for reducing waste 13 3.0 The five principles of Designing out Waste 14 3.1 Design for Reuse and Recovery 18 3.2 Design for Off Site Construction 20 3.3 Design for Materials Optimisation 23 3.4 Design for Waste Efficient Procurement 24 3.5 Design for Deconstruction and Flexibility 27 4.0 Project application of the five Designing out Waste principles 28 4.1 Client brief and designers’ appointments 31 4.2 RIBA Stage A/B: Appraisal and strategic brief 32 4.3 RIBA Stage C: Outline proposal 34 4.4 RIBA Stage D: Detailed proposals 38 4.5 RIBA Stage E: Technical design 40 5.0 Design review process 42 6.0 Suggested waste reduction initiatives 46 6.1 Design for Reuse and Recovery 48 6.2 Design for Off Site Construction 50 6.3 Design for Materials Optimisation 51 6.4 Design for Waste Efficient Procurement 52 6.5 Design for Deconstruction and Flexibility 53 Appendix A - The Construction Commitments: Halving Waste to Landfill 56 Appendix B - Drivers for reducing waste 57 Written by: Davis Langdon LLP ◀ Return to Contents This document provides information on the key principles that designers can use during the design process and how these Section 2.0 principles can be applied to projects to maximise opportunities Case for action – Presents to the construction industry the to Design out Waste.
    [Show full text]
  • Reduce Reuse Recycle Compost
    Loyola is committed to waste reduction as part of our sustainability efforts. For more information on how you can help reduce waste on campus, please review this summary of available programs. Reduce • Eliminate Disposables – Get out of the habit of single-use-items. With a set of reusable products (cutlery, mug, water bottle, bag), you can cut down on plastics and save money. • Sustainable Purchasing - Take time to implement thoughtful purchasing practices to conserve resources and save the university money. o Life-Cycle Considerations – Before you bring something to campus, think about the full impact of its use. How much energy or water will it consume? Is there a way to recycle it when it’s not needed? o Third-Party Certified – Considering purchasing equipment or materials that meet reputable certifications. o Change Your Use – Always print double-sided. Avoid purchasing what you don’t need. Eliminate packaging materials where you can. • Green Move-In – Consider what you bring to campus. Don’t bring ‘one-off’ or delicate items that become someone’s problem to dispose of. For more information on Sustainable Purchasing use the ‘Guide to Green Purchasing at Loyola’ or talk to Loyola’s Purchasing Department. Reuse • In Your Department – Many times we have materials that others can use. Set up a re-use center to share office supplies, conference left-overs, or other common materials. • Think Green and Give – At the end of each school year, Loyola student donate tons of clothes and household goods through this program in the Residence Halls. LUC.edu/thinkgreenandgive • Biodiesel Program – Loyola ‘upcycles’ waste vegetable oil into vehicle fuel, biosoap, and other products.
    [Show full text]
  • COMPOST FEASIBILITY STUDY April 2017
    DISTRICT OF COLUMBIA COMPOST FEASIBILITY STUDY April 2017 COMMISSIONED BY: District of Columbia Department of Public Works PREPARED BY: 416 LONGSHORE DRIVE ANN ARBOR, MI 48105 734.996.1361 RECYCLE.COM TABLE OF CONTENTS Executive Summary ....................................................................................................................................... 1 Background and Purpose .............................................................................................................................. 7 Current Operations ................................................................................................................................... 8 SSO Collection ......................................................................................................................................... 10 Processing ............................................................................................................................................... 11 Organics Collection ...................................................................................................................................... 12 Processing Technology ................................................................................................................................ 14 Organics Outreach ....................................................................................................................................... 16 SSO Curbside Collection Modeling .............................................................................................................
    [Show full text]
  • III . Waste Management
    III. WASTE MANAGEMENT Economic growth, urbanisation and industrialisation result in increasing volumes and varieties of both solid and hazardous wastes. Globalisation can aggravate waste problems through grow­ ing international waste trade, with developing countries often at the receiving end. Besides negative impacts on health as well as increased pollution of air, land and water, ineffective and inefficient waste management results in greenhouse gas and toxic emissions, and the loss of precious materials and resources. Pollution is nothing but An integrated waste management approach is a crucial part of interna- the resources we are not harvesting. tional and national sustainable development strategies. In a life-cycle per- We allow them to disperse spective, waste prevention and minimization generally have priority. The because we’ve been remaining solid and hazardous wastes need to be managed with effective and efficient measures, including improved reuse, recycling and recovery ignorant of their value. of useful materials and energy. — R. Buckminster Fuller The 3R concept (Reduce, Reuse, Recycle) encapsulates well this life-cycle Scientist (1895–1983) approach to waste. WASTE MANAGEMENT << 26 >> Hazardous waste A growing share of municipal waste contains hazardous electronic or electric products. In Europe e­waste is increasing by 3–5 per Hazardous waste, owing to its toxic, infectious, radioactive or flammable cent per year. properties, poses an actual or potential hazard to the health of humans, other living organisms, or the environment. According to UNEP, some 20 to 50 million metric tonnes of e-waste are generated worldwide every year. Other estimates expect computers, No data on hazardous waste generation are available for most African, mobile telephones and television to contribute 5.5 million tonnes to Middle Eastern and Latin American countries.
    [Show full text]
  • Reduce, Reuse, Recycle the 3 R’S
    Lesson: Reduce, Reuse, Recycle The 3 R’s The 3 R’s are Reduce, Reuse, and Recycle! These are three great ways you can eliminate waste and protect your environment! Waste, and how we choose to handle it, affects our world’s environment – which is also your environment. The 4 spheres we learned about (biosphere, atmosphere, geosphere, and hydrosphere) are all part of our environment. Waste management is important to keep these spheres and everything in them happy and healthy. What is waste? Waste is anything we throw away, or get rid of, that doesn’t get used. How can you help? You can help by learning and practicing the 3 R’s of waste management: reduce, reuse, recycle! Now let’s learn about each of the 3 R’s and how you can do these anywhere, even at home! Reduce Reduce/reduction: to make something smaller or use less, resulting in a smaller amount of waste. A key part of waste “reduction” is “conservation” – using natural resources wisely and using less than usual in order to avoid waste. Buying only what you need and use all of what you buy is a great way to reduce. If you can’t use all of something, see if you can donate it so other people can continue to put it to good use. Also think of how the things you buy are packaged. You can reduce waste by selecting products that are not wasteful in their packaging and are reusable or recyclable. Keep the following tips in mind when you are buying things: Precycle – purchase products in materials/packaging that can be easily recycled.
    [Show full text]
  • Recycling and Waste Reduction at Convenience Stores and Gas Stations
    Recycling and Waste Reduction at Convenience Stores and Gas Stations Wisconsin convenience Why Recycle and Reduce Waste? stores and gas stations To save resources: Recycling saves valuable reusable resources and reduces the welcome visitors from Wisconsin energy use and pollution associated with extracting and manufacturing virgin and beyond. Often these stops materials. are the only places travelers will To reduce costs: Like other businesses, convenience stores and gas stations pay visit before arriving at their for waste disposal. In many cases, recycling services cost significantly less than trash disposal; companies that reuse or recycle more waste can save significant destinations. People used to costs on waste disposal. Reusing more materials can also reduce purchasing and recycling at home and work have handling costs. come to rely on convenience To improve customer service: Recycling demonstrates your business’ commitment stores and gas stations for to environmental protection. A recent survey indicates over 95% of Wisconsin recycling while on the road. citizens recycle regularly. People now expect to find recycling containers wherever they travel. Offering recycling is just another way to better serve your customers. Luckily, recycling not only protects valuable reusable What Should Be Recycled in Wisconsin? resources, it also helps your • Aluminum, glass, steel (tin) and bi-metal • Major appliances including air business save money and containers conditioners, clothes washers and dryers, • Plastic containers #1 and #2, including
    [Show full text]
  • How to Implement Extended Producer Responsibility (EPR) a Briefing For
    23 August 2019 How to implement extended producer responsibility (EPR) A briefing for governments and businesses By: Emma Watkins Susanna Gionfra Funded by Disclaimer: The arguments expressed in this report are solely those of the authors, and do not reflect the opinion of any other party. The report should be cited as follows: E. Watkins and S. Gionfra (2019) How to implement extended producer responsibility (EPR): A briefing for governments and businesses Corresponding author: Emma Watkins Acknowledgements: We thank Xin Chen and Annika Lilliestam of WWF Germany for their inputs and comments during the preparation of this briefing. Cover image: Pexels Free Stock Photos Institute for European Environmental Policy AISBL Brussels Office Rue Joseph II 36-38 1000 Bruxelles Belgium Tel: +32 (0) 2738 7482 Fax: +32 (0) 2732 4004 London Office 11 Belgrave Road IEEP Offices, Floor 3 London, SW1V 1RB Tel: +44 (0) 20 7799 2244 Fax: +44 (0) 20 7799 2600 The Institute for European Environmental Policy (IEEP) is an independent not-for-profit institute. IEEP undertakes work for external sponsors in a range of policy areas as well as engaging in our own research programmes. For further information about IEEP, see our website at www.ieep.eu or contact any staff member. 2 Table of Contents Executive Summary .......................................................................................................... 5 1 Introduction and context for this briefing .................................................................. 7 2 Introduction to extended
    [Show full text]